Insights into the Chemical Composition and In Vitro Bioactive Properties of Mangosteen (Garcinia mangostana L.) Pericarp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Material
2.2. Assessment of Chemical Composition
2.2.1. Organic Acids
2.2.2. Tocopherols
2.2.3. Fatty Acids
2.2.4. Phenolic Compounds
2.3. Assessment of the Bioactivities of Mangosteen Pericarp Extracts
2.3.1. Antioxidant Potential
2.3.2. Anti-Inflammatory Potential
2.3.3. Antiproliferative Potential
2.3.4. Antibacterial Potential
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Mangosteen Pericarp
3.1.1. Organic Acids
3.1.2. Tocopherols
3.1.3. Fatty Acids
3.1.4. Phenolic Compound Composition
Non-Anthocyanin Compounds
Anthocyanin Compounds
3.2. Bioactive Potentials of the Hydroethanolic and Aqueous Mangosteen Pericarp Extracts
3.2.1. Antioxidant Potential
3.2.2. Anti-Inflammatory Potential
3.2.3. Antiproliferative Potential
3.2.4. Antibacterial Potential
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, N.H.; Hussain, N.; Sulaiman, R.; Chong, G.H. Current Trends of Tropical Fruit Waste Utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef] [PubMed]
- Pothitirat, W.; Chomnawang, M.T.; Supabphol, R.; Gritsanapan, W. Comparison of Bioactive Compounds Content, Free Radical Scavenging and Anti-Acne Inducing Bacteria Activities of Extracts from the Mangosteen Fruit Rind at Two Stages of Maturity. Fitoterapia 2009, 80, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Yuvanatemiya, V.; Srean, P.; Klangbud, W.K.; Venkatachalam, K.; Wongsa, J.; Parametthanuwat, T.; Charoenphun, N. A Review of the Influence of Various Extraction Techniques and the Biological Effects of the Xanthones from Mangosteen (Garcinia Mangostana L.) Pericarps. Molecules 2022, 27, 8775. [Google Scholar] [CrossRef]
- Cho, E.J.; Park, C.S.; Bae, H.J. Transformation of Cheaper Mangosteen Pericarp Waste into Bioethanol and Chemicals. J. Chem. Technol. Biotechnol. 2020, 95, 348–355. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Yong, H.; Qin, Y.; Liu, J.; Jin, C. Development of Antioxidant and Antimicrobial Packaging Films Based on Chitosan and Mangosteen (Garcinia Mangostana L.) Rind Powder. Int. J. Biol. Macromol. 2020, 145, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Obolskiy, D.; Pischel, I.; Siriwatanametanon, N.; Heinrich, M. Garcinia Mangostana L.: A Phytochemical and Pharmacological Review. Phytother. Res. 2009, 23, 1047–1065. [Google Scholar] [CrossRef] [PubMed]
- Marcason, W. What Are the Facts and Myths about Mangosteen? J. Am. Diet. Assoc. 2006, 106, 986. [Google Scholar] [CrossRef]
- Rohman, A.; Rafi, M.; Muchtaridi, M.; Windarsih, A. Chemical Composition and Antioxidant Studies of Underutilized Part of Mangosteen (Garcinia Mangostana L.) Fruit. J. Appl. Pharm. Sci. 2019, 9, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Wittenauer, J.; Falk, S.; Schweiggert-Weisz, U.; Carle, R. Characterisation and Quantification of Xanthones from the Aril and Pericarp of Mangosteens (Garcinia Mangostana L.) and a Mangosteen Containing Functional Beverage by HPLC–DAD–MSn. Food Chem. 2012, 134, 445–452. [Google Scholar] [CrossRef]
- Watanabe, M.; Risi, R.; Masi, D.; Caputi, A.; Balena, A.; Rossini, G.; Tuccinardi, D.; Mariani, S.; Basciani, S.; Manfrini, S.; et al. Current Evidence to Propose Different Food Supplements for Weight Loss: A Comprehensive Review. Nutrients 2020, 12, 2873. [Google Scholar] [CrossRef]
- Abdul, R.; Fitriana Hayyu, A.; Irnawati, I.; Gemini, A.; Muchtaridi, M.; Muhammad, R. A Review on Phytochemical Constituents, Role on Metabolic Diseases, and Toxicological Assessments of Underutilized Part of Garcinia mangostana L. Fruit. J. Appl. Pharm. Sci. 2020, 10, 127–146. [Google Scholar] [CrossRef]
- Rizaldy, D.; Hartati, R.; Nadhifa, T.; Fridrianny, I. Chemical Compounds and Pharmacological Activities of Mangosteen (Garcinia Mangostana L.)—Updated Review. Biointerface Res. Appl. Chem. 2021, 12, 2503–2516. [Google Scholar] [CrossRef]
- Lomarat, P.; Moongkarndi, P.; Jaengprajak, J.; Samer, J.; Srisikh, V. Three Functional Foods from Garcinia Mangostana L. Using Low-α-Mangostin Aqueous Extract of the Pericarp: Product Development, Bioactive Compound Extractions and Analyses, and Sensory Evaluation. Thai J. Pharm. Sci. 2019, 43, 49–56. [Google Scholar]
- Ovalle-Magallanes, B.; Eugenio-Pérez, D.; Pedraza-Chaverri, J. Medicinal Properties of Mangosteen (Garcinia Mangostana L.): A Comprehensive Update. Food Chem. Toxicol. 2017, 109, 102–122. [Google Scholar] [CrossRef]
- Corrêa, R.C.G.; de Souza, A.H.P.; Calhelha, R.C.; Barros, L.; Glamoclija, J.; Sokovic, M.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. Bioactive Formulations Prepared from Fruiting Bodies and Submerged Culture Mycelia of the Brazilian Edible Mushroom Pleurotus Ostreatoroseus Singer. Food Funct. 2015, 6, 2155–2164. [Google Scholar] [CrossRef] [Green Version]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic Profile and Antioxidant Activity of Coleostephus myconis (L.) Rchb.f.: An Underexploited and Highly Disseminated Species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, G.A.; Soares, A.A.; Correa, R.C.G.; Barros, L.; Haminiuk, C.W.I.; Peralta, R.M.; Ferreira, I.C.F.R.; Bracht, A. Merlot Grape Pomace Hydroalcoholic Extract Improves the Oxidative and Inflammatory States of Rats with Adjuvant-Induced Arthritis. J. Funct. Foods 2017, 33, 408–418. [Google Scholar] [CrossRef]
- Takebayashi, J.; Iwahashi, N.; Ishimi, Y.; Tai, A. Development of a Simple 96-Well Plate Method for Evaluation of Antioxidant Activity Based on the Oxidative Haemolysis Inhibition Assay (OxHLIA). Food Chem. 2012, 134, 606–610. [Google Scholar] [CrossRef]
- Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-Inflammatory Activity of Methanolic Extracts from Edible Mushrooms in LPS Activated RAW 264.7 Macrophages. Food Chem. 2012, 130, 350–355. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B Colorimetric Assay for Cytotoxicity Screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Tsukatani, T.; Suenaga, H.; Shiga, M.; Noguchi, K.; Ishiyama, M.; Ezoe, T.; Matsumoto, K. Comparison of the WST-8 Colorimetric Method and the CLSI Broth Microdilution Method for Susceptibility Testing against Drug-Resistant Bacteria. J. Microbiol. Methods 2012, 90, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Mamat, S.F.; Azizan, K.A.; Baharum, S.N.; Noor, N.M.; Aizat, W.M. Metabolomics Analysis of Mangosteen (Garcinia Mangostana Linn.) Fruit Pericarp Using Different Extraction Methods and GC-MS. Plant Omics J. 2018, 11, 89–97. [Google Scholar] [CrossRef]
- Mamat, S.F.; Azizan, K.A.; Baharum, S.N.; Noor, N.M.; Aizat, W.M. GC-MS and LC-MS Analyses Reveal the Distribution of Primary and Secondary Metabolites in Mangosteen (Garcinia Mangostana Linn.) Fruit during Ripening. Sci. Hortic. 2020, 262, 109004. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Lim, M.T.; Koh, W.-P.; Huang, D.; Ong, C.N. Antioxidant Activity and Profiles of Common Fruits in Singapore. Food Chem. 2010, 123, 77–84. [Google Scholar] [CrossRef]
- Charoensiri, R.; Kongkachuichai, R.; Suknicom, S.; Sungpuag, P. Beta-Carotene, Lycopene, and Alpha-Tocopherol Contents of Selected Thai Fruits. Food Chem. 2009, 113, 202–207. [Google Scholar] [CrossRef]
- Wen Chang, N.; Chao Huang, P. Comparative Effects of Polyunsaturated- to Saturated Fatty Acid Ratio versus Polyunsaturated- and Monounsaturated Fatty Acids to Saturated Fatty Acid Ratio on Lipid Metabolism in Rats. Atherosclerosis 1999, 142, 185–191. [Google Scholar] [CrossRef]
- Ajayi, I.A.; Oderinde, R.A.; Ogunkoya, B.O.; Egunyomi, A.; Taiwo, V.O. Chemical Analysis and Preliminary Toxicological Evaluation of Garcinia mangostana Seeds and Seed Oil. Food Chem. 2007, 101, 999–1004. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Lin, Y.-M.; Wei, S.-D.; Tam, N.F. Structural Diversity and Antioxidant Activity of Condensed Tannins Fractionated from Mangosteen Pericarp. Food Chem. 2011, 129, 1710–1720. [Google Scholar] [CrossRef]
- Palapol, Y.; Ketsa, S.; Stevenson, D.; Cooney, J.M.; Allan, A.C.; Ferguson, I.B. Colour Development and Quality of Mangosteen (Garcinia Mangostana L.) Fruit during Ripening and after Harvest. Postharvest Biol. Technol. 2009, 51, 349–353. [Google Scholar] [CrossRef]
- Zarena, A.S.; Udaya Sankar, K. Isolation and Identification of Pelargonidin 3-Glucoside in Mangosteen Pericarp. Food Chem. 2012, 130, 665–670. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Ibrahim, S.R.M.; Shaaban, M.I.A.; Ross, S.A. Mangostanaxanthones I and II, New Xanthones from the Pericarp of Garcinia Mangostana. Fitoterapia 2014, 98, 215–221. [Google Scholar] [CrossRef]
- Ngawhirunpat, T.; Opanasopi, P.; Sukma, M.; Sittisombut, C.; Kat, A.; Adachi, I. Antioxidant, Free Radical-Scavenging Activity and Cytotoxicity of Different Solvent Extracts and Their Phenolic Constituents from the Fruit Hull of Mangosteen (Garcinia Mangostana). Pharm. Biol. 2010, 48, 55–62. [Google Scholar] [CrossRef]
- Zarena, A.S.; Sankar, K.U. Phenolic Acids, Flavonoid Profile And Antioxidant Activity in Mangosteen (Garcinia mangostana L.) Pericarp: Analysis of Phenolic Acid By HPLC-ESI-MS. J. Food Biochem. 2012, 36, 627–633. [Google Scholar] [CrossRef]
- Yenrina, R.; Sayuti, K.; Nakano, K.; Thammawong, M.; Anggraini, T.; Fahmy, K.; Syukri, D. Cyanidin, Malvidin and Pelargonidin Content of “Kolang-Kaling” Jams Made with Juices from Asian Melastome (Melastoma malabathricum) Fruit, Java Plum (Syzygium cumini) Fruit Rind or Mangosteen (Garcinia mangostana) Fruit Rind. Pak. J. Nutr. 2017, 16, 850–856. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Chin, N.L.; Yusof, Y.A.; Talib, R.A.; Law, C.L. Optimization of Total Monomeric Anthocyanin (TMA) and Total Phenolic Content (TPC) Extractions from Mangosteen (Garcinia Mangostana Linn.) Hull Using Ultrasonic Treatments. Ind. Crops Prod. 2013, 50, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Muzykiewicz, A.; Zielonka-Brzezicka, J.; Siemak, J.; Klimowicz, A. Antioxidant Activity and Polyphenol Content in Extracts from Various Parts of Fresh and Frozen Mangosteen. Acta Sci. Pol. Technol. Aliment. 2020, 19, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Waszkowiak, K.; Gliszczyńska-Świgło, A. Binary Ethanol–Water Solvents Affect Phenolic Profile and Antioxidant Capacity of Flaxseed Extracts. Eur. Food Res. Technol. 2016, 242, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Thoo, Y.Y.; Ho, S.K.; Liang, J.Y.; Ho, C.W.; Tan, C.P. Effects of Binary Solvent Extraction System, Extraction Time and Extraction Temperature on Phenolic Antioxidants and Antioxidant Capacity from Mengkudu (Morinda citrifolia). Food Chem. 2010, 120, 290–295. [Google Scholar] [CrossRef]
- Mojarradi, F.; Bimakr, M.; Ganjloo, A. Feasibility of Hydroethanolic Solvent System for Bioactive Compounds Recovery from Aerial Parts of Silybum marianum and Kinetics Modeling. J. Hum. Environ. Health Promot. 2021, 7, 129–137. [Google Scholar] [CrossRef]
- Roshani Neshat, R.; Bimakr, M.; Ganjloo, A. Effects of Binary Solvent System on Radical Scavenging Activity and Recovery of Verbascoside from Lemon Verbena Leaves. J. Hum. Environ. Health Promot. 2020, 6, 69–76. [Google Scholar] [CrossRef]
- Wong, Y.H.; Lau, H.W.; Tan, C.P.; Long, K.; Nyam, K.L. Binary Solvent Extraction System and Extraction Time Effects on Phenolic Antioxidants from Kenaf Seeds (Hibiscus Cannabinus L.) Extracted by a Pulsed Ultrasonic-Assisted Extraction. Sci. World J. 2014, 2014, 789346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewtrakul, S.; Wattanapiromsakul, C.; Mahabusarakam, W. Effects of Compounds from Garcinia mangostana on Inflammatory Mediators in RAW264.7 Macrophage Cells. J. Ethnopharmacol. 2009, 121, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Yang, Y.; Lu, Y.; Chen, Q. Affinity-Guided Isolation and Identification of Procyanidin B2 from Mangosteen (Garcinia mangostana L.) Rinds and Its In Vitro LPS Binding and Neutralization Activities. Plant Foods Hum. Nutr. 2021, 76, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Alkhuriji, A.F.; Majrashi, N.A.; Alomar, S.; El-Khadragy, M.F.; Awad, M.A.; Khatab, A.R.; Yehia, H.M. The Beneficial Effect of Eco-Friendly Green Nanoparticles Using Garcinia mangostana Peel Extract against Pathogenicity of Listeria Monocytogenes in Female BALB/c Mice. Animals 2020, 10, 573. [Google Scholar] [CrossRef] [Green Version]
- Wathoni, N.; Meylina, L.; Rusdin, A.; Mohammed, A.F.A.; Tirtamie, D.; Herdiana, Y.; Motoyama, K.; Panatarani, C.; Joni, I.M.; Lesmana, R.; et al. The Potential Cytotoxic Activity Enhancement of α-Mangostin in Chitosan-Kappa Carrageenan-Loaded Nanoparticle against MCF-7 Cell Line. Polymers 2021, 13, 1681. [Google Scholar] [CrossRef]
- Li, G.; Thomas, S.; Johnson, J.J. Polyphenols from the Mangosteen (Garcinia mangostana) Fruit for Breast and Prostate Cancer. Front. Pharmacol. 2013, 4, 80. [Google Scholar] [CrossRef] [Green Version]
- Veeraraghavan, V.P.; Hussain, S.; Balakrishna, J.P.; Rengasamy, G.; Mohan, S.K. Chemopreventive Action of Garcinia mangostana Linn. on Hepatic Carcinoma by Modulating Ornithine Decarboxylase Activity. Pharmacogn. J. 2020, 12, 1383–1388. [Google Scholar] [CrossRef]
- Muchtaridi, M.; Afiranti, F.S.; Puspasari, P.W.; Subarnas, A.; Susilawati, Y. Cytotoxicity of Garcinia Mangostana L. Pericarp Extract, Fraction, and Isolate on Hela Cervical Cancer Cells. J. Pharm. Sci. Res. 2018, 10, 348–351. [Google Scholar]
- Qi, Q.; Chu, M.; Yu, X.; Xie, Y.; Li, Y.; Du, Y.; Liu, X.; Zhang, Z.; Shi, J.; Yan, N. Anthocyanins and Proanthocyanidins: Chemical Structures, Food Sources, Bioactivities, and Product Development. Food Rev. Int. 2022. [Google Scholar] [CrossRef]
- Taokaew, S.; Chiaoprakobkij, N.; Siripong, P.; Sanchavanakit, N.; Pavasant, P.; Phisalaphong, M. Multifunctional Cellulosic Nanofiber Film with Enhanced Antimicrobial and Anticancer Properties by Incorporation of Ethanolic Extract of Garcinia mangostana Peel. Mater. Sci. Eng. C 2021, 120, 111783. [Google Scholar] [CrossRef]
- Palakawong, C.; Sophanodora, P.; Toivonen, P.; Delaquis, P. Optimized Extraction and Characterization of Antimicrobial Phenolic Compounds from Mangosteen (Garcinia Mangostana L.) Cultivation and Processing Waste: Antimicrobial Activity of Mangosteen Extracts. J. Sci. Food Agric. 2013, 93, 3792–3800. [Google Scholar] [CrossRef] [PubMed]
- Lima, M.C.; Paiva de Sousa, C.; Fernandez-Prada, C.; Harel, J.; Dubreuil, J.D.; de Souza, E.L. A Review of the Current Evidence of Fruit Phenolic Compounds as Potential Antimicrobials against Pathogenic Bacteria. Microb. Pathog. 2019, 130, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.T.M.; Nguyen, M.T.H.; Quach, L.; Nguyen, P.T.M.; Nguyen, L.; Quyen, D. Antibiofilm Activity of Alpha-Mangostin Loaded Nanoparticles against Streptococcus mutans. Asian Pac. J. Trop. Biomed. 2020, 10, 325. [Google Scholar] [CrossRef]
- Wang, Y.; Baptist, J.A.; Dykes, G.A. Garcinia mangostana Extract Inhibits the Attachment of Chicken Isolates of Listeria monocytogenes to Cultured Colorectal Cells Potentially Due to a High Proanthocyanidin Content. J. Food Saf. 2021, 41, e12889. [Google Scholar] [CrossRef]
- Indrianingsih, A.W.; Rosyida, V.T.; Darsih, C.; Apriyana, W. Antibacterial Activity of Garcinia mangostana Peel-Dyed Cotton Fabrics Using Synthetic and Natural Mordants. Sustain. Chem. Pharm. 2021, 21, 100440. [Google Scholar] [CrossRef]
- Pratiwi, L. Novel Antimicrobial Activities of Self-Nanoemulsifying Drug Delivery System (SNEDDS) Ethyl Acetate Fraction from Garcinia mangostana L. Peels against Staphylococcus epidermidis: Design, Optimization, and In Vitro Studies. J. Appl. Pharm. Sci. 2021, 11, 162–171. [Google Scholar] [CrossRef]
- Moopayak, W.; Tangboriboon, N. Mangosteen Peel and Seed as Antimicrobial and Drug Delivery in Rubber Products. J. Appl. Polym. Sci. 2020, 137, 49119. [Google Scholar] [CrossRef]
Organic Acids | Content (g/100 g) |
Oxalic acid | 0.208 ± 0.001 |
Quinic acid | 0.241 ± 0.002 |
Malic acid | 0.11 ± 0.01 |
Ascorbic acid | 0.017 ± 0.001 |
Shikimic acid | tr |
Citric acid | 0.76 ± 0.04 |
Fumaric acid | tr |
Total organic acids | 1.34 ± 0.04 |
Tocopherols | Content (mg/100 g) |
α-tocopherol | 1.94 ± 0.05 |
β-tocopherol | 7.3 ± 0.2 |
γ-tocopherol | 0.69 ± 0.05 |
Total tocopherols | 9.9 ± 0.1 |
Fatty Acids | Relative % |
Palmitic acid (C16:0) | 28.64 ± 0.04 |
Stearic acid (C18:0) | 12.0 ± 0.3 |
Oleic acid (C18:1n9c) | 34.2 ± 0.3 |
Linoleic acid (C18:2n6c) | 25.21 ± 0.04 |
SFA | 40.6 ± 0.3 |
MUFA | 34.1 ± 0.3 |
PUFA | 25.2 ± 0.04 |
PUFA/SFA | 0.62 ± 0.01 |
Compound | Rt (min) | λmax (nm) | [M-H]−/+ (m/z) | MS² (m/z) | Tentative Identification | Reference |
---|---|---|---|---|---|---|
Non-anthocyanin compounds | ||||||
1 | 6.99 | 326 | 353 | 191(100), 179(10), 173(5), 135(5) | 5-O-Caffeoylquinic | DAD-MSn |
2 | 6.96 | 280 | 577 | 451(29), 425(100), 407(30), 289(15) | B-Type (epi)catechin dimer | [28] |
3 | 7.26 | 280 | 865 | 577(85), 289(5), 287(30) | Procyanidin trimer | [28] |
4 | 7.71 | 280 | 577 | 451(20), 425(100), 289(12) | Procyanidin dimer | [28] |
5 | 9.43 | 280 | 289 | 245(100), 205(44) | (+)-Epicatechin | DAD-MSn |
6 | 10.79 | 280 | 865 | 577(85), 289(5), 287(25) | Procyanidin trimer | [28] |
7 | 11.98 | 280 | 1153 | 865(100), 577(29), 289(34) | Procyanidin tetramer | [28] |
8 | 12.61 | 280 | 1153 | 865(34), 577(86), 289(21) | Procyanidin tetramer | [28] |
9 | 13.31 | 280 | 863 | 711(100), 573(20), 451(34), 411(19), 289(5) | Procyanidin with A-type linkage | [28] |
10 | 14.51 | 280 | 865 | 577(85), 289(5), 287(34) | Procyanidin trimer | [28] |
11 | 15.32 | 280 | 577 | 451(31), 425(100), 407(34), 289(10) | B-Type (epi)catechin dimer | [28] |
12 | 17.76 | 326 | 609 | 301(100) | Quercetin-3-O-rutinoside | DAD-MSn |
13 | 18.91 | 295 | 449 | 303(100),285(25) | Taxifolin-O-rhamnoside | DAD-MSn |
Anthocyanin compounds | ||||||
14 | 13.27 | 515 | 611 | 287(100) | Cyanidin-O-sophoroside | [29,30] |
15 | 16.11 | 515 | 435 | 303(100) | Delphinidin-O-pentoside | DAD-MSn |
Compound | mg/g Extract | mg/g Dry Pericarp | ||||
---|---|---|---|---|---|---|
MT80 | MTW | MTE | MT80 | MTW | MTE | |
1 | 1.30 ± 0.08 | nd | nd | 0.40 ± 0.02 | nd | nd |
2 | nd | 1.01 ± 0.03 * | 4.16 ± 0.03 * | nd | 0.222 ± 0.007 * | 0.86 ± 0.01 * |
3 | 3.66 ± 0.09 | nd | nd | 1.13 ± 0.03 | nd | nd |
4 | 11.2 ± 0.2 | nd | nd | 3.47 ± 0.05 | nd | nd |
5 | 12.3 ± 0.3 a | 0.58 ± 0.01 c | 3.7 ± 0.1 b | 3.78 ± 0.10 A | 0.127 ± 0.002 C | 0.77 ± 0.02 B |
6 | 9.6 ± 0.3 a | 0.43 ± 0.04 c | 2.0 ± 0.1 b | 2.98 ± 0.09 A | 0.094 ± 0.008 C | 0.42 ± 0.03 B |
7 | 8.4 ± 0.04 a | 0.37 ± 0.01 c | 2.23 ± 0.05 b | 2.59 ± 0.01 A | 0.082 ± 0.001 C | 0.46 ± 0.01 B |
8 | nd | 0.472 ± 0.005 * | 2.02 ± 0.09 * | nd | nd | 0.42 ± 0.02 |
9 | 3.4 ± 0.2 | nd | nd | 1.04 ± 0.06 | nd | nd |
10 | 2.96 ± 0.01 a | 0.30 ± 0.01 c | 2.22 ± 0.03 b | 0.913 ± 0.002 A | 0.104 ± 0.001 C | 0.46 ± 0.01 B |
11 | nd | 0.433 ± 0.002 b | 1.82 ± 0.01 a | nd | 0.065 ± 0.001 * | 0.3756 ± 0.0001 * |
12 | tr | nd | nd | tr | nd | nd |
13 | 1.02 ± 0.05 a | 0.41 ± 0.01 b | 1.05 ± 0.04 a | 0.32 ± 0.02 A | 0.095 ± 0.001 C | 0.22 ± 0.01 B |
14 | 2.41 ± 0.03 | nd | nd | 0.699 ± 0.009 | nd | nd |
15 | 1.25 ± 0.01 | nd | nd | 0.363 ± 0.002 | nd | nd |
TPC-NA | 54 ± 1 a | 4.011 ± 0.005 b | 19.79 ± 0.08 c | 16.6 ± 0.4 A | 0.879 ± 0.001 C | 3.99 ± 0.04 B |
TA | 3.66 ± 0.02 | nd | nd | 1.062 ± 0.007 | nd | nd |
MT80 | MTW | MTE | Ampicillin | ||
---|---|---|---|---|---|
MIC | MIC | MIC | MIC | MBC | |
Gram-negative bacteria | |||||
Escherichia coli | 2.5 | 10 | 10 | <0.15 | <0.15 |
Klebsiella pneumoniae | 10 | 10 | >20 | 10 | 20 |
Morganella morganii | 10 | 10 | 20 | 20 | >20 |
Proteus mirabilis | 10 | 10 | >20 | <0.15 | <0.15 |
Pseudomonas aeruginosa | >20 | >20 | 20 | >20 | >20 |
Gram-positive bacteria | |||||
Enterococcus faecalis | 0.625 | 5 | 2.5 | <0.15 | <0.15 |
Listeria monocytogenes | 1.25 | 2.5 | 2.5 | <0.15 | <0.15 |
Methicillin-resistant Staphylococcus aureus | 1.25 | 5 | 1.25 | <0.15 | <0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albuquerque, B.R.; Dias, M.I.; Pinela, J.; Calhelha, R.C.; Pires, T.C.S.P.; Alves, M.J.; Corrêa, R.C.G.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Barros, L. Insights into the Chemical Composition and In Vitro Bioactive Properties of Mangosteen (Garcinia mangostana L.) Pericarp. Foods 2023, 12, 994. https://doi.org/10.3390/foods12050994
Albuquerque BR, Dias MI, Pinela J, Calhelha RC, Pires TCSP, Alves MJ, Corrêa RCG, Ferreira ICFR, Oliveira MBPP, Barros L. Insights into the Chemical Composition and In Vitro Bioactive Properties of Mangosteen (Garcinia mangostana L.) Pericarp. Foods. 2023; 12(5):994. https://doi.org/10.3390/foods12050994
Chicago/Turabian StyleAlbuquerque, Bianca R., Maria Inês Dias, José Pinela, Ricardo C. Calhelha, Tânia C. S. P. Pires, Maria José Alves, Rúbia C. G. Corrêa, Isabel C. F. R. Ferreira, Maria Beatriz P. P. Oliveira, and Lillian Barros. 2023. "Insights into the Chemical Composition and In Vitro Bioactive Properties of Mangosteen (Garcinia mangostana L.) Pericarp" Foods 12, no. 5: 994. https://doi.org/10.3390/foods12050994
APA StyleAlbuquerque, B. R., Dias, M. I., Pinela, J., Calhelha, R. C., Pires, T. C. S. P., Alves, M. J., Corrêa, R. C. G., Ferreira, I. C. F. R., Oliveira, M. B. P. P., & Barros, L. (2023). Insights into the Chemical Composition and In Vitro Bioactive Properties of Mangosteen (Garcinia mangostana L.) Pericarp. Foods, 12(5), 994. https://doi.org/10.3390/foods12050994