Composition of Nuts and Their Potential Health Benefits—An Overview
Abstract
:1. Introduction
2. Nuts
2.1. Proteins
2.2. Vitamins
2.3. Minerals
2.4. Fiber
2.5. Lipids and Fatty Acids
2.6. Phenolic Compounds
2.7. Aroma and Flavor Compounds
3. Impact of Nuts Processing on Nutrients and Phytochemicals
4. Nut Consumer Perceptions of Health Benefits
5. Conclusions and Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alasalvar, C.; Salvadó, J.S.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef]
- INC 2022. Annual Report 2020/2021. Available online: https://www.nutfruit.org/files/transparency/1621876452_ANNUAL_REPORT_2021_final.pdf (accessed on 18 September 2022).
- de Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and human health outcomes: A systematic review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef] [Green Version]
- Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Milbury, P.E.; Lapsley, K.; Blumberg, J.B. Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation. J. Nutr. 2005, 135, 1366–1373. [Google Scholar] [CrossRef] [Green Version]
- Milbury, P.E.; Chen, C.Y.; Dolnikowski, G.G.; Blumberg, J.B. Determination of flavonoids and phenolics and their distribution in almonds. J. Agric. Food Chem. 2006, 54, 5027–5033. [Google Scholar] [CrossRef]
- Lou, H.; Yuan, H.; Ma, B.; Ren, D.; Ji, M.; Oka, S. Polyphenols from peanut skins and their free radical-scavenging effects. Phytochemistry 2004, 65, 2391–2399. [Google Scholar] [CrossRef]
- Blomhoff, R.; Carlsen, M.H.; Frost Andersen, L.; Jacobs, D.R., Jr. Health benefits of nuts, potential role of antioxidants. Br. J. Nutr. 2006, 96, S52–S60. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Zhang, Y.; Henning, S.M.; Lee, R.; Niu, Y.; Lin, G.; Heber, D. Pistachio skin phenolics are destroyed by bleaching resulting in reduced antioxidative capacities. J. Agric. Food Chem. 2006, 54, 7036–7040. [Google Scholar] [CrossRef]
- USDA, Agricultural Research Service, Nutrient Data Laboratory. USDA National Nutrient Database for Standard Reference, Legacy. Version Current: April 2018. Available online: http://www.ars.usda.gov/nutrientdata (accessed on 18 September 2022).
- Chung, K.H.; Shin, K.O.; Hwang, H.J.; Choi, K.S. Chemical composition of nuts and seeds sold in Korea. Nutr. Res. Pract. 2013, 7, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Kafkas, E.; Attar, S.H.; Gundesli, M.A.; Ozcan, A.; Ergun, M. Phenolic and fatty acid profile, and protein content of different walnut cultivars and genotypes (Juglans regia L.) grown in the USA. Int. J. Fruit Sci. 2020, 20, S1711–S1720. [Google Scholar] [CrossRef]
- Müller, A.K.; Helms, U.; Rohrer, C.; Möhler, M.; Hellwig, F.; Glei, M.; Schwerdtle, T.; Lorkowski, S.; Dawczynski, C. Nutrient composition of different hazelnut cultivars grown in Germany. Foods 2020, 9, 1596. [Google Scholar] [CrossRef]
- Nankya, R.; Mulumba, J.W.; Lwandasa, H.; Matovu, M.; Isabirye, B.; De Santis, P.; Jarvis, D.I. Diversity in nutrient content and consumer preferences of sensory attributes of peanut (Arachis hypogaea L.) varieties in Ugandan agroecosystems. Sustainability 2021, 13, 2658. [Google Scholar] [CrossRef]
- Ferrari, V.; Gil, G.; Heinzen, H.; Zoppolo, R.; Ibanez, F. Influence of cultivar on nutritional composition and nutraceutical potential of pecan growing in Uruguay. Front. Nut. 2022, 9, 868054. [Google Scholar] [CrossRef]
- Bolling, B.; Chen, C.; McKay, D.; Blumberg, J. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [Green Version]
- Dodevska, M.; Kukic, M.J.; Sofrenic, I.; Tesevic, V.; Jankovic, M.; Djordjevic, B.; Ivanovic, N.D. Similarities and differences in the nutritional composition of nuts and seeds in Serbia. Front. Nutr. 2022, 9, 1003125. [Google Scholar] [CrossRef]
- Luparelli, A.; Losito, I.; De Angelis, E.; Pilolli, R.; Lambertini, F.; Monaci, L. Tree nuts and peanuts as a source of beneficial compounds and a threat for allergic consumers: Overview on methods for their detection in complex food products. Foods 2022, 11, 728. [Google Scholar] [CrossRef]
- Venkatachalam, M.; Sathe, S.K. Chemical composition of selected edible nut seeds. J. Agric. Food Chem. 2006, 54, 4705–4714. [Google Scholar] [CrossRef]
- Fan, L.; Ren, J.; Yang, Y.; Zhang, L. Comparative analysis on essential nutrient compositions of 23 wild Hazelnuts (Corylus heterophylla) grown in Northeast China. J. Food Qual. 2020, 2020, 9475961. [Google Scholar] [CrossRef] [Green Version]
- Serón, L.A.; Garrigós, E.S.; Berenguer, V.; Grané-Teruel, N. Characterisation of 19 almond cultivars on the basis of their free amino acids composition. Food Chem. 1998, 61, 455–459. [Google Scholar] [CrossRef]
- Hertzler, S.R.; Lieblein-Boff, J.C.; Weiler, M.; Allgeier, C. Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients 2020, 12, 3704. [Google Scholar] [CrossRef]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as functional food: A review. J Food Sci Technol. 2016, 53, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Suna, S.; Avşar, B.; Koçer, S.; Çopur, Ö.U. Effects of different pretreatments on the physicochemical characteristics and quality criteria of chestnut (Castanea sativa Mill.) pickle: A new value-added product. J. Food Process. Preserv. 2021, 45, e15669. [Google Scholar] [CrossRef]
- Pinto, D.; Rodrigues, F.; Braga, N.; Santos, J.; Pimentel, F.B.; Palmeira-De-Oliveira, A.; Oliveira, M.B.P.P. The Castanea sativa bur as a new potential ingredient for nutraceutical and cosmetic outcomes: Preliminary studies. Food Funct. 2016, 8, 201–208. [Google Scholar] [CrossRef]
- Beton, K.; Brozek-Pluska, B. Vitamin C-Protective role in oxidative stress conditions induced in human normal colon cells by Label-Free Raman Spectroscopy and Imaging. Int. J. Mol. Sci. 2021, 22, 6928. [Google Scholar] [CrossRef]
- Choupina, A.B. Nutritional and health potential of European chestnut. Rev. Cienc. Agrar. 2019, 42, 801–807. [Google Scholar]
- Cevriye, M.E.R.T.; Ertürk, Ü. Chemical compositions and sugar profiles of consumed chestnut cultivars in the Marmara Region, Turkey. Not. Bot. Horti Agrobot. 2017, 45, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Mota, M.; Pinto, T.; Vilela, A.; Marques, T.; Borges, A.; Caço, J.; Ferreira-Cardoso, J.; Raimundo, F.; Gomes-Laranjo, J. Irrigation positively affects the chestnut’s quality: The chemical composition, fruit size and sensory attributes. Sci. Hortic. 2018, 238, 177–186. [Google Scholar] [CrossRef]
- Santos, M.J.; Pinto, T.; Vilela, A. Sweet chestnut (Castanea sativa Mill.) nutritional and phenolic composition interactions with chestnut flavor physiology. Foods 2022, 11, 4052. [Google Scholar] [CrossRef]
- Açkurt, F.; Özdemir, M.; Biringen, G.; Löker, M. Effects of geographical origin and variety on vitamin and mineral composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 1999, 65, 309–313. [Google Scholar] [CrossRef]
- Sathe, S.; Monaghan, E.; Kshiesagar, H.; Venkatachalam, M. Chemical composition of edible nut seeds and its implications in human health. In Tree Nuts Composition, Phytochemicals and Health Effects; Alsalvar, C., Shahidi, F., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 12–29. [Google Scholar] [CrossRef]
- Câmara, C.R.S.; Schlegel, V. A Review on the potential human health benefits of the black walnut: A comparison with the english walnuts and other tree nuts. Int. J. Food Prop. 2016, 19, 2175–2189. [Google Scholar] [CrossRef]
- Pradhan, C.; Peter, N.; Dileep, N. Nuts as dietary source of fatty acids and micro nutrients in human health. In Nuts and Nut Products in Human Health and Nutrition; Rao, V., Rao, L., Ahiduzzaman, M., Aminul, A.K.M.A., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-78985-511-1. [Google Scholar] [CrossRef]
- Alhassan, K.; Agbenorhevi, J.K.; Asibuo, J.Y.; Sampson, G.O. Proximate composition and functional properties of some new groundnut accessions. J. Food Secur. 2017, 5, 9–12. [Google Scholar] [CrossRef] [Green Version]
- Caglarirmak, N.; Batkan, A.C. Nutrients and biochemistry of nuts in different consumption types in Turkey. J. Food Proc. Preserv. 2005, 29, 407–423. [Google Scholar] [CrossRef]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fibre and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Rabadán, A.; Álvarez-Ortí, M.; Pardo, J.E. A comparison of the effect of genotype and weather conditions on the nutritional composition of most important commercial nuts. Sci. Hortic. 2019, 244, 218–224. [Google Scholar] [CrossRef]
- Ruggeri, S.; Cappelloni, M.; Gambelli, L.; Nicoli, S.; Carnovale, E. Chemical composition and nutritive value of nuts grown in Italy. Ital. J. Food Sci. 1998, 3, 243–251. [Google Scholar]
- Romero, A.; Vargas, F.J.; Tous, J.; Ninot, A.; Miarnau, X. New almond varieties from IRTA’s breeding programme:(1) chemical composition. In Proceedings of the V International Symposium on Pistachios and Almonds, Sanliurfa, Turkey, 6–10 October 2009; Volume 912, pp. 477–484. [Google Scholar]
- Mandalari, G.; Tomaino, A.; Arcoraci, T.; Martorana, M.; Turco, V.L.; Cacciola, F.; Rich, G.; Bisignano, C.; Saija, A.; Dugo, P.; et al. Characterization of polyphenols, lipids and dietary fibre from almond skins (Amygdalus communis L.). J. Food Compos. Anal. 2010, 23, 166–174. [Google Scholar] [CrossRef]
- Barreira, J.C.; Casal, S.; Ferreira, I.C.; Peres, A.M.; Pereira, J.A.; Oliveira, M.B.P. Supervised chemical pattern recognition in almond (Prunus dulcis) portuguese PDO cultivars: PCA-and LDA-based triennial study. J. Agric. Food Chem. 2012, 60, 9697–9704. [Google Scholar] [CrossRef]
- Barreira, J.C.; Casal, S.; Ferreira, I.C.; Peres, A.M.; Pereira, J.A.; Oliveira, M.B.P. Chemical characterization of chestnut cultivars from three consecutive years: Chemometrics and contribution for authentication. Food Chem. Toxicol. 2012, 50, 2311–2317. [Google Scholar] [CrossRef] [Green Version]
- Yada, S.; Huang, G.; Lapsley, K. Natural variability in the nutrient composition of California-grown almonds. J. Food Comp. Anal. 2013, 30, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Rico, R.; Bulló, M.; Salas-Salvadó, J. Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci. Nutr. 2016, 4, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Borges, O.; Costa, H.S.; Benett, R.; Santos, M.; Silva, A.P. Metabolite composition of chestnut (Castanea sativa Mill.) upon cooking: Proximate analysis, fibre, organic acids and phenolics. Food Chem. 2010, 122, 154–160. [Google Scholar] [CrossRef]
- Borges, O.; Gonçalves, B.; Carvalho, J.L.S.; Correia, P.; Silva, A.P. Nutritional quality of chestnut (Castanea sativa Mill.) cultivars from Portugal. Food Chem. 2008, 106, 976–984. [Google Scholar] [CrossRef]
- Barreira, J.C.; Casal, S.; Ferreira, I.C.; Oliveira, M.B.P.; Pereira, J.A. Nutritional, fatty acid and triacylglycerol profiles of Castanea sativa Mill. cultivars: A compositional and chemometric approach. J. Agric. Food Chem. 2009, 57, 2836–2842. [Google Scholar] [CrossRef]
- Pena-Méndez, E.M.; Hernández-Suárez, M.; Díaz-Romero, C.; Rodríguez-Rodríguez, E. Characterization of various chestnut cultivars by means of chemometrics approach. Food Chem. 2008, 107, 537–544. [Google Scholar] [CrossRef]
- Pereira-Lorenzo, S.; Ramos-Cabrer, A.M.; Díaz-Hernández, M.B.; Ciordia-Ara, M.; Ríos-Mesa, D. Chemical composition of chestnut cultivars from Spain. Sci. Hortic. 2006, 107, 306–314. [Google Scholar] [CrossRef] [Green Version]
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.S.; Ferreira-Cardoso, J.V. Metabolites composition of fresh kernels from three cultivars of Portuguese chestnut. In Proceedings of the II Iberian Congress on Chestnut, Vila Real, Portugal, 20–22 June 2007; Volume 784, pp. 43–48. [Google Scholar]
- Dimitri, G.; Mastrocola, D.; Sacchetti, G.; Neri, L. Chemical composition and functional properties of three sweet chestnut (Castanea sativa Mill.) ecotypes from Italy. In Proceedings of the IV International Chestnut Symposium, Beijing, China, 25–28 September 2008; Volume 844, pp. 41–46. [Google Scholar]
- Alasalvar, C.; Shahidi, F.; Liyanapathirana, C.M.; Ohshima, T. Turkish tombul hazelnut (Corylus avellana L.). 1. Compositional characteristics. J. Agric. Food Chem. 2003, 51, 3790–3796. [Google Scholar] [CrossRef]
- Savage, G.P.; McNeil, D.L. Chemical composition of hazelnuts (Corylus avellana L.) grown in New Zealand. Int. J. Food Sci. Nutr. 1998, 49, 199–203. [Google Scholar] [CrossRef]
- Solar, A.; Stampar, F. Characterisation of selected hazelnut cultivars: Phenology, growing and yielding capacity, market quality and nutraceutical value. J. Sci. Food Agric. 2011, 91, 1205–1212. [Google Scholar] [CrossRef]
- Kamangar, T.; Farsam, H. Composition of pistachio kernels of various Iranian origins. J. Food Sci. 1977, 42, 1135–1136. [Google Scholar] [CrossRef]
- Maskan, M.; Karataş, Ş. Storage stability of whole-split pistachio nuts (Pistachia vera L.) at various conditions. Food Chem. 1999, 66, 227–233. [Google Scholar] [CrossRef]
- Dreher, M.L. Pistachio nuts: Composition and potential health benefits. Nutr. Rev. 2012, 70, 234–240. [Google Scholar] [CrossRef]
- Bulló, M.; Juanola-Falgarona, M.; Hernández-Alonso, P.; Salas-Salvadó, J. Nutrition attributes and health effects of pistachio nuts. Br. J. Nutr. 2015, 113, S79–S93. [Google Scholar] [CrossRef] [Green Version]
- Terzo, S.; Baldassano, S.; Caldara, G.F.; Ferrantelli, V.; Lo Dico, G.; Mulè, F.; Amato, A. Health benefits of pistachios consumption. Nat. Prod. Res. 2019, 33, 715–726. [Google Scholar] [CrossRef]
- Ozkan, G.; Koyuncu, M.A. Physical and chemical composition of some walnut (Juglans regia L.) genotypes grown in Turkey. Grasas y Aceites 2005, 56, 141–146. [Google Scholar] [CrossRef]
- Savage, G.P. Chemical composition of walnuts (Juglans regia L.) grown in New Zealand. Plant Foods Hum. Nutr. 2001, 56, 75–82. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Ghahderijani, M.; Dadashpour, A. Assessment of physical and chemical aspects of new Persian walnut cultivars to optimize process conditions. Int. J. Food Eng. 2012, 8, 1. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Khodaiyan, F. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 2014, 51, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.M. Some nutritional characteristics of fruit and oil of walnut (Juglans regia L.) growing in Turkey. Iran. J. Chem. Chem. Eng. 2009, 28, 57–62. [Google Scholar] [CrossRef]
- Özcan, M.M.; İman, C.; Arslan, D. Physicochemical properties, fatty acid and mineral content of some walnuts (Juglans regia L.) types. Agric. Sci. 2010, 1, 62. [Google Scholar] [CrossRef] [Green Version]
- Amarowicz, R.; Gong, Y.; Pegg, R.B. Recent advances in our knowledge of the biological properties of nuts. In Wild Plants, Mushrooms and Nuts: Functional Food Properties and Applications; Ferreira, I.C.F.R., Morales, P., Barros, L., Eds.; John Wiley & Sons, Ltd.: London, UK, 2017; pp. 377–409. ISBN 9781118944653. [Google Scholar] [CrossRef]
- Summo, C.; Palasciano, M.; De Angelis, D.; Paradiso, V.M.; Caponio, F.; Pasqualone, A. Evaluation of the chemical and nutritional characteristics of almonds (Prunus dulcis (Mill). DA Webb) as influenced by harvest time and cultivar. J. Sci. Food Agric. 2018, 98, 5647–5655. [Google Scholar] [CrossRef] [Green Version]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Annunziata, G.; Arnone, A.; Tenore, G.C.; Süntar, İ.; et al. Almonds (Prunus dulcis Mill. D. A. Webb): A source of nutrients and health-promoting compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Aires, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Phenolic and fatty acid profiles, α-tocopherol and sucrose contents, and antioxidant capacities of understudied Portuguese almond cultivars. J. Food Biochem. 2019, 43, e12887. [Google Scholar] [CrossRef]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Effects of different processing treatments on almond (Prunus dulcis) bioactive compounds, antioxidant activities, fatty acids, and sensorial characteristics. Plants 2020, 9, 1627. [Google Scholar] [CrossRef]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A. Essential fatty acids as functional components of foods—A review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef] [Green Version]
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Bioactive compounds of Chestnut (Castanea sativa Mill.) BT. In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 303–313. ISBN 978-3-030-30182-8. [Google Scholar]
- Borges, O.P.; Carvalho, J.S.; Correia, P.R.; Silva, A.P. Lipid and fatty acid profiles of Castanea sativa Mill. Chestnuts of 17 native Portuguese cultivars. J. Food Comp. Anal. 2007, 20, 80–89. [Google Scholar] [CrossRef]
- Benatti, P.; Peluso, G.; Nicolai, R.; Calvani, M. Polyunsaturated fatty acids: Biochemical, nutritional and epigenetic properties. J. Am. Coll. Nutr. 2004, 23, 281–302. [Google Scholar] [CrossRef]
- España, M.S.A.; Galdón, B.R.; Romero, C.D.; Rodríguez, E.R. Fatty acid profile in varieties of chestnut fruits from Tenerife (Spain). CyTA-J. Food 2011, 9, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Lucchetti, S.; Ambra, R.; Pastore, G. Effects of peeling and/or toasting on the presence of tocopherols and phenolic compounds in four Italian hazelnut cultivars. Eur. Food Res. Technol. 2018, 244, 1057–1064. [Google Scholar] [CrossRef]
- Pannico, A.; Cirillo, C.; Giaccone, M.; Scognamiglio, P.; Romano, R.; Caporaso, N.; Sacchi, R.; Basile, B. Fruit position within the canopy affects kernel lipid composition of hazelnuts. J. Sci. Food Agric. 2017, 97, 4790–4799. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.; Sousa, A.; Morais, J.S.; Ferreira, I.C.; Bento, A.; Estevinho, L.; Pereira, J.A. Chemical composition, and antioxidant and antimicrobial activities of three hazelnut (Corylus avellana L.) cultivars. Food Chem. Toxicol. 2008, 46, 1801–1807. [Google Scholar] [CrossRef]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.S.; Karathanos, V.T. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int. J. Food Sci. Nutr. 2013, 64, 757–767. [Google Scholar] [CrossRef]
- Freitas, J.B.; Naves, M.M.V. Chemical composition of nuts and edible seeds and their relation to nutrition and health. Rev. Nutr. 2010, 23, 269–279. [Google Scholar] [CrossRef]
- Köksal, A.İ.; Artik, N.; Şimşek, A.; Güneş, N. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Turan, A. Effect of drying methods on fatty acid profile and oil oxidation of hazelnut oil during storage. Eur. Food Res. Technol. 2018, 244, 2181–2190. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Kelebek, H.; Sonmezdag, A.S.; Rodríguez-Alcalá, L.M.; Fontecha, J.; Selli, S. Characterization of the aroma-active, phenolic, and lipid profiles of the pistachio (Pistacia vera l.) nut as affected by the single and double roasting process. J. Agric. Food Chem. 2015, 63, 7830–7839. [Google Scholar] [CrossRef] [Green Version]
- Roozban, M.R.; Mohamadi, N.; Vahdati, K. Fat content and fatty acid composition of four Iranian Pistachio (Pistacia vera L.) varieties grown in Iran. In Proceedings of the IV International Symposium on Pistachios and Almonds, Tehran, Iran, 22–25 May 2005; Volume 726, pp. 573–578. [Google Scholar]
- Harmankaya, M.; Özcan, M.M.; Juhaimi, F.A. Mineral contents and proximate composition of Pistacia vera kernels. Environ. Monit. Assess. 2014, 186, 4217–4221. [Google Scholar] [CrossRef]
- Rabadán, A.; Álvarez-Ortí, M.; Gómez, R.; de Miguel, C.; Pardo, J.E. Influence of genotype and crop year in the chemometrics of almond and pistachio oils. J. Sci. Food Agric. 2018, 98, 2402–2410. [Google Scholar] [CrossRef]
- Zribi, F.; Ghrab, M.; Mnafki, N.; Ayadi, M.; Ben Mimoun, M. Biochemical characterization of pistachio germplasm grown in Tunisia. In Proceedings of the V International Symposium on Pistachios and Almonds, Sanliurfa, Turkey, 6–10 October 2009; Volume 912, pp. 469–476. [Google Scholar]
- Catalán, L.; Alvarez-Ortí, M.; Pardo-Giménez, A.; Gomez, R.; Rabadan, A.; Pardo, J.E. Pistachio oil: A review on its chemical composition, extraction systems, and uses. Eur. J. Lipid Sci. 2017, 119, 1600126. [Google Scholar] [CrossRef]
- Muradoglu, F.; Oguz, H.I.; Yildiz, K. Some chemical composition of walnut (Juglans regia L.) selections from Eastern Turkey. Afr. J. Agric. Res. 2010, 5, 2379–2385. [Google Scholar]
- Beyhan, O.; Ozcan, A.; Ozcan, H.; Kafkas, E.; Kafkas, S.; Sutyemez, M.; Ercisli, S. Fat, fatty acids and tocopherol content of several walnut genotypes. Not. Bot. Horti Agrobot. Cluj Napoca 2017, 45, 437–441. [Google Scholar] [CrossRef] [Green Version]
- Pereira, J.A.; Oliveira, I.; Sousa, A.; Ferreira, I.C.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46, 2103–2111. [Google Scholar] [CrossRef]
- Amaral, J.S.; Casal, S.; Pereira, J.A.; Seabra, R.M.; Oliveira, B.P. Determination of sterol and fatty acid compositions, oxidative stability, and nutritional value of six walnut (Juglans regia L.) cultivars grown in Portugal. J. Agric. Food Chem. 2003, 51, 7698–7702. [Google Scholar] [CrossRef] [Green Version]
- Ertürk, U.; Şisman, T.; Yerlikaya, C.; Ertürk, O.; Karadeniz, T. Chemical Composition and Nutritive Value of Selected Walnuts (Juglans regia L.) from Turkey. In Proceedings of the VII International Walnut Symposium, Taiyuan, China, 20–23 July 2013; Volume 1050, pp. 231–234. [Google Scholar]
- Zhai, M.Z.; Wang, D.; Tao, X.D.; Wang, Z.Y. Fatty acid compositions and tocopherol concentrations in the oils of 11 varieties of walnut (Juglans regia L.) grown at Xinjiang, China. J. Hortic. Sci. Biotechnol. 2015, 90, 715–718. [Google Scholar] [CrossRef]
- Hayes, D.; Angove, M.J.; Tucci, J.; Dennis, C. Walnuts (Juglans regia) chemical composition and research in human health. Crit Rev. Food Sci. Nutr. 2016, 56, 1231–1241. [Google Scholar] [CrossRef]
- Vinson, J.A.; Cai, Y. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct. 2012, 3, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Pribis, P.; Bailey, R.N.; Russell, A.A.; Kilsby, M.A.; Hernandez, M.; Craig, W.J.; Grajales, T.; Shavlik, D.J.; Sabate, J. Effects of walnut consumption on cognitive performance in young adults. Br. J. Nutr. 2012, 107, 1393–1401. [Google Scholar] [CrossRef] [Green Version]
- Poulose, S.M.; Miller, M.G.; Shukitt-Hale, B. Role of walnuts in maintaining brain health with age. J. Nutr. 2014, 144, 561S–566S. [Google Scholar] [CrossRef] [Green Version]
- Lamuel-Raventos, R.M.; St. Onge, M.-P. Prebiotic nut compounds and human microbiota. Crit. Rev. Food Sci. Nutr. 2017, 57, 3154–3163. [Google Scholar] [CrossRef]
- Gervasi, T.; Barreca, D.; Laganà, G.; Mandalari, G. Health benefits related to tree nut consumption and their bioactive compounds. Int. J. Mol. Sci. 2021, 22, 5960. [Google Scholar] [CrossRef] [PubMed]
- Sabate, J.; Wien, M. Nuts, blood lipids and cardiovascular disease. Asia Pac. J. Clin. Nutr. 2010, 19, 131–136. [Google Scholar]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuno, M.I. Benefits of polyphenols on gut microbiota and implications on human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Chang, X.; Hu, X.; Brennan, C.S.; Guo, X. Effect of thermal processing on phenolic profiles and antioxidant activities in Castanea mollissima. Int. J. Food Sci. Technol. 2017, 52, 439–447. [Google Scholar] [CrossRef]
- Smeriglio, A.; Mandalari, G.; Bisigano, C.; Filocarmo, A.; Barreca, D.; Belloco, E.; Trombeta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A. Webb) skin and its industrial by products. Ind. Crops Prod. 2015, 83, 283–293. [Google Scholar] [CrossRef]
- Taş, G.N.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- Wojdyło, A.; Turkiewicz, I.P.; Tkacz, K.; Nowicka, P.; Bobak, Ł. Nuts as functional foods: Variation of nutritional and phytochemical profile and their in vitro bioactive properties. Food Chem. X 2022, 15, 100418. [Google Scholar] [CrossRef]
- Chandrasekara, N.; Shahidi, F. Effect of roasting on phenolic content and antioxidant activities of whole cashew nuts, kernels, and testa. J. Agric. Food Chem. 2011, 59, 5006–5014. [Google Scholar] [CrossRef]
- Dolatabadi, K.S.M.; Dehghan, G.; Hosseini, S.; Jahanban Esfahlan, A. Effect of five years storage on total phenolic content and antioxidant capacity of almond (Amygdalus communis L.) hull and shell from different genotypes. Avicenna J. Phytomed. 2015, 5, 26–33. [Google Scholar]
- Pycia, K.; Kapusta, I.; Jaworska, G. Changes in antioxidant activity, profile, and content of polyphenols and tocopherols in common hazel Seed (Corylus avellana L.) depending on variety and harvest date. Molecules 2019, 25, 43. [Google Scholar] [CrossRef] [Green Version]
- Granata, M.U.; Bracco, F.; Catoni, R.; Cavalloro, V.; Martino, E. Secondary metabolites profile and physiological leaf traits in wild and cultivated Corylus avellana under different nutritional status. Nat. Prod. Res. 2019, 30, 3100–3107. [Google Scholar] [CrossRef]
- Caltagirone, C.; Peano, C.; Sottile, F. Post-harvest industrial processes of almond (Prunus dulcis L. Mill) in Sicily influence the nutraceutical properties of by-products at harvest and during storage. Front. Nutr. 2021, 8, 659378. [Google Scholar] [CrossRef]
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Flavonoid Content of Selected Foods, Release 3.1. Available online: https://www.ars.usda.gov/arsuserfiles/80400525/data/flav/flav_r03-1.pdf (accessed on 18 October 2018).
- Gültekin-Özgünven, M.; Davarci, F.; Pasli, A.A.; Demir, N.; Özcelic, B. Determination of phenolic compounds by ultra-high liquid chromatography-tandem mass spectrometry: Applications in nuts. LWT-Food Sci. Technol. 2015, 64, 42–49. [Google Scholar] [CrossRef]
- Abe, L.T.; Lajolo, F.M.; Genovese, M.I. Comparison of phenol content and antioxidant capacity of nuts. Food Sci. Technol. 2010, 1 (Suppl. 30), 254–259. [Google Scholar] [CrossRef] [Green Version]
- Otles, S.; Seleck, I. Phenolics compounds and antioxidant activities of chestnut (Castanea sativa Mill.) fruits. Qual. Assur. Saf. Crops Foods 2012, 4, 199–205. [Google Scholar] [CrossRef]
- Özdemir, K.S.; Yılmaz, C.; Durmaz, G.; Gökmen, V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res. Int. Part B 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Bello, B.D.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT-Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Lu, M.; Eskridge, K.M.; Isom, L.D.; Hanna, M.A. Extraction, identification, and quantification of antioxidant phenolics from hazelnut (Corylus avellana L.) shells. Food Chem. 2018, 244, 7–15. [Google Scholar] [CrossRef]
- Cabo, S.; Aires, A.; Carvalho, R.; Vilela, A.; Pascual-Seva, N.; Silva, A.P.; Gonçalves, B. Kaolin, Ascophyllum nodosum and salicylic acid mitigate effects of summer stress improving hazelnut quality. J. Sci. Food Agric. 2021, 101, 459–475. [Google Scholar] [CrossRef]
- Sales, J.M.; Resurreccion, A.V.A. Phenolic profile, antioxidants, and sensory acceptance of bioactive-enhanced peanuts using ultrasound and UV. Food Chem. 2010, 122, 795–803. [Google Scholar] [CrossRef]
- De Camargo, A.C.; Regitano-d’Arce, M.A.B.; Gallo, C.R.; Shahidi, F. Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. J. Funct. Foods 2015, 12, 129–143. [Google Scholar] [CrossRef]
- Attree, R.; Du, B.; Xu, B. Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Ind. Crops Prod. 2017, 67, 448–456. [Google Scholar] [CrossRef]
- Grace, M.H.; Esposito, D.; Timmers, M.A.; Xiong, J.; Yousef, G.; Komarnytskya, S.; Lila, M.A. In vitro lipolytic, antioxidant and anti-inflammatory activities of roasted pistachio kernel and skin constituents. Food Funct. 2016, 7, 4285–4298. [Google Scholar] [CrossRef]
- Jakopic, J.; Verberic, R.; Stampar, F. Extraction of phenolic compounds from green walnut fruits in different solvents. Acta Agric. Slov. 2009, 93, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Bujdsó, G.; Végvári, G.; Hajnal, V.; Ficzek, G.; Tóth, M. Phenolic profile of the kernel of selected Persian walnut (Juglans regia L.) cultivars. Not. Bot. Horti Agrobot. 2014, 42, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.C.; Gray, A.R.; Tey, S.L.; Chisholm, A.; Burley, V.; Greenwood, D.C.; Cade, J. Associations between nut consumption and health vary between omnivores, vegetarians, and vegans. Nutrients 2017, 9, 1219. [Google Scholar] [CrossRef] [Green Version]
- Musarra-Pizzo, M.; Ginestra, G.; Smeriglio, A.; Pennisi, R.; Sciortino, M.T.; Mandalari, G. The antimicrobial and antiviral activity of polyphenols from almond (Prunus dulcis L.) skin. Nutrients 2019, 11, 2355. [Google Scholar] [CrossRef] [Green Version]
- Gorji, N.; Moeini, R.; Memariani, Z. Almond, hazelnut and walnut, three nuts for neuroprotection in Alzheimer’s disease: A neuropharmacological review of their bioactive constituents. Pharmacol. Res. 2018, 129, 115–127. [Google Scholar] [CrossRef]
- Mexis, S.; Badeka, A.; Kontominas, M. Quality evaluation of raw ground almond kernels (Prunus dulcis): Effect of active and modified atmosphere packaging, container oxygen barrier and storage conditions. Innov. Food Sci. Emerg. Technol. 2009, 10, 580–589. [Google Scholar] [CrossRef]
- Lee, J.; Xiao, L.; Zhang, G.; Ebeler, S.; Mitchell, A. Influence of storage on volatile profiles in roasted almonds (Prunus dulcis). J. Agric. Food. Chem. 2014, 62, 11236–11245. [Google Scholar] [CrossRef] [Green Version]
- Valdés, A.; Beltran, A.; Karabagias, I.; Badeka, A.; Kontominas, M.; Garrigos, M. Monitoring the oxidative stability and volatiles in blanched, roasted and fried almonds under normal and accelerated storage conditions by DSC, thermogravimetric analysis and ATR–FTIR. Eur. J. Lipid Sci. Technol. 2015, 117, 1199–1213. [Google Scholar] [CrossRef]
- Erten, E.; Cadwallader, K. Identification of predominant aroma components of raw, dry roasted and oil roasted almonds. Food Chem. 2017, 217, 244–253. [Google Scholar] [CrossRef]
- Oliveira, I.; Malheiro, R.; Meyer, A.S.; Pereira, J.A.; Gonçalves, B. Application of chemometric tools for the comparison of volatile profile from raw and roasted regional and foreign almond cultivars (Prunus dulcis). J. Food Sci. Technol. 2019, 56, 3764–3776. [Google Scholar] [CrossRef] [Green Version]
- García, A.V.; Romero, R.S.; Polo, A.J.; Moya, S.P.; Pérez, S.E.M.; Sanahuja, A.B. Volatile profile of nuts, key odorants and analytical methods for quantification. Foods 2021, 10, 1611. [Google Scholar] [CrossRef]
- Elmore, J.S.; Nisyrios, I.; Mottram, D.S. Analysis of the headspace aroma compounds of walnuts (Juglans regia L.). Flavour Fragr. J. 2005, 20, 501–506. [Google Scholar] [CrossRef]
- Kiefl, J.; Schieberle, P. Evaluation of process parameters governing the aroma generation in three hazelnut cultivars (Corylus avellana L.) by correlating quantitative key odorant profiling with sensory evaluation. J. Agric. Food Chem. 2013, 61, 5236–5244. [Google Scholar] [CrossRef]
- Mexis, S.F.; Kontominas, M.G. Effect of g-irradiation on the physicochemical and sensory properties of hazelnuts (Corylus avellana L.). Radiat. Phys. Chem. 2009, 78, 407–413. [Google Scholar] [CrossRef]
- Wilson-Kakashita, G.; Gerdes, D.L.; Hall, W.R. The effect of gamma irradiation on the quality of English walnuts (Juglans regia). LWT-Food Sci. Technol. 1995, 28, 17–20. [Google Scholar] [CrossRef]
- Duduzile Buthelezi, N.M.; Samukelo Magwaza, L.; Zeray Tesfay, S. Postharvest pre-storage processing improves antioxidants, nutritional and sensory quality of macadamia nuts. Sci. Hortic. 2019, 251, 197–208. [Google Scholar] [CrossRef]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability, and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Hojjati, M.; Calín-Sánchez, Á.; Razavi, S.H.; Carbonell-Barrachina, Á.A. Effect of roasting on colour and volatile composition of pistachios (Pistacia vera L.). Int. J. Food Sci. 2013, 48, 437–443. [Google Scholar] [CrossRef]
- Saklar, S.; Katnas, S.; Ungan, S. Determination of optimum hazelnut roasting conditions. Int. J. Food Sci. 2001, 36, 271–281. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar]
- Lin, J.T.; Liu, S.C.; Hu, C.C.; Shyu, C.Y.; Hsu, Y.D.J. Effects of roasting temperature and duration on fatty acid composition, phenolic composition, Maillard reaction degree and antioxidant attribute of almond (Prunus dulcis) kernel. Food Chem. 2016, 190, 520–528. [Google Scholar] [CrossRef]
- Schmitzer, V.; Slatnar, A.; Veberic, R.; Stampar, F.; Solar, A. Roasting affects phenolic composition and antioxidative activity of hazelnuts (Corylus avellana L.). J. Food Sci. 2011, 76, S14–S19. [Google Scholar] [CrossRef]
- Alamprese, C.; Ratti, S.; Rossi, M. Effects of roasting conditions on hazelnut characteristics in a two-step process. J. Food Eng. 2009, 95, 272–279. [Google Scholar] [CrossRef]
- Cuadrado, C.; Sanchiz, Á.; Linacero, R. Nut Allergenicity: Effect of food processing. Allergies 2021, 1, 150–162. [Google Scholar] [CrossRef]
- Maleki, S.J.; Chung, S.Y.; Champagne, E.T.; Raufman, J.P. The effects of roasting on the allergenic properties of peanut proteins. J. Allergy Clin. Immunol. 2000, 106, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Venkatachalam, M.; Teuber, S.S.; Roux, K.H.; Sathe, S.K. Effects of roasting, blanching, autoclaving, and microwave heating on antigenicity of almond (Prunus dulcis L.) proteins. J. Agric. Food Chem. 2002, 50, 3544–3548. [Google Scholar] [CrossRef]
- Schlörmann, W.; Birringer, M.; Böhm, V.; Löber, K.; Jahreis, G.; Lorkowski, S.; Muller, A.K.; Schone, F.; Glei, M. Influence of roasting conditions on health-related compounds in different nuts. Food Chem. 2015, 180, 77–85. [Google Scholar] [CrossRef]
- Arinola, S.O.; Adesina, K. Effect of thermal processing on the nutritional, antinutritional, and antioxidant properties of Tetracarpidium conophorum (African walnut). J. Food Proc. 2014, 2014, 418380. [Google Scholar] [CrossRef] [Green Version]
- Kita, A.; Figiel, A. Effect of roasting on properties of walnuts. Pol. J. Food Nutr. Sci. 2007, 57, 89–94. [Google Scholar]
- Tian, Y.; Rao, H.; Zhang, K.; Tao, S.; Xue, W.T. Effects of different thermal processing methods on the structure and allergenicity of peanut allergen Ara h 1. Food Sci. Nutr. 2018, 6, 1706–1714. [Google Scholar] [CrossRef] [Green Version]
- Verhoeckx, K.C.M.; Vissers, Y.M.; Baumert, J.L.; Faludi, R.; Feys, M.; Flanagan, S.; Herouet-Guicheney, C.; Holzhauser, T.; Shimojo, R.; van der Bolt, N.; et al. Food processing and allergenicity. Food Chem. Toxicol. 2015, 80, 223–240. [Google Scholar] [CrossRef]
- Cuadrado, C.; Cheng, H.; Sanchiz, A.; Ballesteros, I.; Easson, M.; Grimm, C.C.; Dieguez, M.C.; Linacero, R.; Burbano, C.; Maleki, S.J. Influence of enzymatic hydrolysis on the allergenic reactivity of processed cashew and pistachio. Food Chem. 2018, 241, 372–379. [Google Scholar] [CrossRef]
- Samoggia, A.; Nicolodi, S. Consumer’s perception of fruit innovation. J. Int. Food Agribus. Mark. 2017, 9, 92–108. [Google Scholar] [CrossRef]
- Patil, B.S.; Uckoo, R.M.; Jayaprakasha, G.K.; Palma, M.A. Consumers’ changing perceptions of quality: Revisiting the science of fruit and vegetable cultivation for improved health benefits. Acta Hortic. 2016, 1120, 459–468. [Google Scholar] [CrossRef]
- Van Duyn, M.A.S. Year 2000 Dietary Guidelines: The Case for Fruits and Vegetables First; Produce for Better Health Foundation: Wilmington, DE, USA, 1999. [Google Scholar]
- Kader, A. Importance of fruits, nuts and vegetables in human nutrition and health. Perish. Handl. Q. 2001, 106, 6. [Google Scholar]
- Ströhle, A. Vegetables and fruits in prevention: The German Nutrition Society (DGE) opinion confirms: High consumption of vegetables and fruits reduces risk of contracting diseases. Dtsch. Apoth. Ztg. 2012, 152, 75–77. [Google Scholar] [CrossRef] [Green Version]
- Scheerens, J.C. Phytochemicals and the consumer: Factors affecting fruit and vegetable consumption and the potential for increasing small fruit in the diet. Hort Technol. 2001, 11, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Jenab, M.; Sabate, J.; Slimani, N.; Ferrari, P.; Mazuir, M.; Casagrande, C.; Deharveng, G.; Tjønneland, A.; Olsen, A.; Overvad, K.; et al. Consumption and portion sizes of tree nuts, peanuts and seeds in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European countries. Br. J. Nutr. 2006, 96, S12–S23. [Google Scholar] [CrossRef] [Green Version]
- O’Neil, C.E.; Keast, D.R.; Nicklas, T.A.; Fulgoni, V.L. Out-of-hand nut consumption is associated with improved nutrient intake and health risk markers in US children and adults: National Health and Nutrition Examination Survey 1999–2004. Nutr. Res. 2012, 32, 185–194. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Nicklas, T.A.; Fulgoni, V.L. Tree nut consumption is associated with better nutrient adequacy and diet quality in adults: National Health and Nutrition Examination Survey 2005–2010. Nutrients 2015, 7, 595–607. [Google Scholar] [CrossRef] [Green Version]
- Flores-Mateo, G.; Rojas-Rueda, D.; Basora, J.; Ros, E.; Salas-Salvadó, J. Nut intake and adiposity: Meta-analysis of clinical trials. Am. J. Clin. Nutr. 2013, 97, 346–1355. [Google Scholar] [CrossRef] [Green Version]
- Alasalvar, C.; Shahidi, F. Tree Nuts: Composition, Phytochemicals, and Health Effects; CRC Press: Boca Raton, FL, USA, 2008; 340p, ISBN 9780849337352. [Google Scholar]
- Wang, J.; Lee Bravatti, M.A.; Johnson, E.J.; Raman, G. Daily almond consumption in cardiovascular disease prevention via LDL-C change in the U.S. population: A cost-effectiveness analysis. BMC Public Health 2020, 20, 558. [Google Scholar] [CrossRef]
- Pawlak, R.; Colby, S.; Herring, J. Beliefs, benefits, barriers, attitude, intake and knowledge about peanuts and tree nuts among WIC participants in eastern North Carolina. Nutr. Res. Pract. 2009, 3, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, R.; London, H.A.; Colby, S.; Wall-Bassett, E.; Sira, N. Perception of nut intake among individuals with or at risk for heart disease and/or diabetes. J. Behav. Health 2012, 1, 185–188. [Google Scholar] [CrossRef] [Green Version]
- Souza, R.G.; Gomes, A.C.; Naves, M.M.; Mota, J.F. Nuts and legume seeds for cardiovascular risk reduction: Scientific evidence and mechanisms of action. Nutr. Rev. 2015, 73, 335–347. [Google Scholar] [CrossRef]
- Yong, L.C.; Gray, A.R.; Chisholm, A.; Leong, S.L.; Tey, S.L.; Brown, R.C. Barriers to and facilitators and perceptions of nut consumption among the general population in New Zealand. Public Health Nutr. 2017, 20, 3166–3182. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, X.; Yuan, S.; Jin, Y.; Lu, J. Nut consumption and risk of metabolic syndrome and overweight/obesity: A meta-analysis of prospective cohort studies and randomized trials. Nutr. Metab. 2018, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Viale, P.H. The benefits of nuts for cancer prevention. J. Adv. Pract. Oncol. 2019, 10, 102–103. [Google Scholar] [CrossRef]
- Shirmohammadi, M.; Chandrasekaran, I.; Singh, C. Effect of post-harvest processes and storage conditions on aging and quality of fruit nuts. In Proceedings of the CSBE/SCGAB 2018 Annual Conference, School of Engineering, University of Guelph, Guelph, ON, Canada, 22–25 July 2018; Available online: https://www.researchgate.net/publication/335160450 (accessed on 17 October 2022).
- Kader, A.A. Impact of nut postharvest handling, deshelling, drying and storage on quality. In Improving the Safety and Quality of Nuts; Harris, L.J., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2013; Volume 1, pp. 22–34. [Google Scholar]
- Mexis, S.F.; Badeka, A.V.; Riganakos, K.A.; Karakostas, K.X.; Kontominas, M.G. Effect of packaging and storage conditions on quality of shelled walnuts. Food Control 2009, 20, 743–751. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, E.L.; Fidalgo, M.C.; Gomes, A.; Ramalhosa, E. Effect of modified atmosphere, vacuum and polyethylene packaging on physicochemical and microbial quality of chestnuts (Castanea sativa) during storage. Int. J. Fruit Sci. 2020, 20, S785–S801. [Google Scholar] [CrossRef]
- Köster, E.P. Diversity in the determinants of food choice: A psychological perspective. Food Qual. Prefer. 2009, 20, 70–82. [Google Scholar] [CrossRef]
- Grunert, K.G.; Larsen, H.H.; Madsen, T.K.; Baadsgaard, A. Market Orientation in Food and Agriculture; Kluwer Academic: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Brunsø, K.; Birch, D.; Memery, J.; Temesi, Á.; Lakner, Z.; Lang, M.; Dean, D.; Grunert, K.G. Core dimensions of food-related lifestyle: A new instrument for measuring food involvement, innovativeness and responsibility. Food Qual. Prefer. 2021, 91, 104192. [Google Scholar] [CrossRef]
Nut | Protein (g/100 g) | Amino Acids (g/100 g of Portion) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trp | Thr | Ile | Leu | Lys | Met | Cys | Phe | Tyr | Val | Arg | His | Ala | Asp | Glu | Gly | Pro | Ser | ||
Almond | 16.8–25.4 | 0.211 | 0.601 | 0.751 | 1.47 | 0.568 | 0.157 | 0.215 | 1.13 | 0.45 | 0.855 | 2.46 | 0.539 | 0.999 | 2.64 | 6.21 | 1.43 | 0.969 | 0.912 |
Cashew nut | 17.5–19.0 | 0.287 | 0.688 | 0.789 | 1.47 | 0.928 | 0.362 | 0.393 | 0.951 | 0.508 | 1.09 | 2.12 | 0.456 | 0.837 | 1.80 | 4.51 | 0.937 | 0.812 | 1.08 |
Chestnut | 1.63 | 0.018 | 0.058 | 0.064 | 0.096 | 0.096 | 0.038 | 0.052 | 0.069 | 0.045 | 0.091 | 0.116 | 0.045 | 0.109 | 0.028 | 0.021 | 0,084 | 0,086 | 0.081 |
Hazelnut | 14.5–15.2 | 0.193 | 0.497 | 0.545 | 1.06 | 0.42 | 0.221 | 0.277 | 0.663 | 0.362 | 0.701 | 2.21 | 0.432 | 0.73 | 1.68 | 3.71 | 0.724 | 0.561 | 0.735 |
Macadamia nut | 7.55–8.58 | 0.067 | 0.37 | 0.314 | 0.602 | 0.018 | 0.023 | 0.006 | 0.665 | 0.511 | 0.363 | 1.40 | 0.195 | 0.388 | 1.10 | 2.27 | 0.454 | 0.468 | 0.419 |
Peanut | 25.8 | 0.25 | 0.883 | 0.907 | 1.67 | 0.926 | 0.317 | 0.331 | 1.38 | 1.05 | 1.08 | 3.08 | 0.652 | 1.02 | 3.15 | 5.39 | 1.55 | 1.14 | 1.27 |
Pecan nut | 9.0–9.3 | 0.093 | 0.306 | 0.336 | 0.598 | 0.287 | 0.183 | 0.152 | 0.426 | 0.215 | 0.411 | 1.18 | 0.262 | 0.397 | 0.929 | 1.83 | 0.453 | 0.363 | 0.474 |
Pine nut | 13.7 | 0.107 | 0.37 | 0.542 | 0.991 | 0.54 | 0.259 | 0.289 | 0.524 | 0.509 | 0.687 | 2.41 | 0.341 | 0.684 | 1.3 | 2.93 | 0.691 | 0.673 | 0.835 |
Pistachio | 19.4–22.1 | 0.251 | 0.684 | 0.917 | 1.60 | 1.14 | 0.36 | 0.292 | 1.09 | 0.509 | 1.25 | 2.13 | 0.512 | 0.973 | 1.88 | 4.3 | 1.01 | 0.938 | 1.28 |
Walnut | 14.4–16.0 | 0.17 | 0.596 | 0.625 | 1.17 | 0.424 | 0.236 | 0.208 | 0.711 | 0.406 | 0.753 | 2.28 | 0.391 | 0.696 | 1.83 | 2.82 | 0.816 | 0.706 | 0.934 |
Nut | Ascorbic Acid (C) | Vit A (IU) | Niacin (B3) | Thiamine (B1) | Riboflavin (B2) | Pyridoxine (B6) | Folic Acid (B9) | Pantothenic Acid (B5) | α-Tocopherol (E) |
---|---|---|---|---|---|---|---|---|---|
Almond | 3.62–3.90 | 0.06 | 3.62–3.90 | 0.21 | 0.80–1.14 | 0.1 | 0.04 | 0.3 | 2.4–25.9 |
Cashew nut | 1.06–1.10 | - | 1.06–1.10 | 0.42 | 0.06–0.10 | 0.4 | 0.25 | 0.9 | 0.0–0.9 |
Hazelnut | 1.81 | 20 | 1.81 | 0.30 | 0.10 | 0.2–0.6 | ND | 0.9 | 3.5–15.0 |
Peanut | 5.75–12.10 | - | 5.75–12.10 | 0.60 | 0.04–0.10 | 0.1–0.3 | 0.24 | 0.6 | 0.4 |
Pine nut | 4.40 | 29 | 4.40 | 0.20 | 0.1 | ND | 0.3 | 2.5–9.3 | |
Pistachio | 1.30 | 415 | 1.30 | 0.87 | 0.16–0.20 | 1.7 | 51.00 | 0.5 | 0.3–2.3 |
Walnut | 0.47–1.13 | 20 | 0.47–1.13 | 0.34 | 0.15–0.20 | 0.5–0.6 | 0.98 | 0.6 | 0.1–13.0 |
Chestnut | 40.2 | 26 | 1.1 | 0.14 | 0.02 | ND | 58 | 0.48 | - |
Nut | Na | Mg | K | Ca | Cu | Zn | Fe |
---|---|---|---|---|---|---|---|
Almond | 1.00 | 275 | 728 | 248 | 0.90–1.03 | 1.91–3.12 | 3.71–6.21 |
Cashew nut | 12.00 | 292 | 660 | 37 | 0.56 | 0.96–5.78 | 3.82–6.68 |
Chestnut | 2.00 | 30.00 | 484.00 | 19.00 | 0.418 | 0.49 | 0.94 |
Hazelnut | 0.70–0.98 | 140–163 | 514–680 | 84–114 | 0.65–0.99 | 1.95–2.96 | 0.56–4.70 |
Peanut | 1.30–18.00 | 168–173 | 558–705 | 67–92 | 0.75–0.83 | 0.44–3.27 | 0.58–4.58 |
Pine nut | 2.00 | 251–265 | 597 | 16 | 1.32–1.60 | 3.08–6.45 | 5.53–6.64 |
Pistachio | 1.00–9.36 | 117 -121 | 642–1025 | 107–171 | 0.75–1.70 | 2.77–6.72 | 0.41–8.86 |
Walnut | 2.00 | 158–201 | 441–523 | 61–98 | 2.54 | 1.52–3.37 | 2.91–5.74 |
Nut | Fiber (%) | Lipid (%) |
---|---|---|
Almond | 11.8–13.0 | 43.3–50.6 |
Cashew nut | 1.4–3.3 | 42.8–43.9 |
Chestnut | 2.3–3.7 | 1.6–7.4 |
Hazelnut | 3.4–9.7 | 59.8–61.5 |
Pistachio | 10.3 | 44.4–45.4 |
Walnut | 6.7 | 64.5–65.2 |
Nut | SFA | MUFA | PUFA | ||||||
---|---|---|---|---|---|---|---|---|---|
Total | Palmitic 16:0 | Stearic 18:0 | Total | Oleic 18:1 | Palmitoleic 16:1 | Total | Linoleic 18:2 | Linolenic 18:3 | |
Almond | 3.802 | 3.083 | 0.704 | 31.551 | 31.294 | 0.227 | 12.329 | 12.324 | 0.003 |
Cashew | 7.783 | 3.916 | 3.223 | 23.797 | 23.523 | 0.136 | 7.845 | 7.782 | 0.062 |
Chestnut | 0.425 | 0.384 | 0.021 | 0.780 | 0.749 | 0.021 | 0.894 | 0.798 | 0.095 |
Hazelnut | 4.464 | 3.097 | 1.265 | 45.652 | 45.405 | 0.116 | 7.920 | 7.833 | 0.087 |
Pistachio | 5.907 | 5.265 | 0.478 | 23.257 | 22.674 | 0.495 | 14.380 | 14.091 | 0.289 |
Walnut | 6.126 | 4.404 | 1.659 | 8.933 | 8.799 | 0.134 (C20:1) | 47.174 | 38.093 | 9.080 |
Nut | Phenolic Compound | Reference |
---|---|---|
Almond | Catechin, epicatechin, naringenin, eriodictyol, gallic acid, caffeic acid, chlorogenic acid, o-coumaric acid, p-coumaric acid ferulic acid, hydroxybenzoic acid, protocatechuic, vanillic acid, quercetin, kaempferol, isorhamnetin | [71,108,116,117] |
Chestnut | Gallic acid, syringic acid, chlorogenic acid, ferulic acid, vanillic acid, catechin, naringin, quercetin, ellagic acid | [107,118,119] |
Hazelnut | Gallic acid, protocatechuic acid, caffeic acid, o-coumaric acid, p-coumaric acid, ferullic acid, catechin, epicatechin, epicatechin gallate, rutin | [116,117,120,121,122,123] |
Peanut | Catechin, epicatechin, quercetin, isorhamnetin, gallic acid, protocatechuic, caffeic acid, p-coumaric acid, procyanidins A and B, trimers and tetramers, prodelphinidin | [109,117,124,125,126] |
Pecan nut | Ellagic acid, catechin, gallic acid, hydroxybenzoic acid, trans-cinnamic acid, syringic acid, caffeic acid, p-coumaric acid, ferulic acid, naringenin, apigenin, quercetin, rutin, kaempferol, isorhamnetin, resveratrol | [118] |
Pistachio | Cyanidin, gallic acid, protocatechuic, eriodictyol, catechin, epicatechin, epicatechin gallate, luteolin, quercetin, myricetin, procyanidin B1, trimers, and tetramers | [109,117,127] |
Walnut | Vanillic acid, catechin, pyrocatechin, protocatechuic acid, epicatechin, syringic acid, gallic acid, juglone and cinnamic acid, ellagic acid, rutin | [118,128,129] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, B.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of Nuts and Their Potential Health Benefits—An Overview. Foods 2023, 12, 942. https://doi.org/10.3390/foods12050942
Gonçalves B, Pinto T, Aires A, Morais MC, Bacelar E, Anjos R, Ferreira-Cardoso J, Oliveira I, Vilela A, Cosme F. Composition of Nuts and Their Potential Health Benefits—An Overview. Foods. 2023; 12(5):942. https://doi.org/10.3390/foods12050942
Chicago/Turabian StyleGonçalves, Berta, Teresa Pinto, Alfredo Aires, Maria Cristina Morais, Eunice Bacelar, Rosário Anjos, Jorge Ferreira-Cardoso, Ivo Oliveira, Alice Vilela, and Fernanda Cosme. 2023. "Composition of Nuts and Their Potential Health Benefits—An Overview" Foods 12, no. 5: 942. https://doi.org/10.3390/foods12050942
APA StyleGonçalves, B., Pinto, T., Aires, A., Morais, M. C., Bacelar, E., Anjos, R., Ferreira-Cardoso, J., Oliveira, I., Vilela, A., & Cosme, F. (2023). Composition of Nuts and Their Potential Health Benefits—An Overview. Foods, 12(5), 942. https://doi.org/10.3390/foods12050942