Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives
Abstract
:1. Introduction
2. Market Landscape of Conventional and Innovative Plant-Based Foods Made Using Fermentation
3. Impact of Fermentation on the Quality of Plant Based-Dairy Alternatives
3.1. Plant-Based Beverages (Milk Alternatives)
3.2. Spoonable Yoghurt-Like Products
3.3. Plant-Based “Cheese” Alternatives
Substrate | Starters | Effects | References |
---|---|---|---|
Broad bean and chickpea beverages | Streptococcus thermophilus, Lactobacillus delbrueckii subsp. Bulgaricus, and a mixture of Lactobacillus casei and XPL-1, which is a mixed culture containing Lactococcus lactis subsp. cremoris, Lactococcus lactis subsp. lactis, Leuconostoc species, Lactococcus lactis subsp. lactis biovar. Diacetylactis, and a Streptococcus thermophilus strain | Improvement in antioxidants (AOX) content and viscosity | [67] |
Red bean beverage | Streptococcus thermophilus TISTR 894 (ST), Lactobacillus plantarum 299 V, and Lactobacillus casei 388, as a single or a mixed culture fermentation | Improvement in AOX content | [68] |
Bean (Phaseolus vulgaris) beverage | 10 lactobacillus strains | Decrease in saturated fat and increase in unsaturated fat. | [72] |
Barley:finger millet: moth bean | Lactobacilli acidophilus and a probiotic bacterium | Increase in polyphenol content | [52] |
Chickpea beverage | Streptococcus thermophilus (ST), a co-culture of ST with Lactococcus lactis and a co-culture of ST with Lactobacillus plantarum | Decrease in saturated fat, phytic acids and increase in minerals | [19] |
Soymilk | Lactobacillus casei PLA5 | Increase in β-glucosidase, minerals and AOX activity and decrease in polyphenols content | [71] |
Bean (Phaseolus vulgaris) | Streptococcus thermophilus + Lactobacillus Bulgaricus subs Debulgaricus, Lactobacillus acidophilus La-5 + Bifidobacterium animalis Bb-12 + Streptococcus thermophilus, Lactobacillus rhamnosus yoba + Streptococcus thermophilus and Fiti, Lactobacillus rhamnosus GR1 + Streptococcus thermophilus | Increase in B vitamins and decrease in verbascose, stachyose and raffinose | [73] |
Soymilk | Lactobacillus rhamnosus and Lactobacillus casei | Increase in β-glucosidase activity and aglycones | [75] |
Black soybean beverage | Lactiplantibacillus plantarum WGK 4, Streptococcus thermophilus Dad 11, and Lactiplantibacillus plantarum Dad 13 | Increase in AOX activity and aglycone content | [74] |
Soymilk | Enterococcus faecalis VB43 | Reduction in the immunoreactivity of soybean allergens | [80] |
Moringa leaves and beetroot extract drink | Lactobacillus plantarum and Enterococcus hirae | Reduction in reffinose by 60%, increase in antibacterial activity against pathogenes and improvement of radical scavenging activity and phenolic content as well as minerals | [77] |
C. vulgaris and soy extract | Lactobacillus fermentum and Lactobacillus rhamnosus | Increase in polyphenol content and dietary antioxidant capacity | [78] |
Chickpea beverage | Lactiplantibacillus plantarum subsp. plantarum | Reduction in the immunoreactivity of chickpeas proteins | [81] |
Soymilk | Lycoperdon pyriforme | Decrease in the green off-flavor | [84] |
Pea protein isolate drink | Lactobacillus Plantarum | Reduction in the off-flavor VOC (aldehydes and ketones) | [87] |
Soybean beverage | Naematelia aurantialba | Increase in AOX activity, nutrient content and decrease in the oddly flavored VOC | [86] |
Oat-based “yoghurt” | S. thermophilus and L. delbrueckii subsp. Bulgaricus | Improvement in the texture and flavor | [94] |
Quinoa-based “yoghurt” | Weissella confusa | Improvement in the viscosity | [102] |
Soy-based “cheese“ | Lactic bacteria and/or Geotrichum candidum | Improvement in the sensorial properties | [116] |
Pea protein isolate “cheese” | Lactobacillus plantarum, perolens, fermentum, casei, Leuconostoc mesenteroids subsp. Cremoris and Pedicoccus pentasaceus | Increase in cheesy aroma, acid and salty and reduction in the immunoreactivity of allergenic proteins | [64] |
Flaxseed oil-based “cheese” | Penicillium camemberti and Geotrichum candidum | Production of camembert-like cheese with good oil oxidative stability | [119] |
Cashew-based “cheese” | Quinoa starter inoculum (dominated by Pediococcus and Weissella) | Reduction in allergenicity associated with cashew and increase in the viable bacterial count | [120] |
4. Impact of Fermentation on the Quality of Plant-Based Meat
5. Role of Digitalization in the Innovation of Fermented Plant-Based Dairy and Meat Alternative Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Owusu-Kwarteng, J.; Agyei, D.; Akabanda, F.; Atuna, R.A.; Amagloh, F.K. Plant-Based Alkaline Fermented Foods as Sustainable Sources of Nutrients and Health-Promoting Bioactive Compounds. Front. Sustain. Food Syst. 2022, 6, 197. [Google Scholar] [CrossRef]
- Chakanya, C.; Arnaud, E.; Muchenje, V.; Hoffman, L.C. Fermented Meat Sausages from Game and Venison: What Are the Opportunities and Limitations? J. Sci. Food Agric. 2020, 100, 5023–5031. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Barba, F.J.; Lorenzo, J.M.; Penna, A.L.B.; Barretto, A.C.S. New Strategies for the Development of Innovative Fermented Meat Products: A Review Regarding the Incorporation of Probiotics and Dietary Fibers. Food Rev. Int. 2019, 35, 467–484. [Google Scholar] [CrossRef]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [Green Version]
- Mefleh, M.; Darwish, A.M.G.; Mudgil, P.; Maqsood, S.; Boukid, F. Traditional Fermented Dairy Products in Southern Mediterranean Countries: From Tradition to Innovation. Fermentation 2022, 8, 743. [Google Scholar] [CrossRef]
- Tangyu, M.; Muller, J.; Bolten, C.J.; Wittmann, C. Fermentation of Plant-Based Milk Alternatives for Improved Flavour and Nutritional Value. Appl. Microbiol. Biotechnol. 2019, 103, 9263–9275. [Google Scholar] [CrossRef] [Green Version]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health Benefits of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- Boukid, F.; Rosell, C.M.; Rosene, S.; Bover-Cid, S.; Castellari, M. Non-Animal Proteins as Cutting-Edge Ingredients to Reformulate Animal-Free Foodstuffs: Present Status and Future Perspectives. Crit. Rev. Food Sci. Nutr. 2022, 62, 6390–6420. [Google Scholar] [CrossRef]
- Boukid, F. The Realm of Plant Proteins with Focus on Their Application in Developing New Bakery Products. In Advances in Food and Nutrition Research; Zhou, W., Gao, J., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 99, in press. [Google Scholar]
- Boukid, F.; Castellari, M. How Can Processing Technologies Boost the Application of Faba Bean (Vicia faba L.) Proteins in Food Production? eFood 2022, 3, e18. [Google Scholar] [CrossRef]
- Boukid, F.; Lamri, M.; Dar, B.N.; Garron, M.; Castellari, M. Vegan Alternatives to Processed Cheese and Yogurt Launched in the European Market during 2020: A Nutritional Challenge? Foods 2021, 10, 2782. [Google Scholar] [CrossRef]
- Boukid, F.; Castellari, M. Veggie Burgers in the EU Market: A Nutritional Challenge? Eur. Food Res. Technol. 2021, 247, 2445–2453. [Google Scholar] [CrossRef]
- Baune, M.-C.; Terjung, N.; Tülbek, M.Ç.; Boukid, F. Textured Vegetable Proteins (TVP): Future Foods Standing on Their Merits as Meat Alternatives. Futur. Foods 2022, 6, 100181. [Google Scholar] [CrossRef]
- Marrón-Ponce, J.A.; Flores, M.; Cediel, G.; Monteiro, C.A.; Batis, C. Associations between Consumption of Ultra-Processed Foods and Intake of Nutrients Related to Chronic Non-Communicable Diseases in Mexico. J. Acad. Nutr. Diet. 2019, 119, 1852–1865. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.A.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef]
- Julia, C.; Martinez, L.; Allès, B.; Touvier, M.; Hercberg, S.; Méjean, C.; Kesse-Guyot, E. Contribution of Ultra-Processed Foods in the Diet of Adults from the French NutriNet-Santé Study. Public Health Nutr. 2018, 21, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Melini, F.; Melini, V.; Luziatelli, F.; Ficca, A.G.; Ruzzi, M. Health-Promoting Components in Fermented Foods: An up-to-Date Systematic Review. Nutrients 2019, 11, 1189. [Google Scholar] [CrossRef] [Green Version]
- Mefleh, M.; Faccia, M.; Natrella, G.; De Angelis, D.; Pasqualone, A.; Caponio, F.; Summo, C. Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods 2022, 11, 3578. [Google Scholar] [CrossRef]
- Ben-Harb, S.; Saint-Eve, A.; Panouillé, M.; Souchon, I.; Bonnarme, P.; Dugat-Bony, E.; Irlinger, F. Design of Microbial Consortia for the Fermentation of Pea-Protein-Enriched Emulsions. Int. J. Food Microbiol. 2019, 293, 124–136. [Google Scholar] [CrossRef]
- Nakamura, M.; Kitamura, Y.; Kokawa, M. Development of a Cheese-Type Food Using Rice Milk. Food Sci. Technol. Res. 2016, 22, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Chai, K.F.; Ng, K.R.; Samarasiri, M.; Chen, W.N. Precision Fermentation to Advance Fungal Food Fermentations. Curr. Opin. Food Sci. 2022, 47, 100881. [Google Scholar] [CrossRef]
- Williams, R.A. Opportunities and Challenges for the Introduction of New Food Proteins. Annu. Rev. Food Sci. Technol. 2021, 12, 75–91. [Google Scholar] [CrossRef] [PubMed]
- Terefe, N.S. Recent Developments in Fermentation Technology: Toward the next Revolution in Food Production. In Food Engineering Innovations across the Food Supply Chain; Elsevier: Amsterdam, The Netherlands, 2022; pp. 89–106. [Google Scholar] [CrossRef]
- Cichońska, P.; Ziarno, M. Legumes and Legume-Based Beverages Fermented with Lactic Acid Bacteria as a Potential Carrier of Probiotics and Prebiotics. Microorganisms 2022, 10, 91. [Google Scholar] [CrossRef]
- Finnigan, T.; Needham, L.; Abbott, C. Mycoprotein: A Healthy New Protein With a Low Environmental Impact. In Sustainable Protein Sources; Academic Press: Cambridge, MA, USA, 2016; pp. 305–325. [Google Scholar] [CrossRef]
- Boukid, F. Plant-Based Meat Analogues: From Niche to Mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Boukid, F.; Pera, J.; Parladé, J.; Castellari, M. Fungal Bioconversion of Brewery By-Products: Assessment of Fatty Acids and Sterols Profiles. Qual. Assur. Saf. Crop. Foods 2022, 14, 202–211. [Google Scholar] [CrossRef]
- Souza Filho, P.F.; Zamani, A.; Taherzadeh, M.J. Edible Protein Production by Filamentous Fungi Using Starch Plant Wastewater. Waste Biomass Valorization 2019, 10, 2487–2496. [Google Scholar] [CrossRef] [Green Version]
- Sar, T.; Larsson, K.; Fristedt, R.; Undeland, I.; Taherzadeh, M.J. Demo-Scale Production of Protein-Rich Fungal Biomass from Potato Protein Liquor for Use as Innovative Food and Feed Products. Food Biosci. 2022, 47, 101637. [Google Scholar] [CrossRef]
- Chakraborty, A.; Bhowal, J. Bioconversion of Jackfruit Seed Waste to Fungal Biomass Protein by Submerged Fermentation. Appl. Biochem. Biotechnol. 2022, 1–14. [Google Scholar] [CrossRef]
- Research and Markets Fermented Plant-Based Alternatives Market—A Global and Regional Analysis: Focus on Applications, Products, Patent Analysis, and Country Analysis-Analysis and Forecast, 2019–2026. Available online: https://www.researchandmarkets.com/reports/5359984/fermented-plant-based-alternatives-market-a?utm_source=BW&utm_medium=PressRelease&utm_code=hg8tq8&utm_campaign=1570637+-+Global+Fermented+Plant-Based+Alternatives+Market+to+2026+-+Investment+in+Fermented+Plant-Based+Yogurt+Presents+Opportunities&utm_exec=jamu273prd (accessed on 25 September 2022).
- Mintel Emerging Trends in the Plant-Based Industry|Mintel.Com. Available online: https://www.mintel.com/emerging-plant-based-trends (accessed on 24 September 2022).
- Fonseca, S.C.; Rivas, I.; Romaguera, D.; Quijal, M.; Czarlewski, W.; Vidal, A.; Fonseca, J.A.; Ballester, J.; Anto, J.M.; Basagana, X.; et al. Association between Consumption of Fermented Vegetables and COVID-19 Mortality at a Country Level in Europe. medRxiv 2020. [Google Scholar] [CrossRef]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef]
- BIS Research Fermented Plant Based Alternatives Market Analysis and Forecast Upto 2026|BIS Research. Available online: https://bisresearch.com/industry-report/fermented-plant-based-alternatives-market.html (accessed on 25 September 2022).
- Statista Europe: Share of People Following a Vegetarian Diet, by Country|Statista. Available online: https://www.statista.com/statistics/1064077/share-of-people-following-a-vegetarian-diet-in-europe-by-country/ (accessed on 24 September 2022).
- Reports and Insights Plant-Based Yogurt Market Size, Share Report and Global Industry Analysis 2022–2028. Available online: https://reportsandinsights.com/pressrelease/plant-based-yogurt-market (accessed on 24 September 2022).
- Montemurro, M.; Pontonio, E.; Coda, R.; Rizzello, C.G. Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods 2021, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Canon, F.; Maillard, M.B.; Famelart, M.H.; Thierry, A.; Gagnaire, V. Mixed Dairy and Plant-Based Yogurt Alternatives: Improving Their Physical and Sensorial Properties through Formulation and Lactic Acid Bacteria Cocultures. Curr. Res. Food Sci. 2022, 5, 665–676. [Google Scholar] [CrossRef] [PubMed]
- GlobeNewsWire Vegan Cheese Market Growth. Available online: https://www.globenewswire.com/news-release/2021/05/06/2224733/0/en/Vegan-Cheese-Market-Growth-Sturdy-at-7-1-CAGR-to-Outstrip-4-651-68-Million-by-2027-COVID-19-Impact-and-Global-Analysis-by-TheInsightPartners-com.html (accessed on 17 October 2021).
- Pua, A.; Tang, V.C.Y.; Goh, R.M.V.; Sun, J.; Lassabliere, B.; Liu, S.Q. Ingredients, Processing, and Fermentation: Addressing the Organoleptic Boundaries of Plant-Based Dairy Analogues. Foods 2022, 11, 875. [Google Scholar] [CrossRef]
- Boeck, T.; Sahin, A.W.; Zannini, E.; Arendt, E.K. Nutritional Properties and Health Aspects of Pulses and Their Use in Plant-Based Yogurt Alternatives. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3858–3880. [Google Scholar] [CrossRef] [PubMed]
- Demir, H.; Simsek, M.; Yıldırım, G. Effect of Oat Milk Pasteurization Type on the Characteristics of Yogurt. LWT 2021, 135, 110271. [Google Scholar] [CrossRef]
- Mefleh, M.; Pasqualone, A.; Caponio, F.; Faccia, M. Legumes as Basic Ingredients in the Production of Dairy-Free Cheese Alternatives: A Review. J. Sci. Food Agric. 2022, 102, 8–18. [Google Scholar] [CrossRef]
- Penna Franca, P.A.; Duque-Estrada, P.; da Fonseca e Sá, B.F.; van der Goot, A.J.; Pierucci, A.P.T.R. Meat Substitutes-Past, Present, and Future of Products Available in Brazil: Changes in the Nutritional Profile. Futur. Foods 2022, 5, 100133. [Google Scholar] [CrossRef]
- Rasika, D.M.; Vidanarachchi, J.K.; Rocha, R.S.; Balthazar, C.F.; Cruz, A.G.; Sant’Ana, A.S.; Ranadheera, C.S. Plant-Based Milk Substitutes as Emerging Probiotic Carriers. Curr. Opin. Food Sci. 2021, 38, 8–20. [Google Scholar] [CrossRef]
- Zakidou, P.; Paraskevopoulou, A. Aqueous Sesame Seed Extracts: Study of Their Foaming Potential for the Preparation of Cappuccino-Type Coffee Beverages. LWT-Food Sci. Technol. 2021, 135, 110258. [Google Scholar] [CrossRef]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient Density and Nutritional Value of Milk and Plant-Based Milk Alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-Dairy Plant-Based Milk Substitutes and Fermented Dairy-Type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Smith, N.W.; Dave, A.C.; Hill, J.P.; McNabb, W.C. Nutritional Assessment of Plant-Based Beverages in Comparison to Bovine Milk. Front. Nutr. 2022, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Chavan, M.; Gat, Y.; Harmalkar, M.; Waghmare, R. Development of Non-Dairy Fermented Probiotic Drink Based on Germinated and Ungerminated Cereals and Legume. LWT-Food Sci. Technol. 2018, 91, 339–344. [Google Scholar] [CrossRef]
- Amini, R.K.; Islam, M.Z.; Kitamura, Y.; Kokawa, M. Utilization of Fermented Rice Milk as a Novel Coagulant for Development of Paneer (Soft Cheese). Foods 2019, 8, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canaviri Paz, P.; Janny, R.J.; Håkansson, Å. Safeguarding of Quinoa Beverage Production by Fermentation with Lactobacillus Plantarum DSM 9843. Int. J. Food Microbiol. 2020, 324, 108630. [Google Scholar] [CrossRef]
- Verni, M.; Demarinis, C.; Rizzello, C.G.; Baruzzi, F. Design and Characterization of a Novel Fermented Beverage from Lentil Grains. Foods 2020, 9, 893. [Google Scholar] [CrossRef]
- Lopes, M.; Pierrepont, C.; Duarte, C.M.; Filipe, A.; Medronho, B.; Sousa, I. Legume Beverages from Chickpea and Lupin, as New Milk Alternatives. Foods 2020, 9, 1458. [Google Scholar] [CrossRef]
- Valero-Cases, E.; Cerdá-Bernad, D.; Pastor, J.J.; Frutos, M.J. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020, 12, 1666. [Google Scholar] [CrossRef]
- Karovičová, J.; Kohajdová, Z.; Minarovičová, L.; Lauková, M.; Greifová, M.; Greif, G.; Hojerová, J. Utilisation of Quinoa for Development of Fermented Beverages. Potravin. Slovak J. Food Sci. 2020, 14, 465–472. [Google Scholar] [CrossRef]
- Singh, B.P.; Bhushan, B.; Vij, S. Antioxidative, ACE Inhibitory and Antibacterial Activities of Soy Milk Fermented by Indigenous Strains of Lactobacilli. Legum. Sci. 2020, 2, e54. [Google Scholar] [CrossRef]
- Demarinis, C.; Verni, M.; Pinto, L.; Rizzello, C.G.; Baruzzi, F. Use of Selected Lactic Acid Bacteria for the Fermentation of Legume-Based Water Extracts. Foods 2022, 11, 3346. [Google Scholar] [CrossRef] [PubMed]
- De Mendonça Brandão, H.C.A.D.N.T.; De Mendonça Brandão, W.A.P.L.N.T.; De Mendonça, S.N.T.G.; Felsner, M.L. Probiotic Fermented Rice Extract Beverage: An Alternative Food for Lactose Intolerants and People Allergic to Bovine Milk and Soy Protein. Braz. J. Food Technol. 2021, 24, e2020119. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Tan, M.; Øiseth, S.; Buckow, R. An Emerging Segment of Functional Legume-Based Beverages: A Review. Food Rev. Int. 2020, 38, 1064–1102. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- García Arteaga, V.; Leffler, S.; Muranyi, I.; Eisner, P.; Schweiggert-Weisz, U. Sensory Profile, Functional Properties and Molecular Weight Distribution of Fermented Pea Protein Isolate. Curr. Res. Food Sci. 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Silva, A.R.A.; Silva, M.M.N.; Ribeiro, B.D. Health Issues and Technological Aspects of Plant-Based Alternative Milk. Food Res. Int. 2020, 131, 108972. [Google Scholar] [CrossRef] [PubMed]
- Undhad, T.; Hati, S.; Makwana, S. Significance of Storage Study on ACE Inhibitory, Antioxidative, Antimicrobial Activities, and Biotransformation of Isoflavones of Functional Fermented Soy-Based Beverage. J. Food Process. Preserv. 2021, 45, e15062. [Google Scholar] [CrossRef]
- Vasilean, I.; Aprodu, I.; Garnai, M.; Munteanu, V.; Patrașcu, L. Preliminary Investigations into the Use of Amylases and Lactic Acid Bacteria to Obtain Fermented Vegetable Products. Foods 2021, 10, 1530. [Google Scholar] [CrossRef]
- Naprasert, J.; Suttisansanee, U.; Kemsawasd, V. Single And Mixed Lactic Acid Bacteria Culture Fermentation In Red Bean Milk For Development Of A Functional Beverage. Malays. Appl. Biol. 2019, 48, 139–145. [Google Scholar]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-Based Milk Substitutes: Bioactive Compounds, Conventional and Novel Processes, Bioavailability Studies, and Health Effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Dubey, M.R.; Patel, V.P. Probiotics: A Promising Tool for Calcium Absorption. Open Nutr. J. 2018, 12, 59–69. [Google Scholar] [CrossRef]
- Kumari, A.; Angmo, K.; Monika, S.; Bhalla, T.C. Functional and Technological Application of Probiotic L. casei PLA5 in Fermented Soymilk. Int. Food Res. J. 2018, 25, 2164–2172. [Google Scholar]
- Ziarno, M.; Bryś, J.; Parzyszek, M.; Veber, A. Effect of Lactic Acid Bacteria on the Lipid Profile of Bean-Based Plant Substitute of Fermented Milk. Microorganisms 2020, 8, 1348. [Google Scholar] [CrossRef]
- Anino, C.; Onyango, A.; Imathiu, S.; Maina, J. Effect of Lactic Acid Bacteria Starter Cultures on Vitamin and Oligosaccharide Composition of Milk Extracted from Three Common Bean (Phaselous vulgaris L.) Varieties. J. Food Res. 2019, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Leksono, B.Y.; Cahyanto, M.N.; Rahayu, E.S.; Yanti, R.; Utami, T. Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation. Fermentation 2022, 8, 326. [Google Scholar] [CrossRef]
- Hati, S.; Vij, S.; Singh, B.P.; Mandal, S. β-Glucosidase Activity and Bioconversion of Isoflavones during Fermentation of Soymilk. J. Sci. Food Agric. 2015, 95, 216–220. [Google Scholar] [CrossRef]
- Castro-Alba, V.; Lazarte, C.E.; Perez-Rea, D.; Carlsson, N.G.; Almgren, A.; Bergenståhl, B.; Granfeldt, Y. Fermentation of Pseudocereals Quinoa, Canihua, and Amaranth to Improve Mineral Accessibility through Degradation of Phytate. J. Sci. Food Agric. 2019, 99, 5239–5248. [Google Scholar] [CrossRef] [Green Version]
- Vanajakshi, V.; Vijayendra, S.V.N.; Varadaraj, M.C.; Venkateswaran, G.; Agrawal, R. Optimization of a Probiotic Beverage Based on Moringa Leaves and Beetroot. LWT-Food Sci. Technol. 2015, 63, 1268–1273. [Google Scholar] [CrossRef]
- Csatlos, N.-I.; Simon, E.; Teleky, B.-E.; Szabo, K.; Diaconeasa, Z.M.; Vodnar, D.-C.; Ciont, C.; Pop, O.-L. Development of a Fermented Beverage with Chlorella Vulgaris Powder on Soybean-Based Fermented Beverage. Biomolecules 2023, 13, 245. [Google Scholar] [CrossRef]
- El Mecherfi, K.E.; Todorov, S.D.; De Albuquerque, M.A.C.; Denery-Papini, S.; Lupi, R.; Haertlé, T.; De Melo Franco, B.D.G.; Larre, C. Allergenicity of Fermented Foods: Emphasis on Seeds Protein-Based Products. Foods 2020, 9, 792. [Google Scholar] [CrossRef]
- Biscola, V.; de Olmos, A.R.; Choiset, Y.; Rabesona, H.; Garro, M.S.; Mozzi, F.; Chobert, J.M.; Drouet, M.; Haertlé, T.; Franco, B.D.G.M. Soymilk Fermentation by Enterococcus Faecalis VB43 Leads to Reduction in the Immunoreactivity of Allergenic Proteins β-Conglycinin (7S) and Glycinin (11S). Benef. Microbes 2017, 8, 635–643. [Google Scholar] [CrossRef]
- Skrzypczak, K.; Jabłońska-Ryś, E.; Gustaw, K.; Sławińska, A.; Waśko, A.; Radzki, W.; Michalak-Majewska, M.; Gustaw, W. Reinforcement of the Antioxidative Properties of Chickpea Beverages through Fermentation Carried out by Probiotic Strain Lactobacillus Plantarum 299v. J. Pure Appl. Microbiol. 2019, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Meinlschmidt, P.; Schweiggert-Weisz, U.; Eisner, P. Soy Protein Hydrolysates Fermentation: Effect of Debittering and Degradation of Major Soy Allergens. LWT-Food Sci. Technol. 2016, 71, 202–212. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Thakur, K.; Feng, J.Y.; Cai, J.S.; Zhang, J.G.; Hu, F.; Wei, Z.J. B-Vitamin Enriched Fermented Soymilk: A Novel Strategy for Soy-Based Functional Foods Development. Trends Food Sci. Technol. 2020, 105, 43–55. [Google Scholar] [CrossRef]
- Nedele, A.K.; Gross, S.; Rigling, M.; Zhang, Y. Reduction of Green Off-Flavor Compounds: Comparison of Key Odorants during Fermentation of Soy Drink with Lycoperdon Pyriforme. Food Chem. 2021, 334, 127591. [Google Scholar] [CrossRef]
- Emkani, M.; Oliete, B.; Saurel, R. Effect of Lactic Acid Fermentation on Legume Protein Properties, a Review. Fermentation 2022, 8, 244. [Google Scholar] [CrossRef]
- Sun, T.; Jiang, H.; Yang, K.; Li, X.; Wang, S.; Yao, H.; Wang, R.; Li, S.; Gu, Y.; Lei, P.; et al. Nutritional Function and Flavor Evaluation of a New Soybean Beverage Based on Naematelia Aurantialba Fermentation. Foods 2022, 11, 272. [Google Scholar] [CrossRef]
- Shi, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Lactic Acid Fermentation: A Novel Approach to Eliminate Unpleasant Aroma in Pea Protein Isolates. LWT 2021, 150, 111927. [Google Scholar] [CrossRef]
- Zheng, Y.; Fei, Y.; Yang, Y.; Jin, Z.; Yu, B.; Li, L. A Potential Flavor Culture: Lactobacillus Harbinensis M1 Improves the Organoleptic Quality of Fermented Soymilk by High Production of 2,3-Butanedione and Acetoin. Food Microbiol. 2020, 91, 103540. [Google Scholar] [CrossRef]
- Schlegel, K.; Leidigkeit, A.; Eisner, P.; Schweiggert-Weisz, U. Technofunctional and Sensory Properties of Fermented Lupin Protein Isolates. Foods 2019, 8, 678. [Google Scholar] [CrossRef] [Green Version]
- Ahsan, S.; Khaliq, A.; Chughtai, M.F.J.; Nadeem, M.; Din, A.A.; Hlebová, M.; Rebezov, M.; Khayrullin, M.; Mikolaychik, I.; Morozova, L.; et al. Functional Exploration of Bioactive Moieties of Fermented and Non-Fermented Soy Milk with Reference to Nutritional Attributesax. J. Microbiol. Biotechnol. Food Sci. 2020, 10, 145–149. [Google Scholar] [CrossRef]
- Wang, S.; Chelikani, V.; Serventi, L. Evaluation of Chickpea as Alternative to Soy in Plant-Based Beverages, Fresh and Fermented. LWT 2018, 97, 570–572. [Google Scholar] [CrossRef]
- Aduol, K.O.; Onyango, A.N.; Imathiu, S.M. Proximate, Microbial and Sensory Characteristics of Cowpea Milk Fermented with Probiotic Starter Cultures. Eur. J. Agric. Food Sci. 2020, 2, 1–7. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Vasil’eva, E.; Culetu, A.; Duta, D.; Sozer, N.; Drusch, S. Oat Protein Concentrate as Alternative Ingredient for Non-Dairy Yoghurt-Type Product. J. Sci. Food Agric. 2019, 99, 5852–5857. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Benthin, A.; Drusch, S. Enrichment of Yoghurt with Oat Protein Fractions: Structure Formation, Textural Properties and Sensory Evaluation. Food Hydrocoll. 2019, 86, 146–153. [Google Scholar] [CrossRef]
- Laaksonen, O.; Kahala, M.; Marsol-Vall, A.; Blasco, L.; Järvenpää, E.; Rosenvald, S.; Virtanen, M.; Tarvainen, M.; Yang, B. Impact of Lactic Acid Fermentation on Sensory and Chemical Quality of Dairy Analogues Prepared from Lupine (Lupinus Angustifolius L.) Seeds. Food Chem. 2021, 346, 128852. [Google Scholar] [CrossRef] [PubMed]
- Klost, M.; Giménez-Ribes, G.; Drusch, S. Enzymatic Hydrolysis of Pea Protein: Interactions and Protein Fractions Involved in Fermentation Induced Gels and Their Influence on Rheological Properties. Food Hydrocoll. 2020, 105, 105793. [Google Scholar] [CrossRef]
- Grasso, N.; Alonso-Miravalles, L.; O’Mahony, J.A. Composition, Physicochemical and Sensorial Properties of Commercial Plant-Based Yogurts. Foods 2020, 9, 252. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.S.; Kim, B.H.; Kim, H.S.; Baik, M.Y. Optimization of Pea Protein and Citrus Fiber Contents for Plant Based Stirred Soymilk Yogurt Using Response Surface Methodology. Food Sci. Biotechnol. 2022, 31, 1691–1701. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, M.J. The Fermentation Characteristics of Soy Yogurt with Different Content of D-Allulose and Sucrose Fermented by Lactic Acid Bacteria from Kimchi. Food Sci. Biotechnol. 2019, 28, 1155–1161. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Banovic, M.; Drusch, S. Towards an Increased Plant Protein Intake: Rheological Properties, Sensory Perception and Consumer Acceptability of Lactic Acid Fermented, Oat-Based Gels. Food Hydrocoll. 2019, 96, 201–208. [Google Scholar] [CrossRef]
- Zannini, E.; Jeske, S.; Lynch, K.; Arendt, E.K. Development of Novel Quinoa-Based Yoghurt Fermented with Dextran Producer Weissella Cibaria MG1. Int. J. Food Microbiol. 2018, 268, 19–26. [Google Scholar] [CrossRef]
- Lorusso, A.; Coda, R.; Montemurro, M.; Rizzello, C.G. Use of Selected Lactic Acid Bacteria and Quinoa Flour for Manufacturing Novel Yogurt-like Beverages. Foods 2018, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Ogundipe, O.O.; Fasogbon, B.M.; Ogundipe, F.O.; Oredope, O.; Amaezenanbu, R.U. Nutritional Composition of Non-Dairy Yogurt from Sprouted Tigernut Tubers. J. Food Process. Preserv. 2021, 45, e15884. [Google Scholar] [CrossRef]
- Myhan, R.; Jeliński, T.; Białobrzewski, I.; Sadowska, J.; Jachimczyk, E. The Effect of Milk Fat Substitution on the Rheological Properties of Edam-Type Cheese. Eur. Food Res. Technol. 2020, 246, 2443–2450. [Google Scholar] [CrossRef]
- Butt, N.A.; Ali, T.M.; Hasnain, A. Development of Rice Starch-Based Casein and Fat Mimetics and Its Application in Imitation Mozzarella Cheese. J. Food Process. Preserv. 2020, 44, e14928. [Google Scholar] [CrossRef]
- Kamath, R.; Basak, S.; Gokhale, J. Recent Trends in the Development of Healthy and Functional Cheese Analogues—A Review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
- Shabani, J.; Sarfarazi, M.; Mirzaei, H.; Jafari, S.M. Influence of the Sunflower Oil Content, Cooking Temperature and Cooking Time on the Physical and Sensory Properties of Spreadable Cheese Analogues Based on UF White-Brined Cheese. Int. J. Dairy Technol. 2016, 69, 576–584. [Google Scholar] [CrossRef]
- Mattice, K.D.; Marangoni, A.G. Evaluating the Use of Zein in Structuring Plant-Based Products. Curr. Res. Food Sci. 2020, 3, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Azizi, M.H.; Ghasemlou, M.; Vaziri, M. Application of Inulin in Cheese as Prebiotic, Fat Replacer and Texturizer: A Review. Carbohydr. Polym. 2015, 119, 85–100. [Google Scholar] [CrossRef]
- Harper, A.R.; Dobson, R.C.J.; Morris, V.K.; Moggré, G.J. Fermentation of Plant-Based Dairy Alternatives by Lactic Acid Bacteria. Microb. Biotechnol. 2022, 15, 1404–1421. [Google Scholar] [CrossRef] [PubMed]
- Łopusiewcz, Ł.; Śmietana, N.; Lichwiarska, E.; Mazurkiewicz-Zapałowicz, K.; Gefrom, A.; Drozłowska, E. The Biotransformation of Lupine Seeds by Lactic Acid Bacteria and Penicillium Camemberti into a Plant-Based Camembert Alternative, and Its Physicochemical Changes during 7 Weeks of Ripening. Fermentation 2022, 8, 447. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Odukoya, J.O.; Adebayo, Y.S. Nutritional Composition and Consumer Acceptability of Cheese Analog from Soy and Cashew Nut Milk. J. Food Process. Preserv. 2019, 43, e14285. [Google Scholar] [CrossRef]
- Masiá, C.; Jensen, P.E.; Petersen, I.L.; Buldo, P. Design of a Functional Pea Protein Matrix for Fermented Plant-Based Cheese. Foods 2022, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Jeewanthi, R.K.C.; Paik, H.D. Modifications of Nutritional, Structural, and Sensory Characteristics of Non-Dairy Soy Cheese Analogs to Improve Their Quality Attributes. J. Food Sci. Technol. 2018, 55, 4384–4394. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xia, Y.; Zhou, L.; Xie, J. Evaluation of the Rheological, Textural, Microstructural and Sensory Properties of Soy Cheese Spreads. Food Bioprod. Process. 2013, 91, 429–439. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Yang, J.J.; Ma, X.Y.; Jia, X.D.; Du, P.; Li, A.L. Influence of the Addition of Geotrichum Candidum on the Microbial, Chemical, Textural, and Sensory Features of Soft Soy Cheese. J. Food Process. Preserv. 2020, 44, e14823. [Google Scholar] [CrossRef]
- Shirotani, N.; Bygvraa Hougaard, A.; Lametsch, R.; Agerlin Petersen, M.; Rattray, F.P.; Ipsen, R. Proteolytic Activity of Selected Commercial Lactobacillus Helveticus Strains on Soy Protein Isolates. Food Chem. 2021, 340, 128152. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, D.; Amin, A. Development of a Functional Fermented Peanut-Based Cheese Analog Using Probiotic Bacteria. Biotechnologia 2018, 99, 435–441. [Google Scholar] [CrossRef]
- Łopusiewicz, Ł.; Drozłowska, E.; Tarnowiecka-Kuca, A.; Bartkowiak, A.; Mazurkiewicz-Zapałowicz, K.; Salachna, P. Biotransformation of Flaxseed Oil Cake into Bioactive Camembert-Analogue Using Lactic Acid Bacteria, Penicillium Camemberti and Geotrichum Candidum. Microorganisms 2020, 8, 1266. [Google Scholar] [CrossRef]
- Chen, J.M.; Al, K.F.; Craven, L.J.; Seney, S.; Coons, M.; McCormick, H.; Reid, G.; O’connor, C.; Burton, J.P. Nutritional, Microbial, and Allergenic Changes during the Fermentation of Cashew ‘Cheese’ Product Using a Quinoa-Based Rejuvelac Starter Culture. Nutrients 2020, 12, 648. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Z.; Ji, L.; Zhang, J.; Zhao, Z.; Zhang, R.; Bai, T.; Hou, B.; Zhang, Y.; Liu, D.; et al. A Review: Microbial Diversity and Function of Fermented Meat Products in China. Front. Microbiol. 2021, 12, 1322. [Google Scholar] [CrossRef]
- Wang, Y.; Han, J.; Wang, D.; Gao, F.; Zhang, K.; Tian, J.; Jin, Y. Research Update on the Impact of Lactic Acid Bacteria on the Substance Metabolism, Flavor, and Quality Characteristics of Fermented Meat Products. Foods 2022, 11, 2090. [Google Scholar] [CrossRef]
- Razavizadeh, S.; Alencikiene, G.; Vaiciulyte-Funk, L.; Ertbjerg, P.; Salaseviciene, A. Utilization of Fermented and Enzymatically Hydrolyzed Soy Press Cake as Ingredient for Meat Analogues. LWT 2022, 165, 113736. [Google Scholar] [CrossRef]
- Yuan, X.; Zhu, X.; Sun, R.; Jiang, W.; Zhang, D.; Liu, H.; Sun, B. Sensory Attributes and Characterization of Aroma Profiles of Fermented Sausages Based on Fibrous-like Meat Substitute from Soybean Protein and Coprinus Comatus. Food Chem. 2022, 373, 131537. [Google Scholar] [CrossRef] [PubMed]
- Maung, T.T.; Gu, B.Y.; Kim, M.H.; Ryu, G.H. Fermentation of Texturized Vegetable Proteins Extruded at Different Moisture Contents: Effect on Physicochemical, Structural, and Microbial Properties. Food Sci. Biotechnol. 2020, 29, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The Amazing Potential of Fungi: 50 Ways We Can Exploit Fungi Industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef] [Green Version]
- Hashempour-Baltork, F.; Khosravi-Darani, K.; Hosseini, H.; Farshi, P.; Reihani, S.F.S. Mycoproteins as Safe Meat Substitutes. J. Clean. Prod. 2020, 253, 119958. [Google Scholar] [CrossRef]
- Derbyshire, E. Food-Based Dietary Guidelines and Protein Quality Definitions—Time to Move Forward and Encompass Mycoprotein? Foods 2022, 11, 647. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of Ingredients and Additives in Plant-Based Meat Analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Campagnol, P.C.B.; dos Santos, B.A.; Wagner, R.; Terra, N.N.; Pollonio, M.A.R. The Effect of Yeast Extract Addition on Quality of Fermented Sausages at Low NaCl Content. Meat Sci. 2011, 87, 290–298. [Google Scholar] [CrossRef]
- Ismail, I.; Hwang, Y.H.; Joo, S.T. Meat Analog as Future Food: A Review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.Z.; Shitut, M.; Agrawal, P.; Mendes, O.; Klapholz, S. Safety Evaluation of Soy Leghemoglobin Protein Preparation Derived From Pichia Pastoris, Intended for Use as a Flavor Catalyst in Plant-Based Meat. Int. J. Toxicol. 2018, 37, 241–262. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; He, X.; Andoh-Kumi, K.; Fraser, R.Z.; Lu, M.; Goodman, R.E. Evaluating Potential Risks of Food Allergy and Toxicity of Soy Leghemoglobin Expressed in Pichia Pastoris. Mol. Nutr. Food Res. 2018, 62, 1700297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teng, T.S.; Chin, Y.L.; Chai, K.F.; Chen, W.N. Fermentation for Future Food Systems: Precision Fermentation Can Complement the Scope and Applications of Traditional Fermentation. EMBO Rep. 2021, 22, e52680. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Coda, R.; Chamlagain, B.; Varmanen, P.; Piironen, V.; Katina, K. Co-Fermentation of Propionibacterium Freudenreichiiand Lactobacillus Brevisin Wheat Bran for in Situproduction of Vitamin B12. Front. Microbiol. 2019, 10, 1541. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Coda, R.; Chamlagain, B.; Edelmann, M.; Deptula, P.; Varmanen, P.; Piironen, V.; Katina, K. In Situ Fortification of Vitamin B12 in Wheat Flour and Wheat Bran by Fermentation with Propionibacterium Freudenreichii. J. Cereal Sci. 2018, 81, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Aït-kaddour, A.; Abu-mahfouz, A.M.; Rathod, N.B.; Bader, F.; Barba, F.J.; Cropotova, J.; Galanakis, C.M.; Jambrak, A.R.; Lorenzo, M.; et al. The Fourth Industrial Revolution in the Food Industry—Part I: Industry 4.0 Technologies. Crit. Rev. Food Sci. Nutr. 2022, 1–17. [Google Scholar] [CrossRef]
- Hassoun, A.; Cropotova, J.; Trif, M.; Rusu, A.V.; Bobiş, O.; Nayik, G.A.; Jagdale, Y.D.; Saeed, F.; Afzaal, M.; Mostashari, P.; et al. Consumer Acceptance of New Food Trends Resulting from the Fourth Industrial Revolution Technologies: A Narrative Review of Literature and Future Perspectives. Front. Nutr. 2022, 9, 972154. [Google Scholar] [CrossRef]
- Hassoun, A.; Prieto, M.A.; Carpena, M.; Bouzembrak, Y.; Marvin, H.J.P.; Pallar, N.; Barba, F.J.; Punia, S.; Chaudhary, V.; Ibrahim, S.; et al. Exploring the Role of Green and Industry 4.0 Technologies in Achieving Sustainable Development Goals in Food Sectors. Food Res. Int. 2022, 162, 112068. [Google Scholar] [CrossRef]
- Hassoun, A.; Jagtap, S.; Garcia-Garcia, G.; Trollman, H.; Pateiro, M.; Lorenzo, J.M.; Trif, M.; Rusu, A.V.; Aadil, R.M.; Šimat, V.; et al. Food Quality 4.0: From Traditional Approaches to Digitalized Automated Analysis. J. Food Eng. 2023, 337, 111216. [Google Scholar] [CrossRef]
- Hassoun, A.; Alhaj Abdullah, N.; Aït-Kaddour, A.; Ghellam, M.; Beşir, A.; Zannou, O.; Önal, B.; Aadil, R.M.; Lorenzo, J.M.; Mousavi Khaneghah, A.; et al. Food Traceability 4.0 as Part of the Fourth Industrial Revolution: Key Enabling Technologies. Crit. Rev. Food Sci. Nutr. 2022. [Google Scholar] [CrossRef] [PubMed]
- Viejo, C.G.; Fuentes, S. Editorial: Special Issue “Implementation of Digital Technologies on Beverage Fermentation”. Fermentation 2022, 8, 127. [Google Scholar] [CrossRef]
- Vošahlík, J.; Hart, J. Measurability of Quality in Fermentation Process of Rice Wine by IoT in the Field of Industry 4.0. Agron. Res. 2021, 19, 1318–1324. [Google Scholar]
- Alarcon, C.; Shene, C. Fermentation 4.0, a Case Study on Computer Vision, Soft Sensor, Connectivity, and Control Applied to the Fermentation of a Thraustochytrid. Comput. Ind. 2021, 128, 103431. [Google Scholar] [CrossRef]
- Violino, S.; Figorilli, S.; Costa, C.; Pallottino, F. Internet of Beer: A Review on Smart Technologies from Mash to Pint. Foods 2020, 9, 950. [Google Scholar] [CrossRef]
- Özdoğan, G.; Lin, X.; Sun, D.W. Rapid and Noninvasive Sensory Analyses of Food Products by Hyperspectral Imaging: Recent Application Developments. Trends Food Sci. Technol. 2021, 111, 151–165. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fowler, M.S.; Fisk, I.D. Hyperspectral Imaging for Non-Destructive Prediction of Fermentation Index, Polyphenol Content and Antioxidant Activity in Single Cocoa Beans. Food Chem. 2018, 258, 343–351. [Google Scholar] [CrossRef]
- Jiang, X.; Tian, J.; Huang, H.; Hu, X.; Han, L.; Huang, D.; Luo, H. Nondestructive Visualization and Quantification of Total Acid and Reducing Sugar Contents in Fermented Grains by Combining Spectral and Color Data through Hyperspectral Imaging. Food Chem. 2022, 386, 132779. [Google Scholar] [CrossRef]
- Rizo, J.; Guillén, D.; Farrés, A.; Díaz-Ruiz, G.; Sánchez, S.; Wacher, C.; Rodríguez-Sanoja, R. Omics in Traditional Vegetable Fermented Foods and Beverages. Crit. Rev. Food Sci. Nutr. 2020, 60, 791–809. [Google Scholar] [CrossRef]
- McClements, D.J. Future Foods: How Modern Science Is Transforming the Way We Eat; Springer: Basel, Switzerland, 2019; ISBN 9783030129958. [Google Scholar]
- Gonzalez Viejo, C.; Harris, N.M.; Fuentes, S. Quality Traits of Sourdough Bread Obtained by Novel Digital Technologies and Machine Learning Modelling. Fermentation 2022, 8, 516. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S. Low-Cost Methods to Assess Beer Quality Using Artificial Intelligence Involving Robotics, an Electronic Nose, and Machine Learning. Fermentation 2020, 6, 104. [Google Scholar] [CrossRef]
- Hassoun, A.; Bekhit, A.E.; Jambrak, A.R.; Regenstein, J.M.; Chemat, F.; Morton, J.D.; Gudjónsdóttir, M.; Carpena, M.; Prieto, A.; Varela, P.; et al. The Fourth Industrial Revolution in the Food Industry—Part II: Emerging Food Trends Trends. Crit. Rev. Food Sci. Nutr. 2022, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Tyndall, S.M.; Maloney, G.R.; Cole, M.B.; Hazell, N.G.; Augustin, M.A. Critical Food and Nutrition Science Challenges for Plant-Based Meat Alternative Products. Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Yap, W.S.; Ge, X.Y.; Min, V.L.X.; Choudhury, D. Cultured Meat Production Fuelled by Fermentation. Trends Food Sci. Technol. 2022, 120, 48–58. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S.; Hernandez-Brenes, C. Smart Detection of Faults in Beers Using Near-Infrared Spectroscopy, a Low-Cost Electronic Nose and Artificial Intelligence. Fermentation 2021, 7, 117. [Google Scholar] [CrossRef]
- Landerneau, S.; Lemarié, L.; Marquette, C.; Petiot, E. Green 3D Bioprinting of Plant Cells: A New Scope for 3D Bioprinting. Bioprinting 2022, 27, e00216. [Google Scholar] [CrossRef]
- Ghazal, A.F.; Zhang, M.; Mujumdar, A.S.; Ghamry, M. Progress in 4D/5D/6D Printing of Foods: Applications and R & D Opportunities. Crit. Rev. Food Sci. Nutr. 2022, 1–24. [Google Scholar] [CrossRef]
- Liu, X.; Le, C.; Yu, J.; Zhao, L.; Wang, K.; Tao, Y.; Renard, C.M.G.C.; Hu, Z. Trends and Challenges on Fruit and Vegetable Processing: Insights into Sustainable, Traceable, Precise, Healthy, Intelligent, Personalized and Local Innovative Food Products. Trends Food Sci. Technol. 2022, 125, 12–25. [Google Scholar] [CrossRef]
- Teng, X.; Zhang, M.; Mujumdar, A.S. 4D Printing: Recent Advances and Proposals in the Food Sector. Trends Food Sci. Technol. 2021, 110, 349–363. [Google Scholar] [CrossRef]
- Soni, R.; Ponappa, K.; Tandon, P. A Review on Customized Food Fabrication Process Using Food Layered Manufacturing. LWT 2022, 161, 113411. [Google Scholar] [CrossRef]
- Escalante-Aburto, A.; Santiago, G.T.; Álvarez, M.M.; Chuck-Hernández, C. Advances and Prospective Applications of 3D Food Printing for Health Improvement and Personalized Nutrition. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5722–5741. [Google Scholar] [CrossRef]
- Le-Bail, A.; Maniglia, B.C.; Le-Bail, P. Recent Advances and Future Perspective in Additive Manufacturing of Foods Based on 3D Printing. Curr. Opin. Food Sci. 2020, 35, 54–64. [Google Scholar] [CrossRef]
- Tomašević, I.; Putnik, P.; Valjak, F.; Pavlić, B.; Šojić, B.; Bebek Markovinović, A.; Bursać Kovačević, D. 3D Printing as Novel Tool for Fruit-Based Functional Food Production. Curr. Opin. Food Sci. 2021, 41, 138–145. [Google Scholar] [CrossRef]
- Bedoya, M.G.; Montoya, D.R.; Tabilo-Munizaga, G.; Pérez-Won, M.; Lemus-Mondaca, R. Promising Perspectives on Novel Protein Food Sources Combining Artificial Intelligence and 3D Food Printing for Food Industry. Trends Food Sci. Technol. 2022, 128, 38–52. [Google Scholar] [CrossRef]
- Ping, Y.; Feng, X.; Blank, I.; Liu, Y. Strategies to Improve Meat-like Properties of Meat Analogs Meeting Consumers’ Expectations. Biomaterials 2022, 287, 121648. [Google Scholar] [CrossRef]
- Marinova, D.; Bogueva, D. Alternative Proteins. In Food in a Planetary Emergency; Springer Nature: Singapore, 2022; pp. 121–151. [Google Scholar]
- Wang, M.; Li, D.; Zang, Z.; Sun, X.; Tan, H.; Si, X.; Tian, J.; Teng, W.; Wang, J.; Liang, Q.; et al. 3D Food Printing: Applications of Plant-Based Materials in Extrusion-Based Food Printing. Crit. Rev. Food Sci. Nutr. 2022, 62, 7184–7198. [Google Scholar] [CrossRef]
- Wang, T.; Kaur, L.; Furuhata, Y.; Aoyama, H.; Singh, J. 3D Printing of Textured Soft Hybrid Meat Analogues. Foods 2022, 11, 478. [Google Scholar] [CrossRef]
- Conzuelo, Z.R.; Robyr, R.; Kopf-bolanz, K.A. Optimization of Protein Quality of Plant-Based Foods Through Digitalized Product Development. Front. Nutr. 2022, 9, 902565. [Google Scholar] [CrossRef]
- Deng, Y.; Cheng, K.; Shao, X.; Dong, X.; Jiang, H.; Xiao, G. Effects of Drying Method on the Stability and Quality of Post-Processing of 3D-Printed Processed Cheese. Dry. Technol. 2022, 1–8. [Google Scholar] [CrossRef]
- Kyle, S. 3D Printing of Bacteria: The Next Frontier in Biofabrication. Trends Biotechnol. 2018, 36, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Kewuyemi, Y.O.; Kesa, H.; Adebo, O.A. Trends in Functional Food Development with Three-Dimensional (3D) Food Printing Technology: Prospects for Value-Added Traditionally Processed Food Products. Crit. Rev. Food Sci. Nutr. 2021, 62, 7866–7904. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Barjas, G.; Banerjee, A.; Valdes, O.; Moncada, M.; Sirajunnisa, A.R.; Surendhiran, D.; Ramakrishnan, G.; Rani, N.S.; Hamidi, M.; Kozani, P.S.; et al. Food Biotechnology: Innovations and Challenges. In Future Foods: Global Trends, Opportunities, and Sustainability Challenges; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 697–719. [Google Scholar]
- Lee, J. A 3D Food Printing Process for the New Normal Era: A Review. Processes 2021, 9, 1495. [Google Scholar] [CrossRef]
Fermented Plant-Based Foods and Drinks | Number of Products and Percentage 1 |
---|---|
Foods | |
Bakery | 1371 (31.2%) |
Dairy alternatives | 1152 (26.3%) |
● “Yoghurt” | 420 (9.6%) |
● Hard “cheese” and semi-hard “cheese” | 210 (4.8%) |
● Soft “cheese” and semi-soft “cheese” | 188 (4.3%) |
● Processed “cheese” | 141 (3.3%) |
● Ice cream | 100 (2.3%) |
● Drinks | 50 (1.1%) |
● Fresh cheese and cream cheese | 35 (1%) |
● Margarine | 8 (0.18%) |
Sauces and seasonings | 467 (10.2%) |
Meat alternatives | 378 (8.6%) |
Ready-to-eat meals | 312 (7.1%) |
Vegetables | 93 (2.1%) |
Drinks | |
Nutritional drinks and other beverages | 260 (5.9%) |
Carbonated soft drinks | 109 (2.5%) |
Alcoholic beverages | 40 (0.9%) |
Juice drinks | 39 (0.9%) |
Sports and energy drinks | 8 (0.2%) |
Ready-to-drink beverages | 4 (0.1%) |
Region | Number (% of Total) 1 | Top 10 Brands |
---|---|---|
Europe | 3128 (71%) | Fentimans: Alpro; Tesco Finest; M & S Food; M & S The Bakery; Tesco; Asda Extra Special; BFree; Marks & Spencer; Sojasun |
Asia Pacific | 729 (17%) | Maggi; Pascual; East Bali Cashews; Javara; Lo Bros.; Prima Ham Try Veggie; Remedy Kombucha, Coles; Elle & Vire; Fentimans |
North America | 299 (7%) | Genuine Health; Field Roast Chao; Nuts for Cheese Naked & Saucy; BFree; Field Roast Chao Vegan Creamery; Health-Ade Pop; Booch; Brami; Hu |
Latin America | 154 (4%) | Nomoo; Ile de France; Milkaut; Liane; Mun; Augusta; Emporium Vida; Neptune; Nogurt; Soignon |
Middle East & Africa | 69 (2%) | Woolworths Food; Soignon; Carrefour; Fry’s Special Vegetarian; Kefir Life; Moya; Vigo Kombucha; Woolworths; Fynbos Fine Foods; Herman Brot |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukid, F.; Hassoun, A.; Zouari, A.; Tülbek, M.Ç.; Mefleh, M.; Aït-Kaddour, A.; Castellari, M. Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods 2023, 12, 1005. https://doi.org/10.3390/foods12051005
Boukid F, Hassoun A, Zouari A, Tülbek MÇ, Mefleh M, Aït-Kaddour A, Castellari M. Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods. 2023; 12(5):1005. https://doi.org/10.3390/foods12051005
Chicago/Turabian StyleBoukid, Fatma, Abdo Hassoun, Ahmed Zouari, Mehmet Çağlar Tülbek, Marina Mefleh, Abderrahmane Aït-Kaddour, and Massimo Castellari. 2023. "Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives" Foods 12, no. 5: 1005. https://doi.org/10.3390/foods12051005
APA StyleBoukid, F., Hassoun, A., Zouari, A., Tülbek, M. Ç., Mefleh, M., Aït-Kaddour, A., & Castellari, M. (2023). Fermentation for Designing Innovative Plant-Based Meat and Dairy Alternatives. Foods, 12(5), 1005. https://doi.org/10.3390/foods12051005