The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review
Abstract
:1. Introduction
2. Food Bioactive Compounds (FBC)
3. Exercise and Their Immunomodulation Effect
Immune System and Muscle Recovery after Exercise
4. Cocoa
5. Anthocyanins
6. Green Tea (Cammelia sinensis)
7. Curcumin
8. Quercetin
9. Resveratrol
10. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sellami, M.; Slimeni, O.; Pokrywka, A.; Kuvačić, G.; Hayes, L.D.; Milic, M.; Padulo, J. Herbal medicine for sports: A review. J. Int. Soc. Sport. Nutr. 2018, 15, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M. Dietary supplements and sports performance: Herbals. J. Int. Soc. Sport. Nutr. 2006, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Iglesias, P.; Gorgori-González, A.; Massot-Cladera, M.; Castell, M.; Pérez-Cano, F.J. Does flavonoid consumption improve exercise performance? Is it related to changes in the immune system and inflammatory biomarkers? A systematic review of clinical studies since 2005. Nutrients 2021, 13, 1132. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.C.; Gonçalves, J.L.; Granato, D.; Pereira, J.A.; Barros, L.; Ferreira, I.C. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 2020, 10, 37. [Google Scholar] [CrossRef]
- Vieira, J.M.; Gutierres, J.M.; Carvalho, F.B.; Stefanello, N.; Oliveira, L.; Cardoso, A.M.; Morsch, V.M.; Pillat, M.M.; Ulrich, H.; Duarte, M.M.F. Caffeine and high intensity exercise: Impact on purinergic and cholinergic signalling in lymphocytes and on cytokine levels. Biomed. Pharmacother. 2018, 108, 1731–1738. [Google Scholar] [CrossRef]
- Bermon, S.; Castell, L.M.; Calder, P.C.; Bishop, N.C.; Blomstrand, E.; Mooren, F.C.; Krüger, K.; Kavazis, A.N.; Quindry, J.C.; Senchina, D.S.; et al. Consensus Statement Immunonutrition and Exercise. Exerc. Immunol. Rev. 2017, 23, 8–50. [Google Scholar]
- Forcina, L.; Cosentino, M.; Musarò, A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020, 9, 1297. [Google Scholar] [CrossRef]
- Kurowski, M.; Seys, S.; Bonini, M.; Del Giacco, S.; Delgado, L.; Diamant, Z.; Kowalski, M.L.; Moreira, A.; Rukhadze, M.; Couto, M. Physical exercise, immune response, and susceptibility to infections—Current knowledge and growing research areas. Allergy 2022, 77, 2653–2664. [Google Scholar] [CrossRef]
- Kashi, D.S.; Shabir, A.; Da Boit, M.; Bailey, S.J.; Higgins, M.F. The efficacy of administering fruit-derived polyphenols to improve health biomarkers, exercise performance and related physiological responses. Nutrients 2019, 11, 2389. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.; Fukagawa, N.K.; Bilia, A.R.; Johnson, E.J.; Kwon, O.; Prakash, V.; Miyazawa, T.; Clifford, M.N.; Kay, C.D.; Crozier, A.; et al. Terms and nomenclature used for plant-derived components in nutrition and related research: Efforts toward harmonization. Nutr. Rev. 2020, 78, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Avantario, P.; Azzollini, D.; Buongiorno, S.; Viapiano, F.; Campanelli, M.; Ciocia, A.M.; De Leonardis, N. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism—A Systematic Review. Nutrients 2022, 14, 3519. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr. 2000, 130 (Suppl. 8S), 2073s–2085s. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-J.; Lin, J.-Y. Anti-inflammatory effects of phenolic extracts from strawberry and mulberry fruits on cytokine secretion profiles using mouse primary splenocytes and peritoneal macrophages. Int. Immunopharmacol. 2013, 16, 165–170. [Google Scholar] [CrossRef]
- Tulipani, S.; Armeni, T.; Giampieri, F.; Alvarez-Suarez, J.M.; Gonzalez-Paramás, A.M.; Santos-Buelga, C.; Busco, F.; Principato, G.; Bompadre, S.; Quiles, J.L. Strawberry intake increases blood fluid, erythrocyte and mononuclear cell defenses against oxidative challenge. Food Chem. 2014, 156, 87–93. [Google Scholar] [CrossRef]
- Gasparrini, M.; Forbes-Hernandez, T.Y.; Giampieri, F.; Afrin, S.; Alvarez-Suarez, J.M.; Mazzoni, L.; Mezzetti, B.; Quiles, J.L.; Battino, M. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food Chem. Toxicol. 2017, 102, 1–10. [Google Scholar] [CrossRef]
- Myhrstad, M.C.; Carlsen, H.; Nordström, O.; Blomhoff, R.; Moskaug, J. Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic. Biol. Med. 2002, 32, 386–393. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019, 10, 1567–1574. [Google Scholar]
- Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem. 2015, 179, 305–310. [Google Scholar] [CrossRef]
- Corr, L.D.; Field, A.; Pufal, D.; Clifford, T.; Harper, L.D.; Naughton, R.J. The effects of cocoa flavanols on indices of muscle recovery and exercise performance: A narrative review. BMC Sport. Sci. Med. Rehabil. 2021, 13, 90. [Google Scholar] [CrossRef]
- Malaguarnera, L. Influence of resveratrol on the immune response. Nutrients 2019, 11, 946. [Google Scholar] [CrossRef] [Green Version]
- Švajger, U.; Jeras, M. Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. Int. Rev. Immunol. 2012, 31, 202–222. [Google Scholar] [CrossRef] [PubMed]
- Sirerol, J.A.; Rodríguez, M.L.; Mena, S.; Asensi, M.A.; Estrela, J.M.; Ortega, A.L. Role of natural stilbenes in the prevention of cancer. Oxidative Med. Cell. Longev. 2016, 2016, 3128951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senchina, D.S.; Hallam, J.E.; Kohut, M.L.; Nguyen, N.A.; Perera, M.A. Alkaloids and athlete immune function: Caffeine, theophylline, gingerol, ephedrine, and their congeners. Exerc. Immunol. Rev. 2014, 20, 68–93. [Google Scholar] [PubMed]
- McCartney, D.; Benson, M.J.; Desbrow, B.; Irwin, C.; Suraev, A.; McGregor, I.S. Cannabidiol and Sports Performance: A Narrative Review of Relevant Evidence and Recommendations for Future Research. Sport. Med.-Open 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Molina, S.; García-Sillero, M.; Kreider, R.B.; Salinas, E.; Petro, J.L.; Benítez-Porres, J.; Bonilla, D.A. A randomized open-labeled study to examine the effects of creatine monohydrate and combined training on jump and scoring performance in young basketball players. J. Int. Soc. Sport. Nutr. 2022, 19, 529–542. [Google Scholar] [CrossRef]
- Giuriato, G.; Venturelli, M.; Matias, A.; Soares, E.M.K.V.K.; Gaetgens, J.; Frederick, K.A.; Ives, S.J. Capsaicin and Its Effect on Exercise Performance, Fatigue and Inflammation after Exercise. Nutrients 2022, 14, 232. [Google Scholar] [CrossRef]
- Grgic, J.; Memon, A.R.; Chen, S.; Ramirez-Campillo, R.; Barreto, G.; Haugen, M.E.; Schoenfeld, B.J. Effects of Capsaicin and Capsiate on Endurance Performance: A Meta-Analysis. Nutrients 2022, 14, 4531. [Google Scholar] [CrossRef]
- Carvalho, M.B.; Brandao, C.F.C.; Fassini, P.G.; Bianco, T.M.; Batitucci, G.; Galan, B.S.M.; De Carvalho, F.G.; Vieira, T.S.; Ferriolli, E.; Marchini, J.S.; et al. Taurine Supplementation Increases Post-Exercise Lipid Oxidation at Moderate Intensity in Fasted Healthy Males. Nutrients 2020, 12, 1540. [Google Scholar] [CrossRef] [PubMed]
- Burr, J.F.; Cheung, C.P.; Kasper, A.M.; Gillham, S.H.; Close, G.L. Cannabis and Athletic Performance. Sport. Med. 2021, 51, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Bogdanis, G.C.; Nevill, M.E.; Aphamis, G.; Stavrinou, P.S.; Jenkins, D.G.; Giannaki, C.D.; Lakomy, H.K.A.; Williams, C. Effects of Oral Creatine Supplementation on Power Output during Repeated Treadmill Sprinting. Nutrients 2022, 14, 1140. [Google Scholar] [CrossRef]
- Schulze, H.; Hornbacher, J.; Wasserfurth, P.; Reichel, T.; Günther, T.; Krings, U.; Krüger, K.; Hahn, A.; Papenbrock, J.; Schuchardt, J.P. Immunomodulating Effect of the Consumption of Watercress (Nasturtium officinale) on Exercise-Induced Inflammation in Humans. Foods 2021, 10, 1774. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Gaspar, D.; Flores-Félix, J.D.; Falcão, A.; Alves, G.; Silva, L.R. Effects of functional phenolics dietary supplementation on athletes’ performance and recovery: A review. Int. J. Mol. Sci. 2022, 23, 4652. [Google Scholar] [CrossRef] [PubMed]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position statement. Part one: Immune function and exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar] [PubMed]
- Grande, A.J.; Keogh, J.; Silva, V.; Scott, A.M. Exercise versus no exercise for the occurrence, severity, and duration of acute respiratory infections. Cochrane Database Syst. Rev. 2020, 4, CD010596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laddu, D.R.; Lavie, C.J.; Phillips, S.A.; Arena, R. Physical activity for immunity protection: Inoculating populations with healthy living medicine in preparation for the next pandemic. Prog. Cardiovasc. Dis. 2021, 64, 102. [Google Scholar] [CrossRef]
- Nieman, D.C.; Henson, D.A.; Austin, M.D.; Sha, W. Upper respiratory tract infection is reduced in physically fit and active adults. Br. J. Sport. Med 2011, 45, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Hull, J.H.; Loosemore, M.; Schwellnus, M. Respiratory health in athletes: Facing the COVID-19 challenge. Lancet Respir. Med. 2020, 8, 557–558. [Google Scholar] [CrossRef]
- Malm, C. Susceptibility to infections in elite athletes: The S-curve. Scand. J. Med. Sci. Sport. 2006, 16, 4–6. [Google Scholar] [CrossRef]
- van de Weert-van Leeuwen, P.B.; Arets, H.G.M.; van der Ent, C.K.; Beekman, J.M. Infection, inflammation and exercise in cystic fibrosis. Respir. Res. 2013, 14, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortega, E. The “bioregulatory effect of exercise” on the innate/inflammatory responses. J. Physiol. Biochem. 2016, 72, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.C.; Killer, S.C.; Svendsen, I.S.; Jones, A.W. Immune nutrition and exercise: Narrative review and practical recommendations. Eur. J. Sport Sci. 2019, 19, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Mitmesser, S.H. Potential impact of nutrition on immune system recovery from heavy exertion: A metabolomics perspective. Nutrients 2017, 9, 513. [Google Scholar] [CrossRef] [Green Version]
- Von Ah Morano, A.E.; Dorneles, G.P.; Peres, A.; Lira, F.S. The role of glucose homeostasis on immune function in response to exercise: The impact of low or higher energetic conditions. J. Cell. Physiol. 2020, 235, 3169–3188. [Google Scholar] [CrossRef]
- Nieman, D.C.; Lila, M.A.; Gillitt, N.D. Immunometabolism: A multi-omics approach to interpreting the influence of exercise and diet on the immune system. Annu. Rev. Food Sci. Technol. 2019, 10, 341–363. [Google Scholar] [CrossRef]
- Yang, W.; Hu, P. Skeletal muscle regeneration is modulated by inflammation. J. Orthop. Transl. 2018, 13, 25–32. [Google Scholar] [CrossRef]
- Alvarez, A.M.; DeOcesano-Pereira, C.; Teixeira, C.; Moreira, V. IL-1β and TNF-α Modulation of Proliferated and Committed Myoblasts: IL-6 and COX-2-Derived Prostaglandins as Key Actors in the Mechanisms Involved. Cells 2020, 9, 2005. [Google Scholar] [CrossRef]
- Damas, F.; Phillips, S.M.; Libardi, C.A.; Vechin, F.C.; Lixandrão, M.E.; Jannig, P.R.; Costa, L.A.R.; Bacurau, A.V.; Snijders, T.; Parise, G.; et al. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J. Physiol. 2016, 594, 5209–5222. [Google Scholar] [CrossRef] [Green Version]
- Jäkel, B.; Kedor, C.; Grabowski, P.; Wittke, K.; Thiel, S.; Scherbakov, N.; Doehner, W.; Scheibenbogen, C.; Freitag, H. Hand grip strength and fatigability: Correlation with clinical parameters and diagnostic suitability in ME/CFS. J. Transl. Med. 2021, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.; Pearson, S.; Ross, A.; McGuigan, M. Eccentric Exercise: Physiological Characteristics and Acute Responses. Sport. Med. 2017, 47, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Harty, P.S.; Cottet, M.L.; Malloy, J.K.; Kerksick, C.M. Nutritional and Supplementation Strategies to Prevent and Attenuate Exercise-Induced Muscle Damage: A Brief Review. Sport. Med.-Open 2019, 5, 1. [Google Scholar] [CrossRef] [PubMed]
- Fatouros, I.G.; Jamurtas, A.Z. Insights into the molecular etiology of exercise-induced inflammation: Opportunities for optimizing performance. J. Inflamm. Res. 2016, 9, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Robson-Ansley, P.J.; de Milander, L.; Collins, M.; Noakes, T.D. Acute interleukin-6 administration impairs athletic performance in healthy, trained male runners. Can. J. Appl. Physiol. 2004, 29, 411–418. [Google Scholar] [CrossRef]
- Grgic, J.; Mikulic, P. Effects of Paracetamol (Acetaminophen) Ingestion on Endurance Performance: A Systematic Review and Meta-Analysis. Sports 2021, 9, 126. [Google Scholar] [CrossRef]
- Pedersen, J.R.; Andreucci, A.; Thorlund, J.B.; Koes, B.; Møller, M.; Storm, L.K.; Bricca, A. Prevalence, frequency, adverse events, and reasons for analgesic use in youth athletes: A systematic review and meta-analysis of 44,381 athletes. J. Sci. Med. Sport 2022, 25, 810–819. [Google Scholar] [CrossRef]
- Lundberg, T.R.; Howatson, G. Analgesic and anti-inflammatory drugs in sports: Implications for exercise performance and training adaptations. Scand. J. Med. Sci. Sport. 2018, 28, 2252–2262. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Toft, A.D. Effects of exercise on lymphocytes and cytokines. Br. J. Sport. Med. 2000, 34, 246. [Google Scholar] [CrossRef] [Green Version]
- Padilha, C.S.; Von Ah Morano, A.E.; Krüger, K.; Rosa-Neto, J.C.; Lira, F.S. The growing field of immunometabolism and exercise: Key findings in the last 5 years. J. Cell. Physiol. 2022, 237, 4001–4020. [Google Scholar] [CrossRef]
- Lima, L.J.; Almeida, M.H.; Nout, M.R.; Zwietering, M.H. Theobroma cacao L.,“the food of the gods”: Quality determinants of commercial cocoa beans, with particular reference to the impact of fermentation. Crit. Rev. Food Sci. Nutr. 2011, 51, 731–761. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Puig, E.; Castell, M. Cocoa: Antioxidant and immunomodulator. Br. J. Nutr. 2009, 101, 931–940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, R.K.; Brouner, J.; Spendiff, O. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. J. Int. Soc. Sport. Nutr. 2015, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- de Carvalho, F.G.; Fisher, M.G.; Thornley, T.T.; Roemer, K.; Pritchett, R.; de Freitas, E.C.; Pritchett, K. Cocoa flavanol effects on markers of oxidative stress and recovery after muscle damage protocol in elite rugby players. Nutrition 2019, 62, 47–51. [Google Scholar] [CrossRef]
- Davison, G.; Callister, R.; Williamson, G.; Cooper, K.A.; Gleeson, M. The effect of acute pre-exercise dark chocolate consumption on plasma antioxidant status, oxidative stress and immunoendocrine responses to prolonged exercise. Eur. J. Nutr. 2012, 51, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Peschek, K.; Pritchett, R.; Bergman, E.; Pritchett, K. The effects of acute post exercise consumption of two cocoa-based beverages with varying flavanol content on indices of muscle recovery following downhill treadmill running. Nutrients 2013, 6, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Decroix, L.; Tonoli, C.; Soares, D.D.; Descat, A.; Drittij-Reijnders, M.-J.; Weseler, A.R.; Bast, A.; Stahl, W.; Heyman, E.; Meeusen, R. Acute cocoa Flavanols intake has minimal effects on exercise-induced oxidative stress and nitric oxide production in healthy cyclists: A randomized controlled trial. J. Int. Soc. Sport. Nutr. 2017, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Cavarretta, E.; Peruzzi, M.; Del Vescovo, R.; Di Pilla, F.; Gobbi, G.; Serdoz, A.; Ferrara, R.; Schirone, L.; Sciarretta, S.; Nocella, C. Dark chocolate intake positively modulates redox status and markers of muscular damage in elite football athletes: A randomized controlled study. Oxidative Med. Cell. Longev. 2018, 2018, 4061901. [Google Scholar] [CrossRef]
- García-Merino, J.A.; de Lucas, B.; Herrera-Rocha, K.; Moreno-Pérez, D.; Montalvo-Lominchar, M.G.; Fernández-Romero, A.; Santiago, C.; Pérez-Ruiz, M.; Larrosa, M. Flavanol-rich cocoa supplementation inhibits mitochondrial biogenesis triggered by exercise. Antioxidants 2022, 11, 1522. [Google Scholar] [CrossRef]
- Henriquez-Olguin, C.; Boronat, S.; Cabello-Verrugio, C.; Jaimovich, E.; Hidalgo, E.; Jensen, T.E. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid. Redox Signal. 2019, 31, 1371–1410. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.T.; Wollman, P.M.; Jackman, S.R.; Bowtell, J.L. Flavanol-rich cacao mucilage juice enhances recovery of power but not strength from intensive exercise in healthy, young men. Sports 2018, 6, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, L.C.; Barreto, R.V.; Bassan, N.M.; Greco, C.C.; Denadai, B.S. Consumption of an anthocyanin-rich antioxidant juice accelerates recovery of running economy and indirect markers of exercise-induced muscle damage following downhill running. Nutrients 2019, 11, 2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drummer, D.J.; Many, G.M.; Pritchett, K.; Young, M.; Connor, K.R.; Tesfaye, J.; Dondji, B.; Pritchett, R.C. Montmorency Cherry Juice Consumption does not Improve Muscle Soreness or Inhibit Pro-inflammatory Monocyte Responses Following an Acute Bout of Whole-body Resistance Training. Int. J. Exerc. Sci. 2022, 15, 686–701. [Google Scholar] [PubMed]
- Jajtner, A.R.; Hoffman, J.R.; Townsend, J.R.; Beyer, K.S.; Varanoske, A.N.; Church, D.D.; Oliveira, L.P.; Herrlinger, K.A.; Radom-Aizik, S.; Fukuda, D.H.; et al. The effect of polyphenols on cytokine and granulocyte response to resistance exercise. Physiol. Rep. 2016, 4, e13058. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.; Pourmasoumi, M.; Kafeshani, M.; Karimian, J.; Maracy, M.R.; Entezari, M.H. The Effect of Green Tea and Sour Tea (Hibiscus sabdariffa L.) Supplementation on Oxidative Stress and Muscle Damage in Athletes. J. Diet. Suppl. 2017, 14, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-C.; Lin, J.-C.; Bernard, J.R.; Liao, Y.-H. Green tea extract supplementation does not hamper endurance-training adaptation but improves antioxidant capacity in sedentary men. Appl. Physiol. Nutr. Metab. 2015, 40, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Jówko, E.; Długołęcka, B.; Makaruk, B.; Cieśliński, I. The effect of green tea extract supplementation on exercise-induced oxidative stress parameters in male sprinters. Eur. J. Nutr. 2015, 54, 783–791. [Google Scholar] [CrossRef] [Green Version]
- da Silva, W.; Machado, Á.S.; Souza, M.A.; Mello-Carpes, P.B.; Carpes, F.P. Effect of green tea extract supplementation on exercise-induced delayed onset muscle soreness and muscular damage. Physiol. Behav. 2018, 194, 77–82. [Google Scholar] [CrossRef]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Alipour, M.; Motevalli, M.S.; Chebbi, A.; Laher, I.; Zouhal, H. Does green tea extract enhance the anti-inflammatory effects of exercise on fat loss? Br. J. Clin. Pharmacol. 2020, 86, 753–762. [Google Scholar] [CrossRef] [Green Version]
- McFarlin, B.K.; Venable, A.S.; Henning, A.L.; Sampson, J.N.; Pennel, K.; Vingren, J.L.; Hill, D.W. Reduced inflammatory and muscle damage biomarkers following oral supplementation with bioavailable curcumin. BBA Clin. 2016, 5, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Tanabe, Y.; Maeda, S.; Akazawa, N.; Zempo-Miyaki, A.; Choi, Y.; Ra, S.-G.; Imaizumi, A.; Otsuka, Y.; Nosaka, K. Attenuation of indirect markers of eccentric exercise-induced muscle damage by curcumin. Eur. J. Appl. Physiol. 2015, 115, 1949–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanabe, Y.; Chino, K.; Ohnishi, T.; Ozawa, H.; Sagayama, H.; Maeda, S.; Takahashi, H. Effects of oral curcumin ingested before or after eccentric exercise on markers of muscle damage and inflammation. Scand J. Med. Sci. Sport. 2019, 29, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Ms, S.A.B.; Waldman Ph, D.H.; Krings Ph, D.B.; Lamberth Ph, D.J.; Smith Ph, D.J.; McAllister Ph, D.M. Effect of Curcumin Supplementation on Exercise-Induced Oxidative Stress, Inflammation, Muscle Damage, and Muscle Soreness. J. Diet Suppl. 2020, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Mallard, A.R.; Briskey, D.; Richards, B.A.; Rao, A. Curcumin Improves Delayed Onset Muscle Soreness and Postexercise Lactate Accumulation. J. Diet Suppl. 2021, 18, 531–542. [Google Scholar] [CrossRef]
- Takahashi, M.; Suzuki, K.; Kim, H.K.; Otsuka, Y.; Imaizumi, A.; Miyashita, M.; Sakamoto, S. Effects of curcumin supplementation on exercise-induced oxidative stress in humans. Int. J. Sport. Med. 2014, 35, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicol, L.M.; Rowlands, D.S.; Fazakerly, R.; Kellett, J. Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). Eur. J. Appl. Physiol. 2015, 115, 1769–1777. [Google Scholar] [CrossRef]
- Duranti, G.; Ceci, R.; Patrizio, F.; Sgrò, P.; Di Luigi, L.; Sabatini, S.; Felici, F.; Bazzucchi, I. Chronic consumption of quercetin reduces erythrocytes oxidative damage: Evaluation at resting and after eccentric exercise in humans. Nutr. Res. 2018, 50, 73–81. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Patrizio, F.; Ceci, R.; Duranti, G.; Sgrò, P.; Sabatini, S.; Di Luigi, L.; Sacchetti, M.; Felici, F. The Effects of Quercetin Supplementation on Eccentric Exercise-Induced Muscle Damage. Nutrients 2019, 11, 205. [Google Scholar] [CrossRef] [Green Version]
- Bazzucchi, I.; Patrizio, F.; Ceci, R.; Duranti, G.; Sabatini, S.; Sgrò, P.; Di Luigi, L.; Sacchetti, M. Quercetin Supplementation Improves Neuromuscular Function Recovery from Muscle Damage. Nutrients 2020, 12, 2850. [Google Scholar] [CrossRef]
- Sgrò, P.; Ceci, R.; Lista, M.; Patrizio, F.; Sabatini, S.; Felici, F.; Sacchetti, M.; Bazzucchi, I.; Duranti, G.; Di Luigi, L. Quercetin Modulates IGF-I and IGF-II Levels After Eccentric Exercise-Induced Muscle-Damage: A Placebo-Controlled Study. Front. Endocrinol. 2021, 12, 745959. [Google Scholar] [CrossRef]
- Scribbans, T.D.; Ma, J.K.; Edgett, B.A.; Vorobej, K.A.; Mitchell, A.S.; Zelt, J.G.; Simpson, C.A.; Quadrilatero, J.; Gurd, B.J. Resveratrol supplementation does not augment performance adaptations or fibre-type-specific responses to high-intensity interval training in humans. Appl. Physiol. Nutr. Metab. 2014, 39, 1305–1313. [Google Scholar] [CrossRef] [PubMed]
- Goulart, M.; Pisamiglio, D.S.; MÖller, G.B.; Dani, C.; Alves, F.D.; Bock, P.M.; Schneider, C.D. Effects of grape juice consumption on muscle fatigue and oxidative stress in judo athletes: A randomized clinical trial. Acad. Bras. Cienc. 2020, 92, e20191551. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.C.; Dorneles, G.P.; Blembeel, A.S.; Marinho, J.P.; Proença, I.C.T.; da Cunha Goulart, M.J.V.; Moller, G.B.; Marques, E.P.; Pochmann, D.; Salvador, M.; et al. Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complement Med. 2020, 54, 102570. [Google Scholar] [CrossRef]
- Massaro, M.; Scoditti, E.; Carluccio, M.A.; Kaltsatou, A.; Cicchella, A. Effect of Cocoa Products and Its Polyphenolic Constituents on Exercise Performance and Exercise-Induced Muscle Damage and Inflammation: A Review of Clinical Trials. Nutrients 2019, 11, 1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyne, D.B.; Smith, J.A.; Baker, M.S.; Telford, R.D.; Weidemann, M.J. Neutrophil oxidative activity is differentially affected by exercise intensity and type. J. Sci. Med. Sport 2000, 3, 44–54. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.V.; Barreira, J.C.; Oliveira, M.B.P. Natural phytochemicals and probiotics as bioactive ingredients for functional foods: Extraction, biochemistry and protected-delivery technologies. Trends Food Sci. Technol. 2016, 50, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Bloedon, T.K.; Braithwaite, R.E.; Carson, I.A.; Klimis-Zacas, D.; Lehnhard, R.A. Impact of anthocyanin-rich whole fruit consumption on exercise-induced oxidative stress and inflammation: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 630–645. [Google Scholar] [CrossRef]
- Mozos, I.; Flangea, C.; Vlad, D.C.; Gug, C.; Mozos, C.; Stoian, D.; Luca, C.T.; Horbańczuk, J.O.; Horbańczuk, O.K.; Atanasov, A.G. Effects of anthocyanins on vascular health. Biomolecules 2021, 11, 811. [Google Scholar] [CrossRef]
- Jennings, A.; Welch, A.A.; Fairweather-Tait, S.J.; Kay, C.; Minihane, A.-M.; Chowienczyk, P.; Jiang, B.; Cecelja, M.; Spector, T.; Macgregor, A. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am. J. Clin. Nutr. 2012, 96, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Fairlie-Jones, L.; Davison, K.; Fromentin, E.; Hill, A.M. The Effect of Anthocyanin-Rich Foods or Extracts on Vascular Function in Adults: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2017, 9, 908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braakhuis, A.J.; Hopkins, W.G.; Lowe, T.E. Effects of dietary antioxidants on training and performance in female runners. Eur. J. Sport Sci. 2014, 14, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Yarahmadi, M.; Askari, G.; Kargarfard, M.; Ghiasvand, R.; Hoseini, M.; Mohamadi, H.; Asadi, A. The effect of anthocyanin supplementation on body composition, exercise performance and muscle damage indices in athletes. Int. J. Prev. Med. 2014, 5, 1594. [Google Scholar] [PubMed]
- Morgan, P.T.; Barton, M.J.; Bowtell, J.L. Montmorency cherry supplementation improves 15-km cycling time-trial performance. Eur. J. Appl. Physiol. 2019, 119, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014, 46, 508–520. [Google Scholar] [CrossRef]
- Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health Benefits of Anthocyanins and Their Encapsulation for Potential Use in Food Systems: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 2223–2230. [Google Scholar] [CrossRef]
- Tavares, C.T.; Lobo, A.C.S.; Almeida, C.C.B.; Lima-Silva, A.E.; Ferreira, S.M.R. Effectiveness of green tea extract (Camellia sinensis) capsule supplementation for post-exercise muscle recovery in healthy adults: A systematic review protocol. JBI Evid. Synth. 2022, 20, 1150–1157. [Google Scholar] [CrossRef]
- Nobari, H.; Saedmocheshi, S.; Chung, L.H.; Suzuki, K.; Maynar-Mariño, M.; Pérez-Gómez, J. An overview on how exercise with green tea consumption can prevent the production of reactive oxygen species and improve sports performance. Int. J. Environ. Res. Public Health 2021, 19, 218. [Google Scholar] [CrossRef]
- Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Gupta, S.C.; Tyagi, A.K.; Aggarwal, B.B. Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol. Adv. 2014, 32, 1053–1064. [Google Scholar] [CrossRef]
- Sahebkar, A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin. Nutr. 2014, 33, 406–414. [Google Scholar] [CrossRef]
- Schraufstatter, E.; Bernt, H. Antibacterial action of curcumin and related compounds. Nature 1949, 164, 456. [Google Scholar] [CrossRef] [PubMed]
- Srimal, R.C.; Dhawan, B.N. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J. Pharm. Pharmacol. 1973, 25, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Sharma, O.P. Antioxidant activity of curcumin and related compounds. Biochem. Pharm. 1976, 25, 1811–1812. [Google Scholar] [CrossRef]
- Hamaguchi, T.; Ono, K.; Yamada, M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci. 2010, 16, 285–297. [Google Scholar] [CrossRef]
- Appendino, G.; Belcaro, G.; Cornelli, U.; Luzzi, R.; Togni, S.; Dugall, M.; Cesarone, M.R.; Feragalli, B.; Ippolito, E.; Errichi, B.M.; et al. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study. Panminerva Med. 2011, 53 (Suppl. 1), 43–49. [Google Scholar] [PubMed]
- Chandran, B.; Goel, A. A randomized, pilot study to assess the efficacy and safety of curcumin in patients with active rheumatoid arthritis. Phytother. Res. 2012, 26, 1719–1725. [Google Scholar] [CrossRef] [PubMed]
- Mythri, R.B.; Bharath, M.M. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Curr. Pharm. Des. 2012, 18, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shehzad, A.; Lee, Y.S. Molecular mechanisms of curcumin action: Signal transduction. Biofactors 2013, 39, 27–36. [Google Scholar] [CrossRef] [PubMed]
- McAllister, M.J.; Basham, S.A.; Waldman, H.S.; Smith, J.W.; Butawan, M.B.; Bloomer, R.J. Effects of Curcumin on the Oxidative Stress Response to a Dual Stress Challenge in Trained Men. J. Diet Suppl. 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Scazzocchio, B.; Minghetti, L.; D’Archivio, M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients 2020, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br. J. Sport. Med. 2018, 52, 439–455. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Chen, X.; Li, J.; Li, Y.; Tang, Y.; Liu, L.; Chen, S.; Yu, H.; Liu, L.; Yao, P. Myocardial mitochondrial oxidative stress and dysfunction in intense exercise: Regulatory effects of quercetin. Eur. J. Appl. Physiol. 2014, 114, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Henson, D.A.; Davis, J.M.; Angela Murphy, E.; Jenkins, D.P.; Gross, S.J.; Carmichael, M.D.; Quindry, J.C.; Dumke, C.L.; Utter, A.C.; et al. Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA. J. Appl. Physiol. 2007, 103, 1728–1735. [Google Scholar] [CrossRef] [Green Version]
- O’Fallon, K.S.; Kaushik, D.; Michniak-Kohn, B.; Dunne, C.P.; Zambraski, E.J.; Clarkson, P.M. Effects of quercetin supplementation on markers of muscle damage and inflammation after eccentric exercise. Int. J. Sport Nutr. Exerc. Metab. 2012, 22, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Nieman, D.C.; Henson, D.A.; Maxwell, K.R.; Williams, A.S.; McAnulty, S.R.; Jin, F.; Shanely, R.A.; Lines, T.C. Effects of quercetin and EGCG on mitochondrial biogenesis and immunity. Med. Sci. Sport. Exerc. 2009, 41, 1467–1475. [Google Scholar] [CrossRef]
- Tanabe, Y.; Fujii, N.; Suzuki, K. Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. Nutrients 2021, 14, 70. [Google Scholar] [CrossRef]
- Galiniak, S.; Aebisher, D.; Bartusik-Aebisher, D. Health benefits of resveratrol administration. Acta Biochim. Pol. 2019, 66, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Springer, M.; Moco, S. Resveratrol and Its Human Metabolites-Effects on Metabolic Health and Obesity. Nutrients 2019, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Voduc, N.; la Porte, C.; Tessier, C.; Mallick, R.; Cameron, D.W. Effect of resveratrol on exercise capacity: A randomized placebo-controlled crossover pilot study. Appl. Physiol. Nutr. Metab. 2014, 39, 1183–1187. [Google Scholar] [CrossRef]
- McAnulty, L.S.; Miller, L.E.; Hosick, P.A.; Utter, A.C.; Quindry, J.C.; McAnulty, S.R. Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Appl. Physiol. Nutr. Metab. 2013, 38, 760–765. [Google Scholar] [CrossRef] [PubMed]
- de Lima Tavares Toscano, L.; Silva, A.S.; de França, A.C.L.; de Sousa, B.R.V.; de Almeida Filho, E.J.B.; da Silveira Costa, M.; Marques, A.T.B.; da Silva, D.F.; de Farias Sena, K.; Cerqueira, G.S.; et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: A randomized, crossover, double-blind, placebo study. Eur. J. Nutr. 2020, 59, 2997–3007. [Google Scholar] [CrossRef] [PubMed]
Reference | Subjects | Polyphenol Type and Dosage | Exercise/Training Protocol | Immunological Outcome |
---|---|---|---|---|
De Carvalho et al. [65] | 13 trained males (rugby players), age 20.6 ± 1.49 y; height 180.0 ± 0.05 cm; weight 87.02 ± 8.03 kg | 308 mg of cocoa flavonols in a recovery beverage with milk (twice a day) for 7 days (total: 616 mg cocoa flavonols/d) | 5 sets of 20 drop jumps from a height of 0.6 m with a 10 s break between each jump and 2 min of recovery between each set | No differences observed in performance or oxidative stress |
Decroix et al. [68] | 12 trained males, age 30 ± 3 y; height 177.9 ± 8.8 cm; weight 72.8 ± 7.8 kg | 300 mL of a milk beverage with 900 mg of cocoa flavonols only after exercise (1.5 h before exercise) | 30 min time trial cycling + 100 min rest + 30 min time trial cycling | ↑ Total plasma antioxidant capacity No differences observed in time of time trial test |
Garcia-Merino et al. [70] | 42 trained males, age 35.18 ± 7.13; height 177.1 ± 5.84 cm; weight 71.9 ± 7.9 kg | 5 g of cocoa powder dissolved in semi-skimmed milk (once a day) (total: 425 mg of cocoa flavonols/d) for 10 weeks | Exercise test in treadmill until exhaustion; then, a 1 km run 15 min after the exercise test | ↓ Increment of plasma TBARS levels ↓ Increment of plasma SOD activity ↓ Increment IL-6 |
Peschek et al. [67] | 8 trained males, 24.6 ± 5.6 y; height 182.1 ± 6.3 cm; weight 73.4 ± 7 kg | 240 mL of a beverage with 350 mg of cocoa flavonols immediately after and 2 h after exercise | 30 min of downhill running in a treadmill + 5 km time trial run after 48 h | No differences in 5 km time trial No differences in CK No differences in muscle soreness |
Cavaretta et al. [69] | 24 trained males (elite football players), age 17.2 ± 0.7 y | 40 g dark chocolate (85% cocoa) (once a day) (DC) for 30 days | 120 min football training 6 times per week and one 90 min match per week | ↓ CK ↓ LDH ↑ Antioxidant enzymes capacity |
Davison et al. [66] | 14 healthy males, age 22 ±1 y; weight 71.6 ± 1.6 kg | 100 g of dark chocolate (once a day) (DC) (246.8 mg CF) 2 h prior exercise bout | 2.5 h cycling (~60% VO2 max) | ↑ Insulin concentration and better glucose response ↑ Plasma total antioxidant capacity |
Morgan et al. (2018) [72] | 10 healthy males, age 22.8 ± 3 y; height 1.84 ± 0.59 m; weight 85.3 ± 12 kg | 330 mL (once a day) of cacao juice (74 mg CF) for 10 days | 3 × 3 s single leg knee extension (isocinetic dinamometer) + 3 × CMJ + 10 sets of 10 repetitions at 80% concentric 1 RM on day 8 of supplementation | ↑ Recovery of explosive power |
Lima et al. [73] | 30 healthy males, age 22.3 ± 2.6 y; height 176.6 ± 6,4 cm; weight 77.1 ± 10.5 kg | 240 mL (twice a day) of antioxidant juice (each dose with 58 mg anthocyanins. Total: 116 mg anthocyanins/d), 4 days prior, the day of, and 4 days following downhill test | Downhill running (−15%) for 30 min at 70% VO2 max | ↓ MS ↓ CK ↑ Isometric peak torque ↑ Muscle recovery |
Drummer et al. [74] | 7 trained males, age 22.9 ± 4.1 y; height 180 ± 0.1 cm; weight 81.7 ± 13.2 kg | 30 mL (twice a day) of concentrated Montmorrency cherry juice (each shot with 320 mg anthocyanins; total: 640 mg anthocyanins/d) for 10 days | 1 bout of unilateral resistance exercise | No differences in MS, IL-6 secretion, or monocyte subset responses |
Gasparrini et al. [17] | In vitro (RAW 264.7 macrophagues) | Strawberry extract (final concentration 100 µg/mL) in different concentrations | - | ↑ Antioxidant defenses modulated the antioxidant enzymes (GPx, GR, GST) ↑ Inflammatory response reduced NF-kB, pIkBα, TNF-α, IL-1β, IL-6, and iNOS |
Jajtner et al. [75] | 38 untrained males, age 21.8 ± 2.5 y; height 171.2 ± 5.5 cm; weight 71.2 ± 8.2 kg | 1 g (twice a day) of oral Camelia sinensis extract in a capsule for 28 days (each capsule with 50–80 mg de EGCG; total: 2 g polyphenol/day) | 6 sets of 10 repetitions of squats; 4 sets of 10 repetitions of the leg press and leg extension | ↑ CK ↓ IL-8 intramuscular |
Hadi et al. [76] | 54 trained males (soccer players), age 29.9 ± 1.43 y; height 180.88 ± 6.06 cm; weight 74.12 ± 8.62 kg | 450 mg (once a day) of oral Camelia sinensis extract in capsules for 6 weeks | Continued with regular soccer trainning | ↓ MDA levels No differences in muscle damage indices |
Chi-Kuo et al. [77] | 40 healthy males, age 20 ± 1 y; height 172 ± 5.5 cm; weight 66 ± 8.1 kg | 250 mg (once a day) of oral Camelia sinensis extract in capsules for 4 weeks | 20 min moderate-intensity cycling (75% VO2 max) 3 × week | ↑ Run time to exaustion ↑ Total antioxidant capacity ↓ CK |
Jówko et al. [78] | 16 trained males, age 21.6 ± 1.5 y; height 180.5 ± 6.2 cm; weight 76.9 ± 6.4 kg | 250 mg (2 capsules, twice a day) of oral Camelia sinensis extract in capsules for 4 weeks (each capsule with 245 mg polyphenols—200 mg catechins and 137 mg EGC-3-galate. Total: 980 mg polyphenols/day) | 2 repeated cycle sprints (4 × 15 s, with 1 min rest intervals) | ↑ Total antioxidant capacity at rest ↓ MDA levels after exercise |
Da Silva et al. [79] | 20 untrained males, age 25 ± 5 y; height 173 ± 6 cm; weight 76 ± 9 kg | 500 mg (once a day) of oral Camelia sinensis extract in capsules for 15 days | Calf raising until exhaustion | ↓ CK No effects in delayed onset muscle soreness sensation |
Bagheri et al. [80] | 30 overweight females, age 38.3 ± 3.16 y | 500 mg (once a day) of oral Camelia sinensis extract in capsules for 8 weeks | Endurance training 3 x/week | ↓ Body weight, body mass index, waist to hip ratio and fat percentage ↓hs-PCR ↑ Adiponectin |
McFarlin et al. [81] | 28 healthy males and females, age 20 ± 2 y; height 168 ± 9 cm; body fat 24 ± 12.1% | 400 mg (once a day) of oral Curcumin supplementation for 6 days | 6 sets of 10 repetitions of the leg press exercise with a beginning load set at 110% of their estimated 1 RM | Curcumin Group: 2 days after: ↓~18% IL-8 4 days after: ↓~69% CK ↓~23% TNF-α |
Tanabe et al. [82] | 14 untrained young men, age 24 ± 1 y; height 172.1 ± 7.5 cm; weight 65.2 ± 11.3 kg | 300 mg (150 mg 1 h before and 150 mg 12 h after eccentric exercise) of oral Curcumin supplementation | 50 maximal eccentric contractions of the elbow flexors | Curcumin Group: ↓~56% CK 96 h post-exercise |
Tanabe et al. [83] | 10 healthy males, age 29 ± 3.9 y; height 172.6 ± 5.1 cm; body fat 20 ± 5.6% | 90 mg (twice a day) of oral Curcumin supplementation for 7 days | 30 maximal eccentric contractions of the elbow | Curcumin Group: ↓ VAS 3, 4, 5. and 6 days post-exercise ↓ CK 5, 6, and 7 days post-exercise |
Basham et al. [84] | 20 healthy males, age 21.7 ± 2.9 y; height 177.7 ± 7.4 cm; weight 83.7 ± 12.4 kg | 1.5 g (once a day) of oral Curcumin supplementation for 28 days | 15 min of continuous sitting with one leg at a height of 42 cm using an aerobic step bench with a cadence of 15 sit-stand repetitions/min for a total of 225 repetitions | Curcumin Group: ↓~30% CK post-exercise |
Mallard et al. [85] | 27 trained males, age 26 ± 5 y; height 184 ± 7 cm; weight 86.42 ±10.8 kg | 450 mg (once a day) of oral Curcumin extract 30 min after exercise | 4 sets of leg press at 80% 1 RM until exhaustion | ↓ MS 48 h and 72 h post-exercise ↓ Thigh circumference 24 h and 48 h and post-exercise ↓ Lactate concentration ↑ IL-10 e IL-6 |
Takahashi et al. [86] | 10 healthy males, age 26.8 ± 2 y; height 173 ± 5 cm; weight 67.7 ± 5.3 kg | 90 mg of oral Curcumin extract 2 h before exercise OR 90 mg of oral Curcumin extract 2 h before and immediately after exercise | Walk (or run) at 65% VO2 max for 60 min | ↓ d-ROMS and TRX-1 ↑ Biological antioxidant potential (BAP) ↑ Reduced glutathione (GSH) |
Nicol et al. [87] | 17 healthy males, age 33.8 ± 5.4 y; weight 83.9 ± 10 kg | 2.5 g (twice a day) of oral Curcumin extract 2.5 days prior and 2.5 after exercise | 7 sets of 10 eccentric single-leg press repetitions | ↓ MS 24 and 48 h post-exercise ↓ CK activity 24 and 48 h post-exercise |
Duranti et al. [88] | 14 men, age 25.5 ± 0.8 y; height 179 ± 10 cm; BMI 23.4 ± 0.5 kg/m2 | 2 capsules containing 500 mg (twice a day) of Quercetin supplementation for 14 days | Completing maximal lengthening contractions of the upper limb at the isokinetic dynamometer | Quercetin Group: post-exercise ↓ 30.3% GSSG ↑33.9%GSH/GSSG ↓ 31.9% TBARS |
Bazzucchi et al. [89] | 20 young men, age 26.1 ± 3.1 y; height 179 ± 4 cm; weight 75.1 ± 7.1 kg | 500 mg at breakfast and 500 mg 12 h later of oral capsules of Quercetin supplementation for 14 days | 10 bouts of 10 maximal lengthening contractions of the elbow flexors; each set was separated by a 30 s rest | Quercetin Group: ↓ 19.6% LDH 24 h post-exercise ↓ 12.5% LDH 48 h post-exercise ↓ 17.5% LDH 72 h post-exercise ↓ 52.7% CK 48 h post-exercise ↓ 78.6% CK 72 h post-exercise |
Bazzucchi et al. [90] | 16 men, age 25.9 ± 3.1 y; BMI 23.4 ± 2.0 kg/m2 | 2 capsules containing 500 mg (twice a day) of Quercetin supplementation for 14 days | 10 bouts of 10 maximal lengthening contractions of the elbow flexors; each set was separated by a 30 s rest | Quercetin Group: ↓ LDH 48, 72, and 96 h post-exercise ↓ CK 72 and 96 h post-exercise |
Sgrò et al. [91] | 12 healthy moderately active young men, age 25.6 ± 3.8 y; weight 77.4 ± 5.11 kg; BMI 24.5 ± 1.3 kg/m2 | 500 mg at breakfast and 500 mg 12 h later of oral capsules of Quercetin supplementation for 14 days | 10 bouts of 10 maximal lengthening contractions of the elbow flexors; each set was separated by a 30 s rest | Quercetin Group: ↓ CK 72 and 96 h post-exercise ↓ LDH 24, 48, 72, and 96 h, and 7 days’ post-exercise ↓ IL-6 48 and 72 h post-exercise |
Scribbans et al. [92] | 16 recreationally active men, age~22 ± 1 y; VO2 max~51 mL/kg/min | Pills of 150 mg of oral Resveratrol supplementation 15 min after exercise (training days) OR breakfast (nonexercised days) for 28 days | Eight 20 s intervals at 170% of peak aerobic work rate (WRpeak) separated by 10 s of rest. Three training sessions were completed per week over the 4 week intervention period | Resveratrol Group: ↓ PGC-1α mRNA ↓ SIRT1 mRNA ↓ SOD2 mRNA |
Goulart et al. [93] | 20 Judo athletes, age 17.8 ± 2.2 y; height 165 ± 0.1 cm; body fat 13.8 ± 8% | Drink 400 mL (once a day) of grape juice for 14 days | Kimono Grip Strength Test (maximum number of repetitions while holding the judogi) | Grape Juice Group: ↓ 10% Lipid Peroxidation ↓ 19% DNA damage ↓ 80% SOD activity |
Martins et al. [94] | 12 male volleyball players, age 16 ± 0.6 y; height 186.6 cm ± 8.41 cm; body fat 14 ± 3.3% | Drink 400 mL (once a day) of grape juice for 14 days | Handgrip strength was evaluated using a hydraulic dynamometer. The athletes performed three repetitions in each hand (right and left) with an interval of 60 s between them | Grape Juice Group: ↓ Lipid Peroxidation ↓ DNA damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volpe-Fix, A.R.; de França, E.; Silvestre, J.C.; Thomatieli-Santos, R.V. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023, 12, 916. https://doi.org/10.3390/foods12050916
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods. 2023; 12(5):916. https://doi.org/10.3390/foods12050916
Chicago/Turabian StyleVolpe-Fix, Andressa Roehrig, Elias de França, Jean Carlos Silvestre, and Ronaldo Vagner Thomatieli-Santos. 2023. "The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review" Foods 12, no. 5: 916. https://doi.org/10.3390/foods12050916
APA StyleVolpe-Fix, A. R., de França, E., Silvestre, J. C., & Thomatieli-Santos, R. V. (2023). The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods, 12(5), 916. https://doi.org/10.3390/foods12050916