Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virus Stocks and Inoculum
2.2. Virus Heat Treatment
2.3. Matrix Inoculation
2.4. Virus Extraction from Food Matrices Using ISO 15216-1:2017
2.5. RNA Extraction without Food Matrices
2.6. Capsid Integrity Treatment
2.7. Short RNA Quantification (RT-qPCR)
2.8. Long-Range RNA Quantification (Long RT-qPCR)
2.9. Long to Short Viral Genome Fragments Ratio
2.10. Viral RNA Recovery Yields
3. Results
3.1. Virus Inoculum
3.2. Impact of Capsid Integrity Treatment on Virus Recovery without Matrices
3.2.1. Control PBS without Capsid Integrity Treatment
3.2.2. PMAxx Capsid Integrity Treatment
3.2.3. PtCl4 Capsid Integrity Treatment
3.2.4. RNase Capsid Integrity Treatment
3.3. Impact of Capsid Integrity Treatment on Virus Recovery from Lettuce
3.3.1. Control PBS without Capsid Integrity
3.3.2. PMAxx Capsid Integrity Treatment
3.3.3. PtCl4 Capsid Integrity Treatment
3.3.4. RNase Capsid Integrity Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banyai, K.; Estes, M.K.; Martella, V.; Parashar, U.D. Viral gastroenteritis. Lancet 2018, 392, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Wikswo, M.E.; Roberts, V.; Marsh, Z.; Manikonda, K.; Gleason, B.; Kambhampati, A.; Mattison, C.; Calderwood, L.; Balachandran, N.; Cardemil, C.; et al. Enteric Illness Outbreaks Reported Through the National Outbreak Reporting System-United States, 2009–2019. Clin. Infect. Dis. 2022, 74, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, P.; De Graaf, M.; Parra, G.I.; Chan, M.C.-W.; Green, K.; Martella, V.; Wang, Q.; White, P.A.; Katayama, K.; Vennema, H.; et al. Updated classification of norovirus genogroups and genotypes. J. Gen. Virol. 2019, 100, 1393–1406. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.L.; Bonifacio, J.; Bucardo, F.; Buesa, J.; Bruggink, L.; Chan, M.C.-W.; Fumian, T.M.; Giri, S.; Gonzalez, M.D.; Hewitt, J.; et al. Global Trends in Norovirus Genotype Distribution among Children with Acute Gastroenteritis. Emerg. Infect. Dis. 2021, 27, 1438–1445. [Google Scholar] [CrossRef]
- ISO 15216-1:2017; Horizontal Method for Determination of Hepatitis A Virus and Norovirus Using Real-Time RT-PCR–Part 1: Method for Quantification. International Organization for Standardization: Geneva, Switzerland, 2017.
- Cook, N.; Knight, A.; Richards, G.P. Persistence and Elimination of Human Norovirus in Food and on Food Contact Surfaces: A Critical Review. J. Food Prot. 2016, 79, 1273–1294. [Google Scholar] [CrossRef]
- Teunis, P.F.; Moe, C.L.; Liu, P.; Miller, S.E.; Lindesmith, L.; Baric, R.S.; Le Pendu, J.; Calderon, R.L. Norwalk virus: How infectious is it? J. Med. Virol. 2008, 80, 1468–1476. [Google Scholar] [CrossRef]
- Baert, L.; Uyttendaele, M.; Debevere, J. Evaluation of viral extraction methods on a broad range of Ready-To-Eat foods with conventional and real-time RT-PCR for Norovirus GII detection. Int. J. Food Microbiol. 2008, 123, 101–108. [Google Scholar] [CrossRef]
- Ludwig-Begall, L.F.; Mauroy, A.; Thiry, E. Noroviruses—The State of the Art, Nearly Fifty Years after Their Initial Discovery. Viruses 2021, 13, 1541. [Google Scholar] [CrossRef]
- Ettayebi, K.; Tenge, V.R.; Cortes-Penfield, N.W.; Crawford, S.E.; Neill, F.H.; Zeng, X.L.; Yu, X.; Ayyar, B.V.; Burrin, D.; Ramani, S.; et al. New Insights and Enhanced Human Norovirus Cultivation in Human Intestinal Enteroids. mSphere 2021, 6, e01136-20. [Google Scholar] [CrossRef]
- Manuel, C.S.; Moore, M.D.; Jaykus, L.-A. Predicting human norovirus infectivity-Recent advances and continued challenges. Food Microbiol. 2018, 76, 337–345. [Google Scholar] [CrossRef]
- Moore, M.D.; Goulter, R.M.; Jaykus, L.-A. Human Norovirus as a Foodborne Pathogen: Challenges and Developments. Annu. Rev. Food Sci. Technol. 2015, 6, 411–433. [Google Scholar] [CrossRef]
- Knight, A.; Li, D.; Uyttendaele, M.; Jaykus, L.-A. A critical review of methods for detecting human noroviruses and predicting their infectivity. Crit. Rev. Microbiol. 2012, 39, 295–309. [Google Scholar] [CrossRef]
- Leifels, M.; Cheng, D.; Sozzi, E.; Shoults, D.C.; Wuertz, S.; Mongkolsuk, S.; Sirikanchana, K. Capsid integrity quantitative PCR to determine virus infectivity in environmental and food applications–A systematic review. Water Res. X 2021, 11, 100080. [Google Scholar] [CrossRef]
- Fraisse, A.; Niveau, F.; Hennechart-Collette, C.; Coudray-Meunier, C.; Martin-Latil, S.; Perelle, S. Discrimination of infectious and heat-treated norovirus by combining platinum compounds and real-time RT-PCR. Int. J. Food Microbiol. 2018, 269, 64–74. [Google Scholar] [CrossRef]
- Oristo, S.; Lee, H.J.; Maunula, L. Performance of pre-RT-qPCR treatments to discriminate infectious human rotaviruses and noroviruses from heat-inactivated viruses: Applications of PMA/PMAxx, benzonase and RNase. J. Appl. Microbiol. 2018, 124, 1008–1016. [Google Scholar] [CrossRef] [Green Version]
- Rockey, N.; Young, S.; Kohn, T.; Pecson, B.M.; Wobus, C.E.; Raskin, L.; Wigginton, K.R. UV Disinfection of Human Norovirus: Evaluating Infectivity Using a Genome-Wide PCR-Based Approach. Environ. Sci. Technol. 2020, 54, 2851–2858. [Google Scholar] [CrossRef]
- Li, D.; De Keuckelaere, A.; Uyttendaele, M. Application of Long-Range and Binding Reverse Transcription-Quantitative PCR To Indicate the Viral Integrities of Noroviruses. Appl. Environ. Microbiol. 2014, 80, 6473–6479. [Google Scholar] [CrossRef] [Green Version]
- Kostela, J.; Ayers, M.; Nishikawa, J.; McIntyre, L.; Petric, M.; Tellier, R. Amplification by long RT-PCR of near full-length norovirus genomes. J. Virol. Methods 2008, 149, 226–230. [Google Scholar] [CrossRef]
- Wolf, S.; Rivera-Aban, M.; Greening, G.E. Long-Range Reverse Transcription as a Useful Tool to Assess the Genomic Integrity of Norovirus. Food Environ. Virol. 2009, 1, 129–136. [Google Scholar] [CrossRef]
- Pecson, B.M.; Ackermann, M.; Kohn, T. Framework for Using Quantitative PCR as a Nonculture Based Method To Estimate Virus Infectivity. Environ. Sci. Technol. 2011, 45, 2257–2263. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, M.B.; Bragazzi Cunha, J.; Wobus, C.E. Plaque assay for murine norovirus. J. Vis. Exp. 2012, 66, e4297. [Google Scholar]
- Raymond, P.; Paul, S.; Perron, A.; Deschênes, L. Norovirus Extraction from Frozen Raspberries Using Magnetic Silica Beads. Food Environ. Virol. 2021, 13, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Raymond, P.; Paul, S.; Perron, A.; Deschênes, L.; Hara, K. Extraction of human noroviruses from leafy greens and fresh herbs using magnetic silica beads. Food Microbiol. 2021, 99, 103827. [Google Scholar] [CrossRef] [PubMed]
- Topping, J.R.; Schnerr, H.; Haines, J.; Scott, M.; Carter, M.J.; Willcocks, M.M.; Bellamy, K.; Brown, D.W.; Gray, J.J.; Gallimore, C.I.; et al. Temperature inactivation of Feline calicivirus vaccine strain FCV F-9 in comparison with human noroviruses using an RNA exposure assay and reverse transcribed quantitative real-time polymerase chain reaction—A novel method for predicting virus infectivity. J. Virol. Methods 2009, 156, 89–95. [Google Scholar] [CrossRef]
- Randazzo, W.; Khezri, M.; Ollivier, J.; Le Guyader, F.S.; Rodríguez-Díaz, J.; Aznar, R.; Sánchez, G. Optimization of PMAxx pretreatment to distinguish between human norovirus with intact and altered capsids in shellfish and sewage samples. Int. J. Food Microbiol. 2018, 266, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Baert, L.; Wobus, C.E.; Van Coillie, E.; Thackray, L.B.; Debevere, J.; Uyttendaele, M. Detection of Murine Norovirus 1 by Using Plaque Assay, Transfection Assay, and Real-Time Reverse Transcription-PCR before and after Heat Exposure. Appl. Environ. Microbiol. 2008, 74, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, T.; Kojima, S.; Shinohara, M.; Uchida, K.; Fukushi, S.; Hoshino, F.B.; Takeda, N.; Katayama, K. Broadly Reactive and Highly Sensitive Assay for Norwalk-Like Viruses Based on Real-Time Quantitative Reverse Transcription-PCR. J. Clin. Microbiol. 2003, 41, 1548–1557. [Google Scholar] [CrossRef] [Green Version]
- Loisy, F.; Atmar, R.L.; Guillon, P.; Le Cann, P.; Pommepuy, M.; Le Guyader, F.S. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Methods 2005, 123, 1–7. [Google Scholar] [CrossRef]
- Raymond, P.; Paul, S.; Perron, A.; Bellehumeur, C.; Larocque, E.; Charest, H. Detection and Sequencing of Multiple Human Norovirus Genotypes from Imported Frozen Raspberries Linked to Outbreaks in the Province of Quebec, Canada, in 2017. Food Environ. Virol. 2022, 14, 40–58. [Google Scholar] [CrossRef]
- Sanchez, E.; Simpson, R.B.; Zhang, Y.; Sallade, L.E.; Naumova, E.N. Exploring Risk Factors of Recall-Associated Foodborne Disease Outbreaks in the United States, 2009–2019. Int. J. Environ. Res. Public Health 2022, 19, 4947. [Google Scholar] [CrossRef]
- Trudel-Ferland, M.; Jubinville, E.; Jean, J. Persistence of Hepatitis A Virus RNA in Water, on Non-porous Surfaces, and on Blueberries. Front. Microbiol. 2021, 12, 618352. [Google Scholar] [CrossRef]
- Polo, D.; Schaeffer, J.; Teunis, P.; Buchet, V.; Le Guyader, F.S. Infectivity and RNA Persistence of a Norovirus Surrogate, the Tulane Virus, in Oysters. Front. Microbiol. 2018, 9, 716. [Google Scholar] [CrossRef] [Green Version]
- Mauroy, A.; Taminiau, B.; Nezer, C.; Ghurburrun, E.; Baurain, D.; Daube, G.; Thiry, E. High-throughput sequencing analysis reveals the genetic diversity of different regions of the murine norovirus genome during in vitro replication. Arch. Virol. 2017, 162, 1019–1023. [Google Scholar] [CrossRef]
- Ludwig-Begall, L.F.; Di Felice, E.; Toffoli, B.; Ceci, C.; Di Martino, B.; Marsilio, F.; Mauroy, A.; Thiry, E. Analysis of Synchronous and Asynchronous In Vitro Infections with Homologous Murine Norovirus Strains Reveals Time-Dependent Viral Interference Effects. Viruses 2021, 13, 823. [Google Scholar] [CrossRef]
- Schwab, K.J.; Estes, M.K.; Neill, F.H.; Atmar, R.L. Use of heat release and an internal RNA standard control in reverse transcription-PCR detection of Norwalk virus from stool samples. J. Clin. Microbiol. 1997, 35, 511–514. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Yamaoka, Y.; Ito, A.; Kamaishi, T.; Sugiyama, R.; Estes, M.K.; Muramatsu, M.; Murakami, K. Evaluation of Heat Inactivation of Human Norovirus in Freshwater Clams Using Human Intestinal Enteroids. Viruses 2022, 14, 1014. [Google Scholar] [CrossRef]
- Ettayebi, K.; Crawford, S.E.; Murakami, K.; Broughman, J.R.; Karandikar, U.; Tenge, V.R.; Neill, F.H.; Blutt, S.E.; Zeng, X.L.; Qu, L.; et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016, 353, 1387–1393. [Google Scholar] [CrossRef] [Green Version]
- Cromeans, T.; Park, G.W.; Costantini, V.; Lee, D.; Wang, Q.; Farkas, T.; Lee, A.; Vinje, J. Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments. Appl. Env. Microbiol. 2014, 80, 5743–5751. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, H.; D’Souza, D.H.; Davidson, P.M. A comparison of the thermal inactivation kinetics of human norovirus surrogates and hepatitis A virus in buffered cell culture medium. Food Microbiol. 2014, 42, 212–217. [Google Scholar] [CrossRef]
- Bartsch, C.; Plaza-Rodriguez, C.; Trojnar, E.; Filter, M.; Johne, R. Predictive models for thermal inactivation of human norovirus and surrogates in strawberry puree. Food Control 2019, 96, 87–97. [Google Scholar] [CrossRef]
- Steele, M.; Lambert, D.; Bissonnette, R.; Yamamoto, E.; Hardie, K.; Locas, A. Norovirus GI and GII and hepatitis a virus in berries and pomegranate arils in Canada. Int. J. Food Microbiol. 2022, 379, 109840. [Google Scholar] [CrossRef] [PubMed]
- Teunis, P.F.M.; Le Guyader, F.S.; Liu, P.; Ollivier, J.; Moe, C.L. Noroviruses are highly infectious but there is strong variation in host susceptibility and virus pathogenicity. Epidemics 2020, 32, 100401. [Google Scholar] [CrossRef] [PubMed]
- Coudray-Meunier, C.; Fraisse, A.; Martin-Latil, S.; Guillier, L.; Perelle, S. Discrimination of infectious hepatitis A virus and rotavirus by combining dyes and surfactants with RT-qPCR. BMC Microbiol. 2013, 13, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randazzo, W.; López-Galvez, F.L.; Allende, A.; Aznar, R.; Sánchez, G. Evaluation of viability PCR performance for assessing norovirus infectivity in fresh-cut vegetables and irrigation water. Int. J. Food Microbiol. 2016, 229, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Terio, V.; Lorusso, P.; Mottola, A.; Buonavoglia, C.; Tantillo, G.; Bonerba, E.; Di Pinto, A. Norovirus Detection in Ready-To-Eat Salads by Propidium Monoazide Real Time RT-PCR Assay. Appl. Sci. 2020, 10, 5176. [Google Scholar] [CrossRef]
- Escudero-Abarca, B.I.; Rawsthorne, H.; Goulter, R.M.; Suh, S.H.; Jaykus, L.A. Molecular methods used to estimate thermal inactivation of a prototype human norovirus: More heat resistant than previously believed? Food Microbiol. 2014, 41, 91–95. [Google Scholar] [CrossRef]
- Soejima, T.; Minami, J.-I.; Xiao, J.-Z.; Abe, F. Innovative use of platinum compounds to selectively detect live microorganisms by polymerase chain reaction. Biotechnol. Bioeng. 2015, 113, 301–310. [Google Scholar] [CrossRef]
- Chen, J.; Wu, X.; Sanchez, G.; Randazzo, W. Viability RT-qPCR to detect potentially infectious enteric viruses on heat processed berries. Food Control 2020, 107, 106818. [Google Scholar] [CrossRef]
- Marti, E.; Ferrary-Americo, M.; Barardi, C.R.M. Detection of Potential Infectious Enteric Viruses in Fresh Produce by (RT)-qPCR Preceded by Nuclease Treatment. Food Environ Virol. 2017, 9, 444–452. [Google Scholar] [CrossRef]
- Li, D.; Baert, L.; Xia, M.; Zhong, W.; Van Coillie, E.; Jiang, X.; Uyttendaele, M. Evaluation of methods measuring the capsid integrity and/or functions of noroviruses by heat inactivation. J. Virol. Methods 2012, 181, 1–5. [Google Scholar] [CrossRef]
- Brié, A.; Razafimahefa, R.; Loutreul, J.; Robert, A.; Gantzer, C.; Boudaud, N.; Bertrand, I. The Effect of Heat and Free Chlorine Treatments on the Surface Properties of Murine Norovirus. Food Environ. Virol. 2016, 9, 149–158. [Google Scholar] [CrossRef]
- Razafimahefa, R.M.; Ludwig-Begall, L.F.; Le Guyader, F.S.; Farnir, F.; Mauroy, A.; Thiry, E. Optimisation of a PMAxx-RT-qPCR Assay and the Preceding Extraction Method to Selectively Detect Infectious Murine Norovirus Particles in Mussels. Food Env. Virol. 2021, 13, 93–106. [Google Scholar] [CrossRef]
- Nuanualsuwan, S.; Cliver, D.O. Capsid Functions of Inactivated Human Picornaviruses and Feline Calicivirus. Appl. Environ. Microbiol. 2003, 69, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Baert, L.; Debevere, J.; Uyttendaele, M. The efficacy of preservation methods to inactivate foodborne viruses. Int. J. Food Microbiol. 2009, 131, 83–94. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raymond, P.; Paul, S.; Guy, R.A. Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates. Foods 2023, 12, 826. https://doi.org/10.3390/foods12040826
Raymond P, Paul S, Guy RA. Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates. Foods. 2023; 12(4):826. https://doi.org/10.3390/foods12040826
Chicago/Turabian StyleRaymond, Philippe, Sylvianne Paul, and Rebecca A. Guy. 2023. "Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates" Foods 12, no. 4: 826. https://doi.org/10.3390/foods12040826
APA StyleRaymond, P., Paul, S., & Guy, R. A. (2023). Impact of Capsid and Genomic Integrity Tests on Norovirus Extraction Recovery Rates. Foods, 12(4), 826. https://doi.org/10.3390/foods12040826