Phenotypic Analysis of Fourier-Transform Infrared Milk Spectra in Dairy Goats
Abstract
:1. Introduction
- i.
- the prediction of milk components than can be easily distinguished from each other due to the specific vibrational properties of their chemical bonds;
- ii.
- the prediction of groups of milk components with similar chemical and vibrational properties;
- iii.
- the prediction of the chemical components or physical-technological characteristics of milk that do not have specific vibrational properties;
- iv.
- the prediction of the metabolic characteristics of animals affecting certain properties of milk;
- v.
- the authentication of the origin of milk.
2. Materials and Methods
2.1. Experimental Design
2.2. Statistical Model
3. Results
3.1. Descriptive Statistics of the Goat Milk Spectra
3.2. Phenotypic Analysis of the FTIR Spectra
4. Discussion
4.1. The Patterns and Phenotypic Variances in the Absorbance Values of the Goat Milk Spectrum
4.2. Variance Components of the Major Sources of Variation of Infrared Absorbance
4.3. Animal/Sample Repeatability of the Absorbance of 1060 Wavelengths of FTIR Goat Milk Spectra
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yakubu, H.G.; Kovacs, Z.; Toth, T.; Bazar, G. The Recent Advances of Near-Infrared Spectroscopy in Dairy Production—A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 810–831. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.C. Fundamental of Fourier—Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- ISO 9622|IDF 141; 2013-Milk and Liquid Milk Products—Guidelines for the Application of Mid-Infrared Spectrometry—FIL-IDF. International Organisation for Standardisation: Geneva, Switzerland, 2013.
- Niemöller, A.; Holroyd, S. Applications of near Infrared Spectrometry for the Analysis of Milk and Milk Products. Bull. Int. Dairy Fed. 2019, 497, 1–19. [Google Scholar]
- ISO 21543:2020; Milk and Milk Products—Guidelines for the Application of near Infrared Spectrometry. International Organisation for Standardisation: Geneva, Switzerland, 2020.
- Coppa, M.; Revello-Chion, A.; Giaccone, D.; Tabacco, E.; Borreani, G. Could Predicting Fatty Acid Profile by Mid-Infrared Reflectance Spectroscopy Be Used as a Method to Increase the Value Added by Milk Production Chains? J. Dairy Sci. 2017, 100, 8705–8721. [Google Scholar] [CrossRef]
- Fleming, A.; Schenkel, F.S.; Chen, J.; Malchiodi, F.; Bonfatti, V.; Ali, R.A.; Mallard, B.; Corredig, M.; Miglior, F. Prediction of Milk Fatty Acid Content with Mid-Infrared Spectroscopy in Canadian Dairy Cattle Using Differently Distributed Model Development Sets. J. Dairy Sci. 2017, 100, 5073–5081. [Google Scholar] [CrossRef]
- Rovere, G.; de los Campos, G.; Lock, A.L.; Worden, L.; Vazquez, A.I.; Lee, K.; Tempelman, R.J. Prediction of Fatty Acid Composition Using Milk Spectral Data and Its Associations with Various Mid-Infrared Spectral Regions in Michigan Holsteins. J. Dairy Sci. 2021, 104, 11242–11258. [Google Scholar] [CrossRef]
- Rutten, M.J.M.; Bovenhuis, H.; Heck, J.M.L.; van Arendonk, J.A.M. Predicting Bovine Milk Protein Composition Based on Fourier Transform Infrared Spectra. J. Dairy Sci. 2011, 94, 5683–5690. [Google Scholar] [CrossRef]
- Bonfatti, V.; Cecchinato, A.; Carnier, P. Short Communication: Predictive Ability of Fourier-Transform Mid-Infrared Spectroscopy to Assess CSN Genotypes and Detailed Protein Composition of Buffalo Milk. J. Dairy Sci. 2015, 98, 6583–6587. [Google Scholar] [CrossRef]
- Sanchez, M.P.; Ferrand, M.; Gelé, M.; Pourchet, D.; Miranda, G.; Martin, P.; Brochard, M.; Boichard, D. Short Communication: Genetic Parameters for Milk Protein Composition Predicted Using Mid-Infrared Spectroscopy in the French Montbéliarde, Normande, and Holstein Dairy Cattle Breeds. J. Dairy Sci. 2017, 100, 6371–6375. [Google Scholar] [CrossRef]
- Eskildsen, C.E.; Næs, T.; Skou, P.B.; Solberg, L.E.; Dankel, K.R.; Basmoen, S.A.; Wold, J.P.; Horn, S.S.; Hillestad, B.; Poulsen, N.A.; et al. Cage of Covariance in Calibration Modeling: Regressing Multiple and Strongly Correlated Response Variables onto a Low Rank Subspace of Explanatory Variables. Chemom. Intell. Lab. Syst. 2021, 213, 104311. [Google Scholar] [CrossRef]
- Soyeurt, H.; Bruwier, D.; Romnee, J.M.; Gengler, N.; Bertozzi, C.; Veselko, D.; Dardenne, P. Potential Estimation of Major Mineral Contents in Cow Milk Using Mid-Infrared Spectrometry. J. Dairy Sci. 2009, 92, 2444–2454. [Google Scholar] [CrossRef]
- Wu, D.; He, Y.; Shi, J.; Shuijuan, F. Exploring near and Midinfrared Spectroscopy to Predict Trace Iron and Zinc Contents in Powdered Milk. J. Agric. Food Chem. 2009, 57, 1697–1704. [Google Scholar] [CrossRef]
- Patel, N.; Toledo-Alvarado, H.; Cecchinato, A.; Bittante, G. Predicting the Content of 20 Minerals in Beef by Different Portable Near-Infrared (NIR) Spectrometers. Foods 2020, 9, 1389. [Google Scholar] [CrossRef]
- Calamari, L.; Gobbi, L.; Bani, P. Improving the Prediction Ability of FT-MIR Spectroscopy to Assess Titratable Acidity in Cow’s Milk. Food Chem. 2016, 192, 477–484. [Google Scholar] [CrossRef] [PubMed]
- El Jabri, M.; Sanchez, M.P.; Trossat, P.; Laithier, C.; Wolf, V.; Grosperrin, P.; Beuvier, E.; Rolet-Répécaud, O.; Gavoye, S.; Gaüzère, Y.; et al. Comparison of Bayesian and Partial Least Squares Regression Methods for Mid-Infrared Prediction of Cheese-Making Properties in Montbéliarde Cows. J. Dairy Sci. 2019, 102, 6943–6958. [Google Scholar] [CrossRef] [PubMed]
- Mota, L.F.M.; Pegolo, S.; Baba, T.; Peñagaricano, F.; Morota, G.; Bittante, G.; Cecchinato, A. Evaluating the Performance of Machine Learning Methods and Variable Selection Methods for Predicting Difficult-to-Measure Traits in Holstein Dairy Cattle Using Milk Infrared Spectral Data. J. Dairy Sci. 2021, 104, 8107–8121. [Google Scholar] [CrossRef] [PubMed]
- Pralle, R.S.; Weigel, K.W.; White, H.M. Predicting Blood β-Hydroxybutyrate Using Milk Fourier Transform Infrared Spectrum, Milk Composition, and Producer-Reported Variables with Multiple Linear Regression, Partial Least Squares Regression, and Artificial Neural Network. J. Dairy Sci. 2018, 101, 4378–4387. [Google Scholar] [CrossRef]
- Ho, P.N.; Luke, T.D.W.; Pryce, J.E. Validation of Milk Mid-Infrared Spectroscopy for Predicting the Metabolic Status of Lactating Dairy Cows in Australia. J. Dairy Sci. 2021, 104, 4467–4477. [Google Scholar] [CrossRef] [PubMed]
- Bach, K.D.; Barbano, D.M.; McArt, J.A.A. Association of Mid-Infrared-Predicted Milk and Blood Constituents with Early-Lactation Disease, Removal, and Production Outcomes in Holstein Cows. J. Dairy Sci. 2019, 102, 10129–10139. [Google Scholar] [CrossRef]
- Wallén, S.E.; Prestløkken, E.; Meuwissen, T.H.E.; McParland, S.; Berry, D.P. Milk Mid-Infrared Spectral Data as a Tool to Predict Feed Intake in Lactating Norwegian Red Dairy Cows. J. Dairy Sci. 2018, 101, 6232–6243. [Google Scholar] [CrossRef]
- Grelet, C.; Froidmont, E.; Foldager, L.; Salavati, M.; Hostens, M.; Ferris, C.P.; Ingvartsen, K.L.; Crowe, M.A.; Sorensen, M.T.; Fernandez Pierna, J.A.; et al. Potential of Milk Mid-Infrared Spectra to Predict Nitrogen Use Efficiency of Individual Dairy Cows in Early Lactation. J. Dairy Sci. 2020, 103, 4435–4445. [Google Scholar] [CrossRef]
- Shetty, N.; Løvendahl, P.; Lund, M.S.; Buitenhuis, A.J. Prediction and Validation of Residual Feed Intake and Dry Matter Intake in Danish Lactating Dairy Cows Using Mid-Infrared Spectroscopy of Milk. J. Dairy Sci. 2017, 100, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.L.; Denholm, S.J.; Coffey, M.P.; Wall, E. Energy Profiling of Dairy Cows from Routine Milk Mid-Infrared Analysis. J. Dairy Sci. 2019, 102, 11169–11179. [Google Scholar] [CrossRef] [PubMed]
- Vanlierde, A.; Soyeurt, H.; Gengler, N.; Colinet, F.G.; Froidmont, E.; Kreuzer, M.; Grandl, F.; Bell, M.; Lund, P.; Olijhoek, D.W.; et al. Short Communication: Development of an Equation for Estimating Methane Emissions of Dairy Cows from Milk Fourier Transform Mid-Infrared Spectra by Using Reference Data Obtained Exclusively from Respiration Chambers. J. Dairy Sci. 2018, 101, 7618–7624. [Google Scholar] [CrossRef]
- Bittante, G.; Cipolat-Gotet, C. Direct and Indirect Predictions of Enteric Methane Daily Production, Yield, and Intensity per Unit of Milk and Cheese, from Fatty Acids and Milk Fourier-Transform Infrared Spectra. J. Dairy Sci. 2018, 101, 7219–7235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bovenhuis, H. Validation Strategy Can Result in an Overoptimistic View of the Ability of Milk Infrared Spectra to Predict Methane Emission of Dairy Cattle. J. Dairy Sci. 2019, 102, 6288–6295. [Google Scholar] [CrossRef] [PubMed]
- Bastin, C.; Théron, L.; Lainé, A.; Gengler, N. On the Role of Mid-Infrared Predicted Phenotypes in Fertility and Health Dairy Breeding Programs. J. Dairy Sci. 2016, 99, 4080–4094. [Google Scholar] [CrossRef]
- Ho, P.N.; Bonfatti, V.; Luke, T.D.W.; Pryce, J.E. Classifying the Fertility of Dairy Cows Using Milk Mid-Infrared Spectroscopy. J. Dairy Sci. 2019, 102, 10460–10470. [Google Scholar] [CrossRef]
- Toledo-Alvarado, H.; Pérez-Cabal, M.A.; Tempelman, R.J.; Cecchinato, A.; Bittante, G.; de los Campos, G.; Vazquez, A.I. Association between Days Open and Milk Spectral Data in Dairy Cows. J. Dairy Sci. 2021, 104, 3665–3675. [Google Scholar] [CrossRef]
- Kamal, M.; Karoui, R. Analytical Methods Coupled with Chemometric Tools for Determining the Authenticity and Detecting the Adulteration of Dairy Products: A Review. Trends Food Sci. Technol. 2015, 46, 27–48. [Google Scholar] [CrossRef]
- Sen, S.; Dundar, Z.; Uncu, O.; Ozen, B. Potential of Fourier-Transform Infrared Spectroscopy in Adulteration Detection and Quality Assessment in Buffalo and Goat Milks. Microchem. J. 2021, 166, 106207. [Google Scholar] [CrossRef]
- Galvan, D.; Lelis, C.A.; Effting, L.; Melquiades, F.L.; Bona, E.; Conte-Junior, C.A. Low-Cost Spectroscopic Devices with Multivariate Analysis Applied to Milk Authenticity. Microchem. J. 2022, 181, 107746. [Google Scholar] [CrossRef]
- Scampicchio, M.; Eisenstecken, D.; De Benedictis, L.; Capici, C.; Ballabio, D.; Mimmo, T.; Robatscher, P.; Kerschbaumer, L.; Oberhuber, M.; Kaser, A.; et al. Multi-Method Approach to Trace the Geographical Origin of Alpine Milk: A Case Study of Tyrol Region. Food Anal. Methods 2016, 9, 1262–1273. [Google Scholar] [CrossRef]
- Coppa, M.; Martin, B.; Agabriel, C.; Chassaing, C.; Sibra, C.; Constant, I.; Graulet, B.; Andueza, D. Authentication of Cow Feeding and Geographic Origin on Milk Using Visible and Near-Infrared Spectroscopy. J. Dairy Sci. 2012, 95, 5544–5551. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Cipolat-Gotet, C.; Cecchinato, A.; Schiavon, S.; Bittante, G. Chemometric Authentication of Farming Systems of Origin of Food (Milk and Ripened Cheese) Using Infrared Spectra, Fatty Acid Profiles, Flavor Fingerprints, and Sensory Descriptions. Food Chem. 2020, 305, 125480. [Google Scholar] [CrossRef]
- Dagnachew, B.S.; Meuwissen, T.H.E.; Ådnøy, T. Genetic Components of Milk Fourier-Transform Infrared Spectra Used to Predict Breeding Values for Milk Composition and Quality Traits in Dairy Goats. J. Dairy Sci. 2013, 96, 5933–5942. [Google Scholar] [CrossRef]
- Ferrand-Calmels, M.; Palhière, I.; Brochard, M.; Leray, O.; Astruc, J.M.; Aurel, M.R.; Barbey, S.; Bouvier, F.; Brunschwig, P.; Caillat, H.; et al. Prediction of Fatty Acid Profiles in Cow, Ewe, and Goat Milk by Mid-Infrared Spectrometry. J. Dairy Sci. 2014, 97, 17–35. [Google Scholar] [CrossRef]
- Núñez-Sánchez, N.; Martínez-Marín, A.L.; Polvillo, O.; Fernández-Cabanás, V.M.; Carrizosa, J.; Urrutia, B.; Serradilla, J.M. Near Infrared Spectroscopy (NIRS) for the Determination of the Milk Fat Fatty Acid Profile of Goats. Food Chem. 2016, 190, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Bittante, G.; Cecchinato, A. Genetic Analysis of the Fourier-Transform Infrared Spectra of Bovine Milk with Emphasis on Individual Wavelengths Related to Specific Chemical Bonds. J. Dairy Sci. 2013, 96, 5991–6006. [Google Scholar] [CrossRef] [PubMed]
- Soyeurt, H.; Misztal, I.; Gengler, N. Genetic Variability of Milk Components Based on Mid-Infrared Spectral Data. J. Dairy Sci. 2010, 93, 1722–1728. [Google Scholar] [CrossRef]
- Wang, Q.; Hulzebosch, A.; Bovenhuis, H. Genetic and Environmental Variation in Bovine Milk Infrared Spectra. J. Dairy Sci. 2016, 99, 6793–6803. [Google Scholar] [CrossRef]
- Rovere, G.; de los Campos, G.; Tempelman, R.J.; Vazquez, A.I.; Miglior, F.; Schenkel, F.; Cecchinato, A.; Bittante, G.; Toledo-Alvarado, H.; Fleming, A. A Landscape of the Heritability of Fourier-Transform Infrared Spectral Wavelengths of Milk Samples by Parity and Lactation Stage in Holstein Cows. J. Dairy Sci. 2019, 102, 1354–1363. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Bovenhuis, H. Genome-Wide Association Study for Milk Infrared Wavenumbers. J. Dairy Sci. 2018, 101, 2260–2272. [Google Scholar] [CrossRef]
- Tiplady, K.M.; Lopdell, T.J.; Reynolds, E.; Sherlock, R.G.; Keehan, M.; Johnson, T.J.; Pryce, J.E.; Davis, S.R.; Spelman, R.J.; Harris, B.L.; et al. Sequence-Based Genome-Wide Association Study of Individual Milk Mid-Infrared Wavenumbers in Mixed-Breed Dairy Cattle. Genet. Sel. Evol. 2021, 53, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk Yield, Quality, and Coagulation Properties of 6 Breeds of Goats: Environmental and Individual Variability. J. Dairy Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Bittante, G.; Pazzola, M. Goat Cheese Yield and Recovery of Fat, Protein, and Total Solids in Curd Are Affected by Milk Coagulation Properties. J. Dairy Sci. 2020, 103, 1352–1365. [Google Scholar] [CrossRef] [PubMed]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Summer, A.; Cipolat-Gotet, C.; Bittante, G.; Pazzola, M. Cheese Yield, Cheesemaking Efficiency, and Daily Production of 6 Breeds of Goats. J. Dairy Sci. 2018, 101, 7817–7832. [Google Scholar] [CrossRef] [PubMed]
- Stocco, G.; Pazzola, M.; Dettori, M.L.; Paschino, P.; Bittante, G.; Vacca, G.M. Effect of Composition on Coagulation, Curd Firming, and Syneresis of Goat Milk. J. Dairy Sci. 2018, 101, 9693–9702. [Google Scholar] [CrossRef]
- De Los Campos, G.; Pataki, A.; Pérez, P. The BGLR (Bayesian Generalized Linear Regression) R-Package; 2022 v.1.1.0. Available online: http://cran.r-project.org/web/packages/BGLR/BGLR.pdf (accessed on 18 January 2023).
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Orlandini, S. ICAR Certification Report MilkoScan 7RM Foss Analytical A/S. 2020. Available online: https://www.icar.org/wp-content/uploads/2020/03/Certification-Report-Milk-Analyser-MilkoScan%E2%84%A2-7-RM-by-FOSS.pdf (accessed on 18 January 2023).
- Bittante, G.; Pellattiero, E.; Malchiodi, F.; Cipolat-Gotet, C.; Pazzola, M.; Vacca, G.M.; Schiavon, S.; Cecchinato, A. Quality Traits and Modeling of Coagulation, Curd Firming, and Syneresis of Sheep Milk of Alpine Breeds Fed Diets Supplemented with Rumen-Protected Conjugated Fatty Acid. J. Dairy Sci. 2014, 97, 4018–4028. [Google Scholar] [CrossRef] [PubMed]
- Pazzola, M.; Dettori, M.L.; Cipolat-Gotet, C.; Cecchinato, A.; Bittante, G.; Vacca, G.M. Phenotypic Factors Affecting Coagulation Properties of Milk from Sarda Ewes. J. Dairy Sci. 2014, 97, 7247–7257. [Google Scholar] [CrossRef]
- Bittante, G.; Amalfitano, N.; Bergamaschi, M.; Patel, N.; Haddi, M.L.; Benabid, H.; Pazzola, M.; Vacca, G.M.; Tagliapietra, F.; Schiavon, S. Composition and Aptitude for Cheese-Making of Milk from Cows, Buffaloes, Goats, Sheep, Dromedary Camels, and Donkeys. J. Dairy Sci. 2022, 105, 2132–2152. [Google Scholar] [CrossRef]
- Ferragina, A.; Cipolat-Gotet, C.; Cecchinato, A.; Bittante, G. The Use of Fourier-Transform Infrared Spectroscopy to Predict Cheese Yield and Nutrient Recovery or Whey Loss Traits from Unprocessed Bovine Milk Samples. J. Dairy Sci. 2013, 96, 7980–7990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eskildsen, C.E.; Rasmussen, M.A.; Engelsen, S.B.; Larsen, L.B.; Poulsen, N.A.; Skov, T. Quantification of Individual Fatty Acids in Bovine Milk by Infrared Spectroscopy and Chemometrics: Understanding Predictions of Highly Collinear Reference Variables. J. Dairy Sci. 2014, 97, 7940–7951. [Google Scholar] [CrossRef]
- Kaylegian, K.E.; Lynch, J.M.; Fleming, J.R.; Barbano, D.M. Influence of Fatty Acid Chain Length and Unsaturation on Mid-Infrared Milk Analysis. J. Dairy Sci. 2009, 92, 2485–2501. [Google Scholar] [CrossRef]
- Dadousis, C.; Cipolat-Gotet, C.; Stocco, G.; Ferragina, A.; Dettori, M.L.; Pazzola, M.; do Nascimento Rangel, A.H.; Vacca, G.M. Goat Farm Variability Affects Milk Fourier-Transform Infrared Spectra Used for Predicting Coagulation Properties. J. Dairy Sci. 2021, 104, 3927–3935. [Google Scholar] [CrossRef] [PubMed]
- Mota, L.F.M.; Pegolo, S.; Baba, T.; Morota, G.; Peñagaricano, F.; Bittante, G.; Cecchinato, A. Comparison of Single-breed and Multi-breed Training Populations for Infrared Predictions of Novel Phenotypes in Holstein Cows. Animals 2021, 11, 1993. [Google Scholar] [CrossRef] [PubMed]
- Stocco, G.; Dadousis, C.; Vacca, G.M.; Pazzola, M.; Paschino, P.; Dettori, M.L.; Ferragina, A.; Cipolat-Gotet, C. Breed of Goat Affects the Prediction Accuracy of Milk Coagulation Properties Using Fourier-Transform Infrared Spectroscopy. J. Dairy Sci. 2021, 104, 3956–3969. [Google Scholar] [CrossRef] [PubMed]
- Savoia, S.; Albera, A.; Brugiapaglia, A.; Di Stasio, L.; Ferragina, A.; Cecchinato, A.; Bittante, G. Prediction of Meat Quality Traits in the Abattoir Using Portable and Hand-Held near-Infrared Spectrometers. Meat Sci. 2020, 161, 108017. [Google Scholar] [CrossRef]
- Bittante, G.; Savoia, S.; Cecchinato, A.; Pegolo, S.; Albera, A. Phenotypic and Genetic Variation of Ultraviolet–Visible-Infrared Spectral Wavelengths of Bovine Meat. Sci. Rep. 2021, 11, 13946 . [Google Scholar] [CrossRef]
Item 2 | Entire Spectrum | SWIR 1 | SWIR-MWIR 1 | MWIR-1 1 | MWIR-2 1 | MWIR-LWIR 1 |
---|---|---|---|---|---|---|
ISO | NIR-MIR | NIR | NIR-MIR | MIR | MIR | MIR |
Wavenumber, | 5000–930 | 5000–3673 | 3669–3052 | 3048–1701 | 1698–1586 | 1582–930 |
Wavelength, | 2.00–10.76 | 2.00–2.72 | 2.73–3.27 | 3.28–5.88 | 5.89–6.31 | 6.32–10.76 |
Frequency, THz | 149.9–27.9 | 149.9–110.1 | 110.0–91.5 | 91.4–51.0 | 50.9–47.5 | 47.4–27.9 |
Waves tested, no. | 1060 | 347 | 161 | 350 | 31 | 171 |
Absorbance: | medium | medium | low | medium | low | high |
Average absorbance | 0.0186 | 0.0109 | −0.0109 | 0.0109 | −0.0506 | 0.0910 |
Waves a, % | 10 | 0 | 19 | 10 | 7 | 25 |
Waves −0.093 b, % | 7 | 2 | 31 | 1 | 31 | 1 |
Phenotypic variability: | medium | very low | very high | low | high | low |
Mean of | 0.043 | 0.008 | 0.206 | 0.011 | 0.105 | 0.015 |
Waves c, % | 12 | 0 | 69 | 1 | 36 | 0 |
Waves 0.02 d, % | 74 | 99 | 0 | 86 | 4 | 77 |
Animal (Goat) variability: | ||||||
Mean of | 0.013 | 0.006 | 0.046 | 0.007 | 0.031 | 0.009 |
Proportion of | 0.33 | 0.45 | 0.07 | 0.35 | 0.22 | 0.36 |
Breed variability: | ||||||
Mean of | 0.014 | 0.003 | 0.063 | 0.005 | 0.034 | 0.006 |
Proportion of | 0.15 | 0.12 | 0.10 | 0.21 | 0.13 | 0.18 |
Flock variability: | ||||||
Mean of | 0.015 | 0.004 | 0.063 | 0.005 | 0.038 | 0.007 |
Proportion of | 0.21 | 0.24 | 0.10 | 0.22 | 0.20 | 0.25 |
Parity variability: | ||||||
Mean of | 0.013 | 0.002 | 0.059 | 0.004 | 0.031 | 0.005 |
Proportion of | 0.09 | 0.09 | 0.08 | 0.10 | 0.09 | 0.10 |
Lactation stage variability: | ||||||
Mean of | 0.014 | 0.003 | 0.064 | 0.004 | 0.033 | 0.005 |
Proportion of | 0.11 | 0.10 | 0.10 | 0.12 | 0.10 | 0.11 |
Repeatability: | ||||||
Mean Repeatibility | 0.90 | 0.99 | 0.45 | 0.99 | 0.75 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villar-Hernández, B.d.J.; Amalfitano, N.; Cecchinato, A.; Pazzola, M.; Vacca, G.M.; Bittante, G. Phenotypic Analysis of Fourier-Transform Infrared Milk Spectra in Dairy Goats. Foods 2023, 12, 807. https://doi.org/10.3390/foods12040807
Villar-Hernández BdJ, Amalfitano N, Cecchinato A, Pazzola M, Vacca GM, Bittante G. Phenotypic Analysis of Fourier-Transform Infrared Milk Spectra in Dairy Goats. Foods. 2023; 12(4):807. https://doi.org/10.3390/foods12040807
Chicago/Turabian StyleVillar-Hernández, Bartolo de Jesús, Nicolò Amalfitano, Alessio Cecchinato, Michele Pazzola, Giuseppe Massimo Vacca, and Giovanni Bittante. 2023. "Phenotypic Analysis of Fourier-Transform Infrared Milk Spectra in Dairy Goats" Foods 12, no. 4: 807. https://doi.org/10.3390/foods12040807
APA StyleVillar-Hernández, B. d. J., Amalfitano, N., Cecchinato, A., Pazzola, M., Vacca, G. M., & Bittante, G. (2023). Phenotypic Analysis of Fourier-Transform Infrared Milk Spectra in Dairy Goats. Foods, 12(4), 807. https://doi.org/10.3390/foods12040807