Effect of Drying Technique on the Volatile Content of Ecuadorian Bulk and Fine-Flavor Cocoa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cocoa Samples
2.2. On-Farm Cocoa Processing
2.3. Sample Preparation and HS-SPME Extraction Conditions
2.4. GC-MS Instrumental Parameters
2.5. Statistical Analysis
3. Results and Discussion
3.1. Differences in the Volatile Profile of Dried Cocoa According to the Technique and Genotype
Drying Technique | Cocoa Genotype | Drying Technique × Genotype (Interaction) | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD | SBPD | SD | p | F | C | E | L | p | OD × F | SBPD × F | SD × F | OD × C | SBPD × C | SD × C | OD × E | SBPD × E | SD × E | OD × L | SBPD × L | SD × L | p | |
2-Methyl butanal | 0.44 b | 0.67 b | 1.00 a | ** | 0.14 c | 0.29 bc | 1.00 a | 0.52 b | *** | 0.14 c | 0.06 c | 0.09 c | 0.35 bc | 0.08 c | 0.15 c | 0.29 bc | 0.74 ab | 1.00 a | 0.04 c | 0.37 bc | 0.65 ab | *** |
3-(Methylthio)propanal | 0.00 b | 1.00 a | 0.00 b | *** | 0.00 b | 0.00 b | 1.00 a | 0.00 b | *** | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 1.00 a | 0.00 b | 0.00 b | 0.00 b | 0.00 b | *** |
Benzaldehyde | 0.74 | 0.93 | 1.00 | ns | 0.45 b | 0.37 b | 1.00 a | 0.56 b | *** | 0.48 bc | 0.16 c | 0.22 c | 0.26 bc | 0.16 c | 0.27 bc | 0.41 bc | 1.00 a | 0.48 bc | 0.08 c | 0.25 c | 0.72 ab | *** |
Furfural | 1.00 a | 0.00 b | 0.00 b | *** | 0.00 c | 0.00 c | 0.58 b | 1.00 a | *** | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.58 b | 0.00 c | 0.00 c | 1.00 a | 0.00 c | 0.00 c | *** |
Benzacetaldehyde | 0.57 b | 0.71 b | 1.00 a | *** | 0.14 c | 0.61 b | 0.76 b | 1.00 a | *** | 0.04 f | 0.06 ef | 0.10 def | 0.50 b | 0.12 cdef | 0.23 cde | 0.27 cd | 0.60 b | 0.18 cdef | 0.07 ef | 0.30 c | 1.00 a | *** |
α-Ethylidenbenzeneacetaldehyde | 0.66 b | 0.87 ab | 1.00 a | * | 0.13 b | 0.13 b | 1.00 a | 0.17 b | *** | 0.15 c | 0.09 c | 0.06 c | 0.14 c | 0.08 c | 0.09 c | 0.47 b | 0.92 a | 1.00 a | 0.13 c | 0.08 c | 0.20 bc | ** |
Aldehydes | 0.56 c | 0.72 b | 1.00 a | *** | 0.20 c | 0.56 b | 1.00 a | 0.93 a | *** | 0.11 e | 0.08 e | 0.12 e | 0.50 c | 0.13 e | 0.24 de | 0.33 cd | 0.76 b | 0.45 c | 0.08 e | 0.35 cd | 1.00 a | *** |
2-Methyl-propanol | 0.00 b | 0.00 b | 1.00 a | *** | 0.00 b | 0.00 b | 1.00 a | 0.00 b | *** | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 1.00 a | 0.00 b | 0.00 b | 0.00 b | *** |
3-Methyl-2-butanol + 2-Pentanol | 0.76 b | 1.00 a | 0.58 c | *** | 1.00 a | 0.77 b | 0.74 b | 0.44 c | *** | 0.43 bcd | 1.00 a | 0.35 cde | 0.52 bc | 0.56 b | 0.30 de | 0.53 bc | 0.41 bcde | 0.37 bcde | 0.24 e | 0.28 de | 0.27 de | *** |
3-Methyl-butanol | 0.50 c | 0.78 b | 1.00 a | *** | 0.42 c | 0.65 b | 1.00 a | 0.46 c | *** | 0.17 g | 0.31 efg | 0.42 cde | 0.25 efg | 0.54 bcd | 0.60 b | 0.57 bc | 0.58 bc | 1.00 a | 0.20 fg | 0.43 bcde | 0.37 def | *** |
2-Methyl-butanol | 0.00 | 0.01 | 1.00 | ns | 0.01 | 0.00 | 0.00 | 1.00 | ns | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ns |
2-Heptanol | 0.83 ab | 0.77 b | 1.00 a | * | 0.11 c | 0.22 bc | 0.32 b | 1.00 a | *** | 0.07 c | 0.12 c | 0.11 c | 0.15 c | 0.22 c | 0.23 c | 0.23 c | 0.12 c | 0.54 b | 1.00 a | 0.90 a | 0.89 a | ** |
4-Methyl-5-hexen-2-ol †,†† (Probably) | 1.00 a | 0.80 ab | 0.54 b | * | 0.48 bc | 0.32 c | 0.74 ab | 1.00 a | ** | 0.67 | 0.23 | 0.18 | 0.36 | 0.19 | 0.18 | 0.55 | 0.53 | 0.58 | 0.86 | 1.00 | 0.38 | ns |
1-Hexanol | 1.00 a | 0.27 b | 0.23 b | *** | 1.00 a | 0.00 d | 0.71 b | 0.38 c | *** | 1.00 a | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.39 b | 0.00 c | 0.32 b | 0.00 c | 0.38 b | 0.00 c | *** |
2-Octanol | 1.00 a | 0.37 b | 0.84 a | *** | 0.05 c | 0.24 b | 0.22 b | 1.00 a | *** | 0.00 d | 0.00 d | 0.08 d | 0.13 cd | 0.00 d | 0.27 bc | 0.00 d | 0.10 d | 0.25 bc | 1.00 a | 0.31 b | 0.34 b | *** |
2-Nonanol | 1.00 a | 0.35 b | 0.44 b | *** | 0.12 c | 0.32 b | 0.09 c | 1.00 a | *** | 0.07 de | 0.06 de | 0.05 de | 0.13 cd | 0.13 cd | 0.21 bc | 0.06 de | 0.00 e | 0.07 de | 1.00 a | 0.25 b | 0.22 bc | *** |
2.3-Butanediol | 1.00 a | 0.00 b | 0.28 b | *** | 0.02 b | 0.25 b | 0.01 b | 1.00 a | *** | 0.00 b | 0.00 b | 0.02 b | 0.00 b | 0.00 b | 0.25 b | 0.00 b | 0.00 b | 0.01 b | 1.00 a | 0.00 b | 0.00 b | *** |
α-Phenylethanol | 1.00 a | 0.72 b | 0.73 b | *** | 0.56 c | 0.88 b | 0.88 b | 1.00 a | *** | 0.36 f | 0.43 ef | 0.47 def | 0.93 a | 0.63 bcd | 0.41 ef | 0.74 b | 0.57 bcde | 0.65 bc | 1.00 a | 0.54 cde | 0.69 bc | *** |
Benzyl Alcohol | 1.00 a | 0.95 a | 0.82 b | ** | 0.85 b | 0.87 ab | 0.88 ab | 1.00 a | * | 0.94 a | 0.86 a | 0.51 b | 0.85 a | 0.79 ab | 0.72 ab | 0.74 ab | 0.93 a | 0.73 ab | 1.00 a | 0.76 ab | 0.95 a | ** |
2-Phenylethanol | 0.84 b | 0.89 b | 1.00 a | *** | 0.32 d | 0.62 c | 1.00 a | 0.74 b | *** | 0.28 g | 0.19 g | 0.42 f | 0.57 de | 0.52 ef | 0.62 cde | 0.76 b | 0.97 a | 1.00 a | 0.65 bcd | 0.71 bc | 0.65 bcd | *** |
Alcohols | 0.89 b | 0.85 c | 1.00 a | *** | 0.36 c | 0.67 b | 1.00 a | 0.99 a | *** | 0.26 f | 0.23 f | 0.40 e | 0.50 d | 0.51 d | 0.66 c | 0.69 c | 0.83 b | 0.98 a | 1.00 a | 0.75 bc | 0.71 c | *** |
Acetic acid | 0.47 b | 0.47 b | 1.00 a | *** | 0.59 b | 1.00 a | 0.12 c | 0.43 b | *** | 0.29 bcd | 0.28 bcd | 0.50 b | 0.35 bcd | 0.45 bc | 1.00 a | 0.09 cd | 0.09 cd | 0.04 d | 0.20 bcd | 0.11 cd | 0.45 bc | ** |
Propanoic acid | 1.00 | 0.92 | 0.95 | ns | 0.21 c | 0.58 b | 0.52 b | 1.00 a | *** | 0.14 f | 0.11 f | 0.29 ef | 0.39 cdef | 0.36 def | 0.78 abc | 0.57 bcde | 0.56 bcde | 0.23 ef | 1.00 a | 0.90 ab | 0.71 abcd | ** |
2-Methyl-propanoic acid | 0.96 a | 1.00 a | 0.55 b | *** | 0.36 c | 0.39 bc | 0.50 b | 1.00 a | *** | 0.51 cd | 0.27 ef | 0.10 f | 0.34 de | 0.38 de | 0.23 ef | 0.41 cde | 0.55 cd | 0.25 ef | 0.83 ab | 1.00 a | 0.62 bc | ** |
Butanoic acid | 0.74 b | 1.00 a | 0.19 c | *** | 0.17 c | 0.00 d | 1.00 a | 0.55 b | *** | 0.31 c | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.89 a | 0.63 b | 0.30 c | 0.00 d | 1.00 a | 0.00 d | *** |
2-/3-Methyl-butanoic acid | 1.00 a | 0.85 a | 0.53 b | *** | 0.50 b | 0.37 b | 0.89 a | 1.00 a | *** | 0.85 ab | 0.20 d | 0.15 d | 0.41 cd | 0.29 d | 0.19 d | 0.66 abc | 1.00 a | 0.49 cd | 0.88 ab | 0.88 ab | 0.65 bc | *** |
Acids | 0.58 b | 0.56 b | 1.00 a | *** | 0.63 b | 1.00 a | 0.24 c | 0.56 b | *** | 0.37 bcd | 0.30 bcd | 0.51 bc | 0.39 bcd | 0.48 bc | 1.00 a | 0.16 cd | 0.20 bcd | 0.09 d | 0.31 bcd | 0.22 bcd | 0.52 b | ** |
2-Pentanone | 0.94 a | 1.00 a | 0.00 b | *** | 1.00 a | 0.28 b | 0.00 c | 0.00 c | *** | 0.92 a | 1.00 a | 0.00 c | 0.27 b | 0.27 b | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | *** |
2-Heptanone + 5-methyl-2-hexanone | 0.87 | 0.79 | 1.00 | ns | 0.15 c | 0.24 bc | 0.37 b | 1.00 a | *** | 0.18 | 0.12 | 0.10 | 0.16 | 0.22 | 0.28 | 0.45 | 0.11 | 0.46 | 0.79 | 0.99 | 1.00 | ns |
2-Octanone | 1.00 a | 0.52 b | 0.69 b | ** | 0.54 b | 0.21 c | 0.28 c | 1.00 a | *** | 0.36 bc | 0,36 bc | 0,27 bcd | 0.20 bcd | 0,00 d | 0,19 bcd | 0.12 bcd | 0,05 cd | 0,34 bc | 1.00 a | 0,46 b | 0,36 bc | *** |
3-Hydroxy-2-butanone (acetoin) | 0.56 b | 0.60 b | 1.00 a | *** | 1.00 a | 0.73 b | 0.05 d | 0.34 c | *** | 0.80 ab | 0.72 abc | 0.66 abc | 0.23 de | 0.36 cde | 1.00 a | 0.03 e | 0.05 e | 0.04 e | 0.14 de | 0.15 de | 0.45 bcd | *** |
2-Hydroxy-3-pentanone | 1.00 | 0.85 | 0.82 | ns | 0.81 b | 1.00 a | 0.00 d | 0.41 c | *** | 0.67 ab | 0.42 bc | 0.92 a | 1.00 a | 0.96 a | 0.51 bc | 0.00 d | 0.00 d | 0.00 d | 0.40 bc | 0.36 bc | 0.26 cd | *** |
2-Nonanone | 1.00 | 0.86 | 0.64 | ns | 0.06 b | 0.20 b | 0.12 b | 1.00 a | *** | 0.03 | 0.05 | 0.04 | 0.13 | 0.11 | 0.19 | 0.05 | 0.01 | 0.22 | 1.00 | 0.87 | 0.32 | ns |
3,6-Heptanedione ‡ (probably) | 1.00 a | 0.32 b | 0.25 b | *** | 0.56 b | 0.00 c | 0.00 c | 1.00 a | *** | 1.00 a | 0.00 d | 0.05 d | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.86 a | 0.60 b | 0.41 c | *** |
Acetophenone | 0.78 ab | 0.77 b | 1.00 a | * | 0.25 b | 0.32 b | 0.84 a | 1.00 a | *** | 0.25 d | 0.19 d | 0.20 d | 0.30 cd | 0.23 d | 0.28 d | 0.46 bcd | 0.74 ab | 0.92 a | 0.86 a | 0.68 abc | 1.00 a | * |
Ketones | 0.98 | 0.89 | 1.00 | ns | 0.34 b | 0.35 b | 0.27 b | 1.00 a | *** | 0.39 bc | 0.33 bc | 0.24 bc | 0.24 bc | 0.28 bc | 0.48 b | 0.28 bc | 0.10 c | 0.39 bc | 0.98 a | 1.00 a | 0.82 a | ** |
Ethyl Acetate | 0.58 b | 1.00 a | 0.48 b | *** | 1.00 a | 0.70 b | 0.55 c | 0.22 d | *** | 0.00 e | 1.00 a | 0.27 c | 0.31 c | 0.32 bc | 0.26 cd | 0.46 b | 0.12 e | 0.12 de | 0.12 e | 0.09 e | 0.07 e | *** |
2-Pentyl acetate | 0.25 c | 1.00 a | 0.45 b | *** | 1.00 a | 0.24 b | 0.00 d | 0.13 c | *** | 0.30 b | 1.00 a | 0.19 c | 0.00 d | 0.21 c | 0.15 c | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.20 c | *** |
3-Methylbutyl acetate/ 2-methylbutyl acetate | 0.69 b | 1.00 a | 0.68 b | *** | 0.97 a | 1.00 a | 0.63 b | 0.40 c | *** | 0.32 def | 1.00 a | 0.49 c | 0.68 b | 0.77 b | 0.44 cd | 0.40 cde | 0.37 cdef | 0.42 cd | 0.24 f | 0.25 f | 0.26 ef | *** |
Ethyl hexanoate | 0.89 ab | 1.00 a | 0.81 b | * | 0.91 a | 1.00 a | 0.71 b | 0.32 c | *** | 0.77 ab | 0.74 ab | 0.60 bc | 0.55 bcd | 0.77 ab | 1.00 a | 0.60 bc | 0.75 ab | 0.29 cde | 0.32 cde | 0.26 de | 0.16 e | *** |
1-Methylhexyl acetate/ 2-heptanol acetate | 1.00 a | 0.63 b | 0.71 b | ** | 0.23 b | 0.33 b | 0.34 b | 1.00 a | *** | 0.11 ef | 0.26 cdef | 0.13 ef | 0.19 cdef | 0.15 def | 0.37 bcde | 0.45 bcd | 0.05 f | 0.24 cdef | 1.00 a | 0.64 b | 0.50 bc | *** |
Ethyl octanoate | 0.77 b | 1.00 a | 0.67 b | *** | 1.00 a | 0.59 b | 0.44 c | 0.20 d | *** | 0.59 b | 1.00 a | 0.44 cd | 0.28 ef | 0.36 de | 0.55 bc | 0.36 de | 0.38 de | 0.14 fg | 0.19 fg | 0.11 g | 0.11 g | *** |
2,3-Butanedioldiacetate | 0.50 b | 1.00 a | n.d. | *** | 1.00 a | 0.20 b | n.d. | 0.05 c | *** | 0.20 b | 1.00 a | 0.00 c | 0.24 b | n.d. | 0.00 c | n.d. | n.d. | 0.00 c | 0.06 c | n.d. | 0.00 c | *** |
Benzyl acetate | 1.00 a | 0.43 c | 0.57 b | *** | 0.61 b | 1.00 a | 0.25 c | 0.31 c | *** | 0.81 a | 0.28 bc | 0.28 bc | 0.81 a | 0.42 b | 1.00 a | 0.40 b | 0.16 cd | 0.00 d | 0.40 b | 0.18 cd | 0.10 cd | *** |
Ethyl benzeneacetate | 0.92 | 1.00 | 1.00 | ns | 0.95 a | 1.00 a | 0.46 b | 0.42 b | *** | 0.59 bcd | 0.93 ab | 1.00 a | 0.82 abc | 0.87 ab | 0.97 a | 0.50 cd | 0.45 d | 0.27 d | 0.46 d | 0.32 d | 0.33 d | ** |
β-Phenylethyl acetate | 1.00 a | 0.64 b | 0.68 b | *** | 0.68 b | 1.00 a | 0.29 d | 0.45 c | *** | 0.44 b | 0.49 b | 0.49 b | 1.00 a | 0.50 b | 0.59 b | 0.24 c | 0.17 c | 0.19 c | 0.50 b | 0.22 c | 0.22 c | *** |
Phenethyl pivalate | 0.83 b | 0.29 c | 1.00 a | *** | 0.29 c | 1.00 a | 0.83 b | 0.00 d | *** | 0.00 d | 0.00 d | 0.49 c | 0.42 c | 0.50 c | 0.80 b | 1.00 a | 0.00 d | 0.43 c | 0.00 d | 0.00 d | 0.00 d | *** |
Butyl benzoate | 0.60 b | 0.69 b | 1.00 a | *** | 0.58 b | 0.78 b | 0.33 c | 1.00 a | *** | 0.28 cd | 0.48 bc | 0.31 bcd | 0.38 bcd | 0.48 bc | 0.58 b | 0.20 cd | 0.14 d | 0.27 cd | 0.44 bc | 0.39 bcd | 1.00 a | *** |
Esters | 0.96 a | 1.00 a | 0.77 b | *** | 0.93 a | 1.00 a | 0.47 b | 0.44 b | *** | 0.39 efg | 1.00 a | 0.54 cd | 0.85 b | 0.65 c | 0.59 c | 0.42 de | 0.27 gh | 0.29 fgh | 0.41 ef | 0.25 h | 0.26 h | *** |
β-Myrcene | 1.00 | 0.65 | 0.55 | ns | 0.01 b | 0.10 b | 0.18 b | 1.00 a | *** | 0.01 | 0.00 | 0.01 | 0.05 | 0.02 | 0.14 | 0.16 | 0.09 | 0.12 | 1.00 | 0.68 | 0.40 | ns |
D-Limonene | 1.00 a | 0.00 b | 0.76 a | *** | 0.23 bc | 0.00 c | 0.47 b | 1.00 a | *** | 0.00 c | 0.00 c | 0.24 bc | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.49 b | 1.00 a | 0.00 c | 0.04 c | *** |
Ocimene (Isomers E and Z) | 1.00 a | 0.38 b | 0.48 b | ** | 0.00 b | 0.01 b | 0.13 b | 1.00 a | *** | 0.00 d | 0.00 d | 0.00 d | 0.02 d | 0.00 d | 0.00 d | 0.15 cd | 0.05 cd | 0.04 cd | 1.00 a | 0.39 bc | 0.52 b | ** |
γ-Pyronene | 1.00 a | 0.33 b | 0.23 b | *** | 0.00 b | 0.00 b | 0.10 b | 1.00 a | *** | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.13 bc | 0.00 c | 0.04 c | 1.00 a | 0.37 b | 0.23 bc | *** |
Linalool oxide I | 1.00 a | 0.78 b | 0.89 ab | * | 0.18 d | 0.45 c | 1.00 a | 0.67 b | *** | 0.12 ef | 0.00 f | 0.35 de | 0.47 cd | 0.37 de | 0.37 de | 1.00 a | 0.89 a | 0.81 ab | 0.72 abc | 0.55 bcd | 0.53 bcd | * |
Linalool oxide II | 0.36 | 1.00 | 0.39 | ns | 0.13 b | 0.14 b | 1.00 a | 0.29 b | ** | 0.08 b | 0.05 b | 0.04 b | 0.04 b | 0.05 b | 0.09 b | 0.17 b | 1.00 a | 0.17 b | 0.14 b | 0.09 b | 0.16 b | * |
Linalool | 1.00 | 0.61 | 0.59 | ns | 0.05 b | 0.24 b | 0.37 b | 1.00 a | *** | 0.03 b | 0.03 b | 0.01 b | 0.04 b | 0.02 b | 0.34 b | 0.17 b | 0.17 b | 0.26 b | 1.00 a | 0.54 ab | 0.12 b | ** |
Terpenes | 1.00 | 0.67 | 0.58 | ns | 0.05 b | 0.16 b | 0.38 b | 1.00 a | *** | 0.03 c | 0.02 c | 0.03 c | 0.05 c | 0.03 c | 0.21 bc | 0.19 bc | 0.28 bc | 0.22 bc | 1.00 a | 0.53 ab | 0.28 bc | ** |
Valerolactone | 1.00 a | 0.65 b | 0.14 c | *** | 0.00 d | 0.25 c | 0.68 b | 1.00 a | *** | 0.00 d | 0.00 d | 0.00 d | 0.45 bc | 0.00 d | 0.00 d | 0.50 b | 0.46 bc | 0.27 c | 1.00 a | 0.80 a | 0.00 d | *** |
Butyrolactone | 1.00 a | 0.64 b | 0.57 b | *** | 0.16 c | 0.41 b | 1.00 a | 0.96 a | *** | 0.05 e | 0.09 de | 0.17 cde | 0.26 cde | 0.21 cde | 0.31 cd | 0.88 ab | 0.68 b | 0.35 c | 1.00 a | 0.42 c | 0.41 c | *** |
Lactones | 1.00 a | 0.64 b | 0.52 b | *** | 0.15 c | 0.41 b | 1.00 a | 1.00 a | *** | 0.04 g | 0.08 fg | 0.15 efg | 0.29 def | 0.18 efg | 0.27 defg | 0.83 ab | 0.65 bc | 0.34 de | 1.00 a | 0.46 cd | 0.36 de | *** |
trimethyl-Pyrazine | 1.00 a | 0.66 b | 0.22 c | *** | 1.00 a | 0.25 c | 0.05 c | 0.54 b | *** | 0.62 b | 1.00 a | 0.08 d | 0.42 bc | 0.00 d | 0.00 d | 0.09 d | 0.00 d | 0.00 d | 0.54 bc | 0.10 d | 0.29 cd | *** |
Isophorone | 1.00 a | 0.85 a | 0.00 b | *** | 0.77 b | 0.00 d | 0.41 c | 1.00 a | *** | 0.77 b | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.00 d | 0.41 c | 0.00 d | 0.00 d | 0.00 d | 1.00 a | 0.00 d | *** |
Benzonitrile | 1.00 a | 0.26 b | 0.49 b | *** | 0.15 b | 0.00 b | 1.00 a | 0.00 b | *** | 0.29 bc | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 1.00 a | 0.34 bc | 0.64 ab | 0.00 c | 0.00 c | 0.00 c | ** |
o-Guaiacol | 1.00 a | 0.29 b | 0.00 b | *** | 1.00 a | 0.00 b | 0.00 b | 0.00 b | *** | 1.00 a | 0.29 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | 0.00 b | *** |
Miscellaneous | 1.00 a | 0.62 b | 0.13 c | *** | 1.00 a | 0.09 d | 0.42 c | 0.61 b | *** | 1.00 a | 0.39 c | 0.02 fg | 0.13 de | 0.00 g | 0.00 g | 0.44 c | 0.06 efg | 0.11 de | 0.16 d | 0.62 b | 0.09 def | *** |
Total | 0.65 b | 0.63 b | 1.00 a | *** | 0.64 b | 1.00 a | 0.40 c | 0.72 b | *** | 0.39 bc | 0.34 bc | 0.52 bc | 0.46 bc | 0.51 bc | 0.35 bc | 0.26 c | 0.31 c | 0.22 c | 0.44 bc | 0.35 bc | 0.63 b | ** |
3.2. Chemometric Evaluation of Results
3.2.1. Combined Effect of Drying Technique and Variety on Cocoa Volatiles
3.2.2. Effects of Drying Technique and Variety
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzelagha, B.F.; Ngwa, N.M.; Nde Bup, D. A Review of Cocoa Drying Technologies and the Effect on Bean Quality Parameters. Int. J. Food Sci. 2020, 2020, 8830127. [Google Scholar] [CrossRef] [PubMed]
- OEC World. Available online: https://oec.world/en/profile/hs/cocoa-beans (accessed on 10 January 2023).
- Afoakwa, E.O. Changes in Biochemical and Physico-Chemical Qualities during Drying of Pulp Preconditioned and Fermented Cocoa (Theobroma Cacao) Beans. J. Nutr. Health Food Sci. 2014, 2, 1–8. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Orozco-Avila, I.; Lugo-Cervantes, E.; Jaramillo-Flores, M.E. Dynamics of Volatile and Non-Volatile Compounds in Cocoa (Theobroma cacao L.) during Fermentation and Drying Processes Using Principal Components Analysis. Food Res. Int. 2011, 44, 250–258. [Google Scholar] [CrossRef]
- Bala, B.K.; Janjai, S. Solar Drying Technology: Potentials and Developments. In Energy, Environment and Sustainable Development; Uqaili, M.A., Harijan, K., Eds.; Springer: Vienna, Austria, 2012; pp. 69–98. ISBN 978-3-7091-0108-7. [Google Scholar]
- Lasisi, D. A Comparative Study of Effects of Drying Methods on Quality of Cocoa Beans. Int. J. Eng. Res. Technol. 2014, 3, 991–996. [Google Scholar]
- Füllemann, D.; Steinhaus, M. Characterization of Odorants Causing Smoky Off-Flavors in Cocoa. J. Agric. Food Chem. 2020, 68, 10833–10841. [Google Scholar] [CrossRef]
- Simo-Tagne, M.; Tamkam Etala, H.D.; Tagne Tagne, A.; Ndukwu, M.C.; El Marouani, M. Energy, Environmental and Economic Analyses of an Indirect Cocoa Bean Solar Dryer: A Comparison between Natural and Forced Convections. Renew. Energy 2022, 187, 1154–1172. [Google Scholar] [CrossRef]
- Hii, C.L.; Law, C.L.; Law, M.C. Simulation of Heat and Mass Transfer of Cocoa Beans under Stepwise Drying Conditions in a Heat Pump Dryer. Appl. Therm. Eng. 2013, 54, 264–271. [Google Scholar] [CrossRef]
- Norma Técnica Ecuatoriana, NTE INEN-ISO 2291:2013. Available online: https://www.normalizacion.gob.ec/buzon/normas/nte_inen_iso_2291.pdf (accessed on 8 January 2023).
- Rodriguez-Campos, J.; Escalona-Buendía, H.B.; Contreras-Ramos, S.M.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of Fermentation Time and Drying Temperature on Volatile Compounds in Cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Salgado, J.M.; Domínguez, J.M.; Cortés-Diéguez, S. Characterization of Fennel Extracts and Quantification of Estragole: Optimization and Comparison of Accelerated Solvent Extraction and Soxhlet Techniques. Ind. Crops Prod. 2014, 52, 528–536. [Google Scholar] [CrossRef]
- Chagas Junior, G.C.A.; Ferreira, N.R.; Lopes, A.S. The Microbiota Diversity Identified during the Cocoa Fermentation and the Benefits of the Starter Cultures Use: An Overview. Int. J. Food Sci. Technol. 2021, 56, 544–552. [Google Scholar] [CrossRef]
- Delgado-Ospina, J.; Di Mattia, C.D.; Paparella, A.; Mastrocola, D.; Martuscelli, M.; Chaves-Lopez, C. Effect of Fermentation, Drying and Roasting on Biogenic Amines and Other Biocompounds in Colombian Criollo Cocoa Beans and Shells. Foods 2020, 9, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radojčin, M.; Pavkov, I.; Bursać Kovačević, D.; Putnik, P.; Wiktor, A.; Stamenković, Z.; Kešelj, K.; Gere, A. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes 2021, 9, 132. [Google Scholar] [CrossRef]
- Alean, J.; Chejne, F.; Rojano, B. Degradation of Polyphenols during the Cocoa Drying Process. J. Food Eng. 2016, 189, 99–105. [Google Scholar] [CrossRef]
- Deuscher, Z.; Gourrat, K.; Repoux, M.; Boulanger, R.; Labouré, H.; Le Quéré, J.-L. Key Aroma Compounds of Dark Chocolates Differing in Organoleptic Properties: A GC-O Comparative Study. Molecules 2020, 25, 1809. [Google Scholar] [CrossRef] [Green Version]
- Magagna, F.; Liberto, E.; Reichenbach, S.E.; Tao, Q.; Carretta, A.; Cobelli, L.; Giardina, M.; Bicchi, C.; Cordero, C. Advanced Fingerprinting of High-Quality Cocoa: Challenges in Transferring Methods from Thermal to Differential-Flow Modulated Comprehensive Two Dimensional Gas Chromatography. J. Chromatogr. A 2018, 1536, 122–136. [Google Scholar] [CrossRef]
- Rottiers, H.; Tzompa Sosa, D.A.; De Winne, A.; Ruales, J.; De Clippeleer, J.; De Leersnyder, I.; De Wever, J.; Everaert, H.; Messens, K.; Dewettinck, K. Dynamics of Volatile Compounds and Flavor Precursors during Spontaneous Fermentation of Fine Flavor Trinitario Cocoa Beans. Eur. Food Res. Technol. 2019, 245, 1917–1937. [Google Scholar] [CrossRef]
- Afoakwa, E.O.; Paterson, A.; Fowler, M.; Ryan, A. Flavor Formation and Character in Cocoa and Chocolate: A Critical Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 840–857. [Google Scholar] [CrossRef] [PubMed]
- Oberparleiter, S.; Ziegleder, G. Amyl Alcohols as Compounds Indicative of Raw Cocoa Bean Quality. Z. Lebensm. Forsch. A 1997, 204, 156–160. [Google Scholar] [CrossRef]
- Koné, K.M.; Assi-Clair, B.J.; Kouassi, A.D.D.; Yao, A.K.; Ban-Koffi, L.; Durand, N.; Lebrun, M.; Maraval, I.; Bonlanger, R.; Guehi, T.S. Pod Storage Time and Spontaneous Fermentation Treatments and Their Impact on the Generation of Cocoa Flavour Precursor Compounds. Int. J. Food Sci. Technol. 2021, 56, 2516–2529. [Google Scholar] [CrossRef]
- Fang, Y.; Li, R.; Chu, Z.; Zhu, K.; Gu, F.; Zhang, Y. Chemical and Flavor Profile Changes of Cocoa Beans (Theobroma Cacao L.) during Primary Fermentation. Food Sci. Nutr. 2020, 8, 4121–4133. [Google Scholar] [CrossRef]
- Menezes, A.G.T.; Batista, N.N.; Ramos, C.L.; e Silva, A.R.D.A.; Efraim, P.; Pinheiro, A.C.M.; Schwan, R.F. Investigation of Chocolate Produced from Four Different Brazilian Varieties of Cocoa (Theobroma Cacao L.) Inoculated with Saccharomyces cerevisiae. Food Res. Int. 2016, 81, 83–90. [Google Scholar] [CrossRef]
- Aprotosoaie, A.C.; Luca, S.V.; Miron, A. Flavor Chemistry of Cocoa and Cocoa Products-An Overview. Compr. Rev. Food Sci. Food Saf. 2016, 15, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Costa Castro Alves, V.; Flavia Azevedo da Penha, M.; de Oliveira Frederico Pinto, N.; dos Santos Garruti, D. Volatile Compounds Profile of Musa FHIA 02: An Option to Counter Losses by Black Sigatoka. Nat. Prod. J. 2012, 2, 55–60. [Google Scholar] [CrossRef]
- Li, N. Fungal Volatile Compounds: Small Molecules with Big Roles in Plant-Fungal and Fungal-Fungal Interactions. Doctoral Thesis, The Pensylvania State University, State College, PA, USA, 2018. [Google Scholar]
- Raffo, A.; Carcea, M.; Castagna, C.; Magrì, A. Improvement of a Headspace Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry Method for the Analysis of Wheat Bread Volatile Compounds. J. Chromatogr. A 2015, 1406, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Afoakwa, E.O.; Quao, J.; Takrama, A.S.; Budu, A.S.; Saalia, F.K. Influence of Pulp Preconditioning and Fermentation on Fermentative Quality and Appearance of Ghanaian Cocoa (Theobroma Cacao) Beans. Int. Food Res. J. 2012, 19, 127–133. [Google Scholar]
- Beckett, S.T.; Fowler, M.S.; Ziegler, G.R. Beckett’s Industrial Chocolate Manufacture and Use, 5th ed.; Revised ed.; Wiley-Blackwell: Chichester, UK, 2017; ISBN 978-1-118-92357-3. [Google Scholar]
- Utrilla-Vázquez, M.; Rodríguez-Campos, J.; Avendaño-Arazate, C.H.; Gschaedler, A.; Lugo-Cervantes, E. Analysis of Volatile Compounds of Five Varieties of Maya Cocoa during Fermentation and Drying Processes by Venn Diagram and PCA. Food Res. Int. 2020, 129, 108834. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; He, C.; Song, H.; Liu, Y.; Zhang, Y.; Wang, Y.; Guo, J.; Yang, H.; Su, X. Characterization and Comparison of Key Aroma-Active Compounds of Cocoa Liquors from Five Different Areas. Int. J. Food Prop. 2017, 20, 2396–2408. [Google Scholar] [CrossRef] [Green Version]
- Maldonado-Mateus, L.Y.; Perez-Burillo, S.; Lerma-Aguilera, A.; Hinojosa-Nogueira, D.; Ruíz-Pérez, S.; Gosalbes, M.J.; Francino, M.P.; Rufián-Henares, J.Á.; Pastoriza de la Cueva, S. Effect of Roasting Conditions on Cocoa Bioactivity and Gut Microbiota Modulation. Food Funct. 2021, 12, 9680–9692. [Google Scholar] [CrossRef]
- Ramli, N.; Hassan, O.; Said, M.; Samsudin, W.; Idris, N.A. Influence of Roasting Conditions on Volatile Flavor of Roasted Malaysian Cocoa Beans. J. Food Process. Preserv. 2006, 30, 280–298. [Google Scholar] [CrossRef]
- Adler, P.; Frey, L.J.; Berger, A.; Bolten, C.J.; Hansen, C.E.; Wittmann, C. The Key to Acetate: Metabolic Fluxes of Acetic Acid Bacteria under Cocoa Pulp Fermentation-Simulating Conditions. Appl. Environ. Microbiol. 2014, 80, 4702–4716. [Google Scholar] [CrossRef] [Green Version]
- Jinap, S.W.; Wan-Rosli, W.I.; Russly, A.R.; Nordin, L.M. Effect of Roasting Time and Temperature on Volatile Component Profile during Nib Roasting of Cocoa Beans (Theobroma cacao). J. Sci. Food Agric. 1998, 77, 441–448. [Google Scholar] [CrossRef]
- Páramo, D.; García-Alamilla, P.; Salgado-Cervantes, M.A.; Robles-Olvera, V.J.; Rodríguez-Jimenes, G.C.; García-Alvarado, M.A. Mass Transfer of Water and Volatile Fatty Acids in Cocoa Beans during Drying. J. Food Eng. 2010, 99, 276–283. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Utrilla-Vázquez, M.; Vallejo-Cardona, A.; Roblero-Pérez, D.B.; Lugo-Cervantes, E. Thermal Properties and Volatile Compounds Profile of Commercial Dark-Chocolates from Different Genotypes of Cocoa Beans (Theobroma cacao L.) from Latin America. Food Res. Int. 2020, 136, 109594. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, J.; Jolić, S.M.; Josić, D. Cocoa Processing and Impact on Composition. In Processing and Impact on Active Components in Food; Preedy, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 605–612. ISBN 978-0-12-404699-3. [Google Scholar]
Term | Effect (%) | p-Value | % Cumulative Variance by Component |
---|---|---|---|
Drying | 13.21 | <0.001 | Comp 1: 66.96 |
Comp 2: 33.04 | |||
Variety | 55.02 | <0.001 | Comp 1: 59.63 |
Comp 2: 27.41 | |||
Comp 3: 12.96 | |||
(Drying) × (Variety) | 29.39 | <0.001 | Comp 1: 27.18 |
Comp 2–6: 72.82 | |||
Residuals | 2.38 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erazo Solorzano, C.Y.; Disca, V.; Muñoz-Redondo, J.M.; Tuárez García, D.A.; Sánchez-Parra, M.; Carrilo Zenteno, M.D.; Moreno-Rojas, J.M.; Rodríguez-Solana, R. Effect of Drying Technique on the Volatile Content of Ecuadorian Bulk and Fine-Flavor Cocoa. Foods 2023, 12, 1065. https://doi.org/10.3390/foods12051065
Erazo Solorzano CY, Disca V, Muñoz-Redondo JM, Tuárez García DA, Sánchez-Parra M, Carrilo Zenteno MD, Moreno-Rojas JM, Rodríguez-Solana R. Effect of Drying Technique on the Volatile Content of Ecuadorian Bulk and Fine-Flavor Cocoa. Foods. 2023; 12(5):1065. https://doi.org/10.3390/foods12051065
Chicago/Turabian StyleErazo Solorzano, Cyntia Yadira, Vincenzo Disca, José Manuel Muñoz-Redondo, Diego Armando Tuárez García, Mónica Sánchez-Parra, Manuel Danilo Carrilo Zenteno, José Manuel Moreno-Rojas, and Raquel Rodríguez-Solana. 2023. "Effect of Drying Technique on the Volatile Content of Ecuadorian Bulk and Fine-Flavor Cocoa" Foods 12, no. 5: 1065. https://doi.org/10.3390/foods12051065
APA StyleErazo Solorzano, C. Y., Disca, V., Muñoz-Redondo, J. M., Tuárez García, D. A., Sánchez-Parra, M., Carrilo Zenteno, M. D., Moreno-Rojas, J. M., & Rodríguez-Solana, R. (2023). Effect of Drying Technique on the Volatile Content of Ecuadorian Bulk and Fine-Flavor Cocoa. Foods, 12(5), 1065. https://doi.org/10.3390/foods12051065