Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Instruments
2.3. Extraction, Fractionation, and Isolation of A. rugosa
2.4. UPLC-qTof Mass Spectrometry Analysis
2.5. XO Inhibitory Activity and XO Kinetic Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bioassay-Guided Isolation and Identification of Compounds
3.2. XO Inhibitory Activity of Identified Compounds
3.3. UPLC-qTof Mass Spectrometry Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gibson, T. Hyperuricemia, gout and the kidney. Curr. Opin. Rheumatol. 2012, 24, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Bitik, B.; Öztürk, M.A. An old disease with new insights: Update on diagnosis and treatment of gout. Eur. J. Rheumatol. 2014, 1, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Zheng, A.; Xu, P.; Wang, J.; Xue, T.; Dai, S.; Pan, S.; Guo, Y.; Xie, X.; Li, L.; et al. High-protein diet induces hyperuricemia in a new animal model for studying human gout. Int. J. Mol. Sci. 2020, 21, 2147. [Google Scholar]
- Martillo, M.A.; Nazzal, L.; Crittenden, D.B. The crystallization of monosodium urate. Curr. Rheumatol. Rep. 2014, 16, 400. [Google Scholar] [CrossRef]
- Fukunari, A.; Okamoto, K.; Nishino, T.B.; Eger, T.; Pai, E.F.; Kamezawa, M.; Yamada, I.; Kato, N. Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: A potent xanthine oxidoreductase inhibitor with hepatic excretion. J. Pharmacol. Exp. Ther. 2004, 311, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.-N.; Wang, W.; Zhang, C.-Y.; Shi, H.-B.; Liu, Y.; Liu, X.H.; Guo, B.-H.; Zhao, D.-M.; Gao, H. Bioassy-guided isolation and identification of xanthine oxidase inhibitory constituents from the leaves of Perilla frutescens. Molecules 2015, 20, 17848–17859. [Google Scholar] [CrossRef] [Green Version]
- Orhan, I.E.; Deniz, F.S.S. Natural products and extracts as xantine oxidase inhibitors—A hope for gout disease? Curr. Pharm. Des. 2021, 27, 143–158. [Google Scholar] [CrossRef]
- Anand, S.; Pang, E.; Livanos, G.; Mantri, N. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache rugosa and its Correlation with Colour and Poly-Phenol Content. Molecules 2018, 23, 108. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.; Cha, K.H.; Kwon, D.Y.; Son, Y.J.; Kim, S.M.; Choi, J.H.; Yoo, G.; Nho, C.W. Agastache rugosa ethanol extract suppresses bone loss via induction of osteoblast differentiation with alteration of gut microbiota. Phytomedicine 2021, 84, 153517. [Google Scholar] [CrossRef]
- Cao, P.; Xie, P.; Wang, X.; Wang, J.; Wei, J.; Kang, W.Y. Chemical constituents and coagulation activity of Agastache rugosa. BMC Complement. Altern. Med. 2017, 17, 93. [Google Scholar] [CrossRef] [Green Version]
- Oh, Y.R.; Lim, H.W.; Huang, Y.H.; Kwon, H.S.; Jin, C.D.; Kim, K.H.; Lim, C.J. Attenuating properties of Agastache rugosa leaf extract against ultraviolet-B-induced photoaging via up-regulating glutathione and superoxide dismutase in a human keratinocyte cell line. J. Photochem. Photobiol. B Biol. 2016, 163, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.; Gu, M.J.; Han, J.; Cho, W.; Ma, J.Y. Agastache rugosa Kuntze extract, containing the active component rosmarinic acid, prevents atherosclerosis through up-regulation of the cyclin-dependent kinase inhibitors p21WAF1/CIP1 and p27KIP1. J. Funct. Foods 2017, 30, 30–38. [Google Scholar] [CrossRef]
- Jang, S.A.; Hwang, Y.H.; Kim, T.; Yang, H.; Lee, J.; Seo, Y.H.; Park, J.I.; Ha, H. Water extract of Agastache rugosa prevents ovariectomy-induced bone loss by inhibiting osteoclastogenesis. Foods 2020, 9, 1181. [Google Scholar] [CrossRef]
- Lee, Y.; Lim, H.W.; Ryu, I.W.; Huang, Y.H.; Park, M.; Chi, Y.M.; Lim, C.J. Anti-inflammatory, barrier-protective, and antiwrinkle properties of Agastache rugosa Kuntze in human epidermal keratinocytes. BioMed Res. Int. 2020, 2020, 1759067. [Google Scholar] [CrossRef] [PubMed]
- Shin, S. Essential oil compounds from Agastache rugosa as antifungal agents against Trichophyton species. Arch. Pharm. Res. 2004, 27, 295–299. [Google Scholar] [CrossRef]
- An, J.H.; Yuk, H.J.; Kim, D.Y.; Nho, C.W.; Lee, D.H.; Ryu, H.W.; Oh, S.R. Evaluation of phytochemicals in Agastache rugosa (Fisch. & C.A.Mey.) Kuntze at different growth stages by UPLC-QTof-MS. Ind. Crops Prod. 2018, 112, 608–616. [Google Scholar]
- Yeo, H.J.; Park, C.H.; Park, Y.E.; Hyeon, H.; Kim, J.K.; Lee, S.Y.; Park, S.U. Metabolic profiling and antioxidant activity during flower development in Agastache rugose. Physiol. Mol. Biol. Plants 2021, 27, 445–455. [Google Scholar] [CrossRef]
- Lin, C.M.; Chen, C.S.; Chen, C.T.; Liang, Y.C.; Lin, J.K. Molecular modeling of flavonoids that inhibits xanthine oxidase. Biochem. Biophys. Res. Commun. 2002, 294, 167–172. [Google Scholar] [CrossRef]
- Yuk, H.J.; Song, Y.H.; Curtis-Long, M.J.; Kim, D.W.; Woo, S.G.; Lee, Y.B.; Uddin, Z.; Kim, C.Y.; Park, K.H. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean (Glycine max) leaves. J. Agric. Food Chem. 2016, 64, 7315–7324. [Google Scholar] [CrossRef]
- Ai, C.B.; Li, L.N. Stereostructure of salvianolic acid B and isolation of salvianolic acid C from Salvia miltiorrhiza. J. Nat. Prod. 1988, 51, 145–149. [Google Scholar] [CrossRef]
- Yuk, H.J.; Lee, Y.S.; Ryu, H.W.; Kim, S.H.; Kim, D.S. Effects of Toona sinensis leaf extract and its chemical constituents on xanthine oxidase activity and serum uric acid levels in potassium oxonate-induced hyperuricemic rats. Molecules 2018, 23, 3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuk, H.J.; Kim, J.W.; Sung, Y.Y.; Kim, D.S. Phloroglucinol derivatives from Dryopteris crassirhizoma as potent xanthine oxidase inhibitors. Molecules 2021, 26, 122. [Google Scholar] [CrossRef]
- Kim, J.Y.; Wang, Y.; Li, Z.P.; Baiseitova, A.; Ban, Y.J.; Park, K.H. Xanthine oxidase inhibition and anti-LDL oxidation by prenylated isoflavones from Flemingia philippinensis root. Molecules 2020, 25, 3074. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Jang, H.; Bo, S.; Kim, M.; Deepa, P.; Park, J.; Sowndhararajan, K.; Kim, S. Changes in human electroencephalographic activity in response to Agastache rugosa essential oil exposure. Behav. Sci. 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Keum, Y.S.; Nile, A.S.; Kwon, Y.D.; Kim, D.H. Potential cow milk xanthine oxidase inhibitory and antioxidant activity of selected phenolic acid derivatives. J. Biochem. Mol. Toxicol. 2018, 32, e22005. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, L.; Ren, L.; Xie, Y. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Front. 2020, 1, 152–167. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Awale, S.; Tezuka, Y.; Ueda, J.Y.; Tran, Q.L.; Kadota, S. Xanthine oxidase inhibitors from the flowers of Chrysanthemum sinense. Planta Medica 2006, 72, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Borges, F.; Fernandes, E.; Roleira, F. Progress towards the discovery of xanthine oxidase inhibitors. Curr. Med. Chem. 2002, 9, 195–217. [Google Scholar] [CrossRef]
- Seo, W.D.; Kim, J.W.; Ryu, H.W.; Kim, J.H.; Han, S.I.; Ra, J.E.; Seo, K.H.; Jang, K.C.; Lee, J.H. Identification and characterisation of coumarins from the roots of Angelica dahurica and their inhibitory effects against cholinesterase. J. Funct. Foods 2013, 5, 1421–1431. [Google Scholar] [CrossRef]
- Kim, N.Y.; Kwon, H.S.; Lee, H.Y. Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. J. Cosmet. Dermatol. 2016, 16, 407–415. [Google Scholar] [CrossRef]
Compound | Extraction Yield (%) 1 | Xanthine Oxidase | ||
---|---|---|---|---|
IC50 | Inhibition % 2 | Kinetic Mode (Ki, µM) | ||
EtOH | 3.9 | 54.2 ± 0.9 µg/mL | 71.8 ± 1.3 | - |
70% EtOH | 10.1 | 31.9 ± 1.4 µg/mL | 88.4 ± 1.1 | - |
50% EtOH | 11.3 | 32.4 ± 1.2 µg/mL | 86.2 ± 1.2 | - |
30% EtOH | 9.5 | 64.8 ± 1.1 µg/mL | 63.7 ± 1.1 | - |
H2O | 12.0 | >250 µg/mL | 31.8 ± 1.6 | - |
1 | - | >100 µM | 27.2 ± 1.5 | NT 3 |
2 | - | 30.7 ± 0.8 µM | 46.1 ± 1.2 | NT |
3 | - | 26.4 ± 0.6 µM | 49.3 ± 1.5 | NT |
4 | - | 80.6 ± 0.7 µM | 36.2 ± 1.4 | NT |
5 | - | 74.5 ± 0.9 µM | 40.7 ± 1.5 | NT |
6 | - | >100 µM | 26.2 ± 0.9 | NT |
7 | - | 0.58 ± 0.5 µM | 94.5 ± 1.4 | Mixed (0.61) |
Apigenin | - | 0.87 ± µM | 88.6 ± 1.2 | Competitive |
Allopurinol | - | 4.2 ± µM | 82.5 ± 1.2 | Competitive |
Peak | tR | λmax | Dried Aerial Parts(mg/g) a | Molecular Ion [M–H]−/[M+H]+ | Elemental Composition | Identity | |
---|---|---|---|---|---|---|---|
(no.) | (min) | (nm) | 50% ARE | Hydrolysis of 50%ARE | (m/z) | (ppm Error) | |
1 | 5.94 | 200,329 | 4.05 | 3.82 | 359.0777 [M–H]− | C18H16O8 (2.8) | Rosmarinic acid |
2 | 6.85 | 287,329 | 0.06 | 0.05 | 717.1453 [M–H]− | C36H30O16 (−0.4) | Salvianolic acid B |
3 | 7.84 | 267,332 | 9.24 | <0.05 | 447.1286 [M+H]+ | C22H22O10 (−1.1) | Tilianin |
4 | 8.62 | 267,332 | 5.22 | <0.05 | 533.1293 [M+H]+ | C25H24O13 (−0.4) | Acacetin 7-O-(6-O-malonyl)-β-D-glucoside |
5 | 9.06 | 267,332 | 0.37 | <0.05 | 489.1394 [M+H]+ | C24H24O11 (−0.6) | Acacetin 7-O-(2″-O-acetyl)-β-D-glucoside |
6 | 9.78 | 267,332 | 0.45 | <0.05 | 575.1399 [M+H]+ | C27H26O14 (−0.3) | Acacetin 7-O-(2″-O-acetyl-6″-O-malonyl)-β-D-glucoside |
7 | 10.85 | 267,332 | 1.97 | 10.2 | 285.0755 [M+H]+ | C16H12O5 (−2.8) | Acacetin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuk, H.J.; Ryu, H.W.; Kim, D.-S. Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods 2023, 12, 573. https://doi.org/10.3390/foods12030573
Yuk HJ, Ryu HW, Kim D-S. Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods. 2023; 12(3):573. https://doi.org/10.3390/foods12030573
Chicago/Turabian StyleYuk, Heung Joo, Hyung Won Ryu, and Dong-Seon Kim. 2023. "Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze" Foods 12, no. 3: 573. https://doi.org/10.3390/foods12030573
APA StyleYuk, H. J., Ryu, H. W., & Kim, D. -S. (2023). Potent Xanthine Oxidase Inhibitory Activity of Constituents of Agastache rugosa (Fisch. and C.A.Mey.) Kuntze. Foods, 12(3), 573. https://doi.org/10.3390/foods12030573