Effects of Combining High Pressure Processing Treatments and Konjac Glucomannan and Sodium Caseinate on Gel Properties of Myosin Protein
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. High-Pressure Processing
2.3. Texture Profile Analysis (TPA)
2.4. Water Binding Capacity (WBC)
2.5. Scanning Electron Microscopy (SEM)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Texture Profile Analysis (TPA)
3.2. Water Binding Capacity (WBC)
3.3. Scanning Electron Microscopy (SEM)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Youssef, M.K.; Barbut, S. Effects of Caseinate, Whey and Milk Proteins on Emulsified Beef Meat Batters Prepared with Different Protein Levels. J. Muscle Foods 2010, 211, 785–800. [Google Scholar] [CrossRef]
- Tsironi, T.; Anjos, L.; Pinto, P.I.S.; Dimopoulos, G.; Santos, S.; Santa, C.; Manadas, B.; Canario, A.; Taoukis, P.; Power, D. High Pressure Processing of European Sea Bass (Dicentrarchus Labrax) Fillets and Tools for Flesh Quality and Shelf Life Monitoring. J. Food Eng. 2019, 262, 83–91. [Google Scholar] [CrossRef]
- De Lamballerie-Anton, M.; Delépine, S.; Chapleau, N. High Pressure Effect on Meat and Lupin Protein Digestibility. High Pressure Res. 2002, 22, 649–652. [Google Scholar] [CrossRef]
- Kuraishi, C.; Sakamoto, J.; Yamazaki, K.; Susa, Y.; Kuhara, C.; Soeda, T. Production of Restructured Meat Using Microbial Transglutaminase without Salt or Cooking. J. Food Sci. 1997, 62, 488–490. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, G.; Chen, H.; Han, L.; Yu, Q.; Ma, J.; Zhang, W. Optimization of Binding Process for Premade Yak Steaks Using Transglutaminase, Sodium Caseinate, and Carrageenan. J. Food Process Eng. 2019, 42, e13076.1–e13076.11. [Google Scholar] [CrossRef]
- Ye, S.; Zhu, J.; Shah, B.R.; Wend-Soo, Z.A.; Li, J.; Zhan, F.; Li, B. Preparation and Characterization of Konjac Glucomannan (KGM) and Deacetylated KGM (Da-KGM) Obtained by Sonication. J. Sci. Food Agric. 2022, 102, 4333–4344. [Google Scholar] [CrossRef]
- Katsuraya, K.; Okuyama, K.; Hatanaka, K.; Oshima, R.; Sato, T.; Matsuzaki, K. Constitution of Konjac Glucomannan: Chemical Analysis and 13c Nmr Spectroscopy. Carbohydr. Polym. 2003, 53, 183–189. [Google Scholar] [CrossRef]
- Li, B.; Xie, B.; Kennedy, J.F. Retraction Notice to “Studies on the Molecular Chain Morphology of Konjac Glucomannan”. Carbohydr. Polym. 2011, 86, 1421. [Google Scholar] [CrossRef]
- Khanna, S.; Tester, R.F. Influence of Purified Konjac Glucomannan on the Gelatinisation and Retrogradation Properties of Maize and Potato Starches. Food Hydrocoll. 2006, 20, 567–576. [Google Scholar] [CrossRef]
- Jiang, M.; Li, H.; Shi, J.; Xu, Z. Depolymerized Konjac Glucomannan: Preparation and Application in Health Care. J. Zhejiang Univ. Sci. B 2018, 19, 505–514. [Google Scholar] [CrossRef]
- Devaraj, R.D.; Reddy, C.K.; Xu, B. Health-Promoting Effects of Konjac Glucomannan and Its Practical Applications: A Critical Review. Int. J. Biol. Macromol. 2019, 126, 273–281. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C. Nutritional and Potential Health Benefits of Konjac Glucomannan, a Promising Polysaccharide of Elephant Foot Yam, Amorphophallus Konjac, K. Koch: A Review. Food Rev. Int. 2017, 33, 22–43. [Google Scholar] [CrossRef]
- Li, S.; Shang, L.; Wu, D.; Dun, H.; Wei, X.; Zhu, J.; Zongo, A.W.S.; Li, B.; Geng, F. Sodium Caseinate Reduces the Swelling of Konjac Flour: A Further Examination. Food Hydrocoll. 2021, 120, 106923. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, C.; Peng, S.; Wang, X.; Hong, J.; Zhang, C.; Liu, H.; Liu, J. The Effect of Refined Konjac Meal on Colonic Function of the Subject with Constipation. Acta Nutr. Sin. 1990, 12, 185–190. [Google Scholar] [CrossRef]
- Vuksan, V.; Jenkins, D.J.; Spadafora, P.; Sievenpiper, J.L.; Owen, R.; Vidgen, E.; Brighenti, F.; Josse, R.; Leiter, L.A.; Bruce-Thompson, C. Konjac-Mannan (Glucomannan) Improves Glycemia and Other Associated Risk Factors for Coronary Heart Disease in Type 2 Diabetes. A Randomized Controlled Metabolic Trial. Diabetes Care 1999, 22, 913–919. [Google Scholar] [CrossRef]
- Ye, S.; Zongo, A.W.S.; Shah, B.R.; Li, J.; Li, B. Konjac Glucomannan (Kgm), Deacetylated KGM (Da-KGM), and Degraded KGM Derivatives: A Special Focus on Colloidal Nutrition. J. Agric. Food Chem. 2021, 69, 12921–12932. [Google Scholar] [CrossRef]
- Guo, J.; Wang, C.; Liu, C.; Wang, P. Effect of Konjac Glucomannan on Gelatinization, Retrogradation, and Gelling Properties of Frozen Wheat Starch. Starch-Starke 2021, 73, 2000025. [Google Scholar] [CrossRef]
- Pang, J.; Lin, Q.; Zhang, F.; Tian, S.; Sun, Y. Progress in the Application and Studies on Functional Material of Konjac Glucomannan. Chin. J. Struct. Chem. 2003, 22, 633–642. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, B.; Gan, X. Advance in the Applications of Konjac Glucomannan and Its Derivatives. Carbohydr. Polym. 2005, 60, 27–31. [Google Scholar] [CrossRef]
- Iglesias-Oteroa, M.A.; Borderíasb, J.; Tovara, C.A. Use of Konjac Glucomannan as Additive to Reinforce the Gels from Low-Quality Squid Surimi—Sciencedirect. J. Food Eng. 2010, 101, 281–288. [Google Scholar] [CrossRef]
- Kao, W.T.; Lin, K.W. Quality of Reduced-Fat Frankfurter Modified by Konjac-Starch Mixed Gels. J. Food Sci. 2006, 71, S326–S332. [Google Scholar] [CrossRef]
- Zhang, T.; Xue, Y.; Li, Z.; Wang, Y.; Xue, C. Effects of Deacetylation of Konjac Glucomannan on Alaska Pollock Surimi Gels Subjected to High-Temperature (120 °C) Treatment. Food Hydrocoll. 2015, 43, 125–131. [Google Scholar] [CrossRef]
- Wang, S.F.; Smith, D.M. Dynamic Rheological Properties and Secondary Structure of Chicken Breast Myosin as Influenced by Isothermal Heating. J. Agric. Food Chem. 1994, 42, 1434–1439. [Google Scholar] [CrossRef]
- Hermansson, A.M.; Harbitz, O.; Langton, M. Formation of Two Types of Gels from Bovine Myosin. J. Sci. Food Agric. 1986, 37, 69–84. [Google Scholar] [CrossRef]
- Chin, K.B.; Go, M.Y.; Xiong, Y.L. Konjac Flour Improved Textural and Water Retention Properties of Transglutaminase-Mediated, Heat-Induced Porcine Myofibrillar Protein Gel: Effect of Salt Level and Transglutaminase Incubation. Meat Sci. 2009, 81, 565–572. [Google Scholar] [CrossRef]
- Sánchez-González, I.; Carmona, P.; Moreno, P.; Borderías, J.; Sánchez-Alonso, I.; Rodríguez-Casado, A.; Careche, M. Protein and Water Structural Changes in Fish Surimi During Gelation as Revealed by Isotopic H/D Exchange and Raman Spectroscopy. Food Chem. 2008, 106, 56–64. [Google Scholar] [CrossRef]
- Pietrasik, Z.; Jarmoluk, A. Effect of Sodium Caseinate and Κ-Carrageenan on Binding and Textural Properties of Pork Muscle Gels Enhanced by Microbial Transglutaminase Addition. Food Res. Int. 2003, 36, 285–294. [Google Scholar] [CrossRef]
- Hermansson, A.M. Effect of Some Functional Properties of Added Proteins on Properties of Meat Systems. J. Food Sci. 1975, 40, 611–614. [Google Scholar] [CrossRef]
- Atughonu, A.G.; Zayas, J.F.; Herald, T.J.; Harbers, L.H. Thermo-Rheology, Quality Characteristics, and Microstructure of Frankfurters Prepared with Selected Plant and Milk Additives. J. Food Qual. 1998, 21, 223–238. [Google Scholar] [CrossRef]
- Su, Y.K.; Bowers, J.A.; Zayas, J.F. Physical Characteristics and Microstructure of Reduced-Fat Frankfurters as Affected by Salt and Emulsified Fats Stabilized with Nonmeat Proteins. J. Food Sci. 2000, 65, 123–128. [Google Scholar] [CrossRef]
- Silva, J.G.; Morais, H.A.; Oliveira, A.L.; Silvestre, M.P.C. Addition Effects of Bovine Blood Globin and Sodium Caseinate on the Quality Characteristics of Raw and Cooked Ham Pâté. Meat Sci. 2003, 63, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Herranz, B.; Tovar, C.A.; Solo-de-Zaldívar, B.; Javier Borderias, A. Effect of Alkalis on Konjac Glucomannan Gels for Use as Potential Gelling Agents in Restructured Seafood Products. Food Hydrocoll. 2012, 27, 145–153. [Google Scholar] [CrossRef]
- Hermansson, A.M. Gel Characteristics—Structure as Related to Texture and Waterbinding of Blood-Plasma Gels. J. Food Sci. 2010, 47, 1965–1972. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; Tang, X.; Chen, Y.; You, Y. Chemical Forces and Water Holding Capacity Study of Heat-Induced Myofibrillar Protein Gel as Affected by High Pressure. Food Chem. 2015, 188, 111–118. [Google Scholar] [CrossRef] [PubMed]
Ingredient (mg/mL) | Myosin (mg/m) | Myosin + SC (mg/mL) | My + SC:KGM (1:1) (mg/mL) | My + SC:KGM (1:0.5) (mg/mL) |
---|---|---|---|---|
(C) | (C + SC) | (C + SC + mKGM) | (C + SC + sKGM) | |
Myosin | 20 | 20 | 20 | 20 |
SC | 0 | 5.33 | 5.33 | 5.33 |
KGM | 0 | 0 | 5.33 | 2.67 |
Adhesiveness (N.mm) | C | C + SC | C + SC + sKGM | C + SC + mKGM |
---|---|---|---|---|
HP | 0 | 0 | 0 | −15.79 |
LP + H | 0 | −9.53 | −12.51 | −45.55 |
1 Day (%) | 14 Days (%) | |
---|---|---|
a (200 MPa): | ||
C | 62.73 a1 ± 2.94 | 60.47 a1 ± 1.33 |
C + SC | 77.73 b1 ± 2.29 | 76.26 b1 ± 0.79 |
C + SC + sKGM | 86.93 c1 ± 0.78 | 85.97 c1 ± 0.86 |
C + SC + mKGM | 87.67 c1 ± 2.33 | 87.41 c1 ± 1.20 |
b (500 MPa): | ||
C | --- | --- |
C + SC | --- | --- |
C + SC + sKGM | 78.23 a1 ± 0.23 | 77.97 a1 ± 0.32 |
C + SC + mKGM | 84.17 b1 ± 0.78 | 83.30 b1 ± 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhao, L.; Li, H. Effects of Combining High Pressure Processing Treatments and Konjac Glucomannan and Sodium Caseinate on Gel Properties of Myosin Protein. Foods 2023, 12, 691. https://doi.org/10.3390/foods12040691
Cao Y, Zhao L, Li H. Effects of Combining High Pressure Processing Treatments and Konjac Glucomannan and Sodium Caseinate on Gel Properties of Myosin Protein. Foods. 2023; 12(4):691. https://doi.org/10.3390/foods12040691
Chicago/Turabian StyleCao, Yingying, Lila Zhao, and Huaiyu Li. 2023. "Effects of Combining High Pressure Processing Treatments and Konjac Glucomannan and Sodium Caseinate on Gel Properties of Myosin Protein" Foods 12, no. 4: 691. https://doi.org/10.3390/foods12040691
APA StyleCao, Y., Zhao, L., & Li, H. (2023). Effects of Combining High Pressure Processing Treatments and Konjac Glucomannan and Sodium Caseinate on Gel Properties of Myosin Protein. Foods, 12(4), 691. https://doi.org/10.3390/foods12040691