Multiple Organic Contaminants Determination Including Multiclass of Pesticides, Polychlorinated Biphenyls, and Brominated Flame Retardants in Portuguese Kiwano Fruits by Gas Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Samples
2.3. Extraction Procedure: Optimization and Validation
2.4. Equipment
2.4.1. GC-ECD
2.4.2. GC-FPD
2.4.3. GC/MS Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Matrix Effects
3.2. Method Validation
3.3. Kiwano Sample Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vieira, E.F.; Grosso, C.; Rodrigues, F.; Moreira, M.M.; Fernandes, V.C.; Delerue-Matos, C. Bioactive Compounds of Horned Melon (Cucumis Metuliferus E. Meyer ex Naudin). In Bioactive Compounds in Underutilized Vegetables and Legumes; Murthy, H.N., Paek, K.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–21. [Google Scholar]
- Šeregelj, V.; Šovljanski, O.; Tumbas Šaponjac, V.; Vulić, J.; Ćetković, G.; Markov, S.; Čanadanović-Brunet, J. Horned Melon (Cucumis metuliferus E. Meyer Ex. Naudin)—Current Knowledge on Its Phytochemicals, Biological Benefits, and Potential Applications. Processes 2022, 10, 94. [Google Scholar]
- Vieira, E.F.; Podlasiak, M.; Moreira, M.M.; Grosso, C.; Rodrigues, F.; Fernandes, V.C.; Delerue-Matos, C. New insights of phytochemical profile and in vitro antioxidant and neuroprotective activities from optimized extract of Horned Melon fruit. J. Food Meas. Charact. 2022, 16, 1847–1858. [Google Scholar] [CrossRef]
- Sodipo, O.; Kwaghe, A.; Sandabe, U. Uses of Cucumis metuliferus: A Review. Cancer Biol. 2015, 55, 24–34. [Google Scholar]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An extensive review on the consequences of chemical pesticides on human health and environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Philippe, V.; Neveen, A.; Marwa, A.; Ahmad Basel, A.-Y. Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health. Food Control. 2021, 119, 107457. [Google Scholar] [CrossRef]
- Piwowar, A. The use of pesticides in Polish agriculture after integrated pest management (IPM) implementation. Environ. Sci. Pollut. Res. 2021, 28, 26628–26642. [Google Scholar] [CrossRef]
- Kumar, D.; Pannu, R. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: A review. Bioresour. Bioprocess. 2018, 5, 29. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Pestana, D.; Teixeira, D.; Meireles, M.; Marques, C.; Norberto, S.; Sá, C.; Fernandes, V.C.; Correia-Sá, L.; Faria, A.; Guardão, L.; et al. Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p’-DDE. Sci. Rep. 2017, 7, 2738. [Google Scholar] [CrossRef]
- Pestana, D.; Faria, G.; Sá, C.; Fernandes, V.C.; Teixeira, D.; Norberto, S.; Faria, A.; Meireles, M.; Marques, C.; Correia-Sá, L.; et al. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals—Depot differences and dysmetabolism implications. Environ. Res. 2014, 133, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Osemwegie, O.; Ramkumar, S.; Smith, E.E. Neurodegenerative Implications of Neuronal Cytoplasmic Protein Dysfunction in Response to Environmental Contaminants. Neurotox. Res. 2021, 39, 533–541. [Google Scholar] [CrossRef]
- Verma, S.; Singh, D.; Chatterjee, S. Biodegradation of organophosphorus pesticide chlorpyrifos by Sphingobacterium sp. C1B, a psychrotolerant bacterium isolated from apple orchard in Himachal Pradesh of India. Extremophiles 2020, 24, 897–908. [Google Scholar] [CrossRef]
- Sapbamrer, R.; Hongsibsong, S. Organophosphorus Pesticide Residues in Vegetables From Farms, Markets, and a Supermarket Around Kwan Phayao Lake of Northern Thailand. Arch. Environ. Contam. Toxicol. 2014, 67, 60–67. [Google Scholar] [CrossRef]
- Han, L.; Sapozhnikova, Y.; Lehotay, S.J. Method validation for 243 pesticides and environmental contaminants in meats and poultry by tandem mass spectrometry coupled to low-pressure gas chromatography and ultrahigh-performance liquid chromatography. Food Control. 2016, 66, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Maia, M.L.; Sousa, S.; Pestana, D.; Faria, A.; Teixeira, D.; Delerue-Matos, C.; Domingues, V.F.; Calhau, C. Impact of brominated flame retardants on lipid metabolism: An in vitro approach. Environ. Pollut. 2022, 294, 118639. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut. Res. 2017, 24, 4223–4227. [Google Scholar] [CrossRef]
- Selonen, S.; Dolar, A.; Jemec Kokalj, A.; Sackey, L.N.A.; Skalar, T.; Fernandes, V.C.; Rede, D.; Delerue-Matos, C.; Hurley, R.; Nizzetto, L.; et al. Exploring the impacts of microplastics and associated chemicals in the terrestrial environment—Exposure of soil invertebrates to tire particles. Environ. Res. 2021, 201, 111495. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.; Schlumpf, M.; Nakano, T.; Vijgen, J. The need for better management and control of POPs stockpiles. Environ. Sci. Pollut. Res. 2015, 22, 14385–14390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, V.C.; Domingues, V.F.; Mateus, N.; Delerue-Matos, C. Pesticide residues in Portuguese strawberries grown in 2009–2010 using integrated pest management and organic farming. Environ. Sci. Pollut. Res. 2012, 19, 4184–4192. [Google Scholar] [CrossRef] [Green Version]
- Lobato, A.; Fernandes, V.C.; Pacheco, J.G.; Delerue-Matos, C.; Goncalves, L.M. Organochlorine pesticide analysis in milk by gas-diffusion microextraction with gas chromatography-electron capture detection and confirmation by mass spectrometry. J. Chromatogr. A 2021, 1636, 461797. [Google Scholar] [CrossRef]
- Dorosh, O.; Fernandes, V.C.; Moreira, M.M.; Delerue-Matos, C. Occurrence of pesticides and environmental contaminants in vineyards: Case study of Portuguese grapevine canes. Sci. Total Environ. 2021, 791, 148395. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.C.; Luts, W.; Delerue-Matos, C.; Domingues, V.F. Improved QuEChERS for Analysis of Polybrominated Diphenyl Ethers and Novel Brominated Flame Retardants in Capsicum Cultivars Using Gas Chromatography. J. Agric. Food Chem. 2020, 68, 3260–3266. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.C.; Freitas, M.; Pacheco, J.G.; Fernandes Domingues, V.; Delerue-Matos, C. Evaluation of the QuEChERS and magnetic micro dispersive solid-phase extraction of brominated flame retardants in red fruits with determination by GC/MS. Food Chem. 2020, 309, 125572. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.C.; Domingues, V.F.; Mateus, N.; Delerue-Matos, C. Analysing organochlorine pesticides in strawberry jams using GC-ECD, GC-MS/MS and QuEChERS sample preparation. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2012, 29, 1074–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia-Sá, L.; Fernandes, V.C.; Calhau, C.; Domingues, V.; Delerue-Matos, C. Optimization of QuEChERS Procedure Coupled to GC-ECD for Organochlorine Pesticide Determination in Carrot Samples. Food Anal. Methods 2012, 6, 587–597. [Google Scholar] [CrossRef]
- Ferreira, C.; Lopes, F.; Costa, R.; Komora, N.; Ferreira, V.; Fernandes, V.C.; Delerue-Matos, C.; Teixeira, P. Microbiological and Chemical Quality of Portuguese Lettuce-Results of a Case Study. Foods 2020, 9, 1274. [Google Scholar] [CrossRef]
- Fernandes, V.C.; Lehotay, S.J.; Geis-Asteggiante, L.; Kwon, H.; Mol, H.G.J.; van der Kamp, H.; Mateus, N.; Domingues, V.F.; Delerue-Matos, C. Analysis of pesticide residues in strawberries and soils by GC-MS/MS,LC-MS/MS and twodimensional GC-time-of-flight MS comparing organic and integrated pest management farming. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2014, 31, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Li, Q.; Yang, T.; Zhang, Y.; He, M.; Zeng, H.; Mai, X.; Liu, Y.; Fan, H. Sequential extraction and enrichment of pesticide m, residues in Longan fruit by ultrasonic-assisted aqueous two-phase extraction linked to vortex-assisted dispersive liquid-liquid microextraction prior to high performance liquid chromatography analysis. J. Chromatogr. A 2020, 1619, 460929. [Google Scholar] [CrossRef]
- Paz, M.; Correia-Sá, L.; Becker, H.; Longhinotti, E.; Domingues, V.F.; Delerue-Matos, C. Validation of QuEChERS method for organochlorine pesticides analysis in tamarind (Tamarindus indica) products: Peel, fruit and commercial pulp. Food Control. 2015, 54, 374–382. [Google Scholar] [CrossRef]
- Botero-Coy, A.M.; Marín, J.M.; Ibáñez, M.; Sancho, J.V.; Hernández, F. Multi-residue determination of pesticides in tropical fruits using liquid chromatography/tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 402, 2287–2300. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.-K.; Choi, S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS—Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, K.; Savant, R.H.; Dasgupta, S.; Patil, S.H.; Oulkar, D.P.; Adsule, P.G. Multiresidue analysis of synthetic pyrethroid pesticides in grapes by gas chromatography with programmed temperature vaporizing-large volume injection coupled with ion trap mass spectrometry. J AOAC Int. 2010, 93, 368–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, V.C.; Domingues, V.F.; Mateus, N.; Delerue-Matos, C. Organochlorine Pesticide Residues in Strawberries from Integrated Pest Management and Organic Farming. J. Agric. Food Chem. 2011, 59, 7582–7591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.; Duan, Y.; Ge, H.; Zhang, Y.; Wu, X. Multiresidue Analysis of 113 Pesticides in Different Maturity Levels of Mangoes Using an Optimized QuEChERS Method with GC-MS/MS and UHPLC-MS/MS. Food Anal. Methods 2018, 11, 2742–2757. [Google Scholar] [CrossRef]
- España Amórtegui, J.C.; Guerrero Dallos, J.A. Practical aspects in gas chromatography–mass spectrometry for the analysis of pesticide residues in exotic fruits. Food Chem. 2015, 182, 14–22. [Google Scholar] [CrossRef]
- EU Commission. SANTE/11312/2021—Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Sante 2021, 11813, 21–22. [Google Scholar]
- Besil, N.; Cesio, V.; Heinzen, H.; Fernandez-Alba, A.R. Matrix Effects and Interferences of Different Citrus Fruit Coextractives in Pesticide Residue Analysis Using Ultrahigh-Performance Liquid Chromatography–High-Resolution Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 4819–4829. [Google Scholar] [CrossRef]
- Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chem. 2019, 279, 20–29. [Google Scholar] [CrossRef]
- Regulation (EC). No. 396/2005 of The European Parliament and of The Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC. J. Eur. Communities 2005, L70, 1–16. [Google Scholar]
- Commission Recommendation (2014/118/EU) of 3 March 2014 on the monitoring of traces of brominated flame retardants in food. OJEU. 2014, L 65, 39–40.
- Kasperkiewicz, A.; Pawliszyn, J. Multiresidue pesticide quantitation in multiple fruit matrices via automated coated blade spray and liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem. 2021, 339, 127815. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Tong, Z.; Dong, X.; Sun, M.; Gao, T.; Duan, J.; Wang, M. Simultaneous determination of 98 pesticide residues in strawberries using UPLC-MS/MS and GC-MS/MS. Microchem. J. 2020, 156, 104975. [Google Scholar] [CrossRef]
- Fernandes, V.C.; Freitas, M.; Pacheco, J.P.G.; Oliveira, J.M.; Domingues, V.F.; Delerue-Matos, C. Magnetic dispersive micro solid-phase extraction and gas chromatography determination of organophosphorus pesticides in strawberries. J. Chromatogr. A 2018, 1566, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Su, X. Assessment of the Polychlorinated Biphenyl (PCB) Occurrence in Copper Sulfates and the Influential Role of PCB Levels on Grapes. PLoS ONE 2015, 10, e0144896. [Google Scholar] [CrossRef]
- Grassi, P.; Fattore, E.; Generoso, C.; Fanelli, R.; Arvati, M.; Zuccato, E. Polychlorobiphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in fruit and vegetables from an industrial area in northern Italy. Chemosphere 2010, 79, 292–298. [Google Scholar] [CrossRef]
- Sun, J.; Wu, Y.; Jiang, P.; Zheng, L.; Zhang, A.; Qi, H. Concentration, uptake and human dietary intake of novel brominated flame retardants in greenhouse and conventional vegetables. Environ. Int. 2019, 123, 436–443. [Google Scholar] [CrossRef]
Linearity Range µg kg−1 | Coefficient of Determination | LOD µg kg−1 | LOQ µg kg−1 | Mean Recovery (n = 3)% | Precision (n = 5) Intra-Day Inter-Day % | ||
---|---|---|---|---|---|---|---|
α-HCH | 2.2–18.7 | 0.9922 | 2.1 | 6.9 | 95 | 10 | 14 |
HCB | 2.2–18.7 | 0.9933 | 2.0 | 6.6 | 94 | 14 | 15 |
β-HCH | 2.2–14.9 | 0.9936 | 2.2 | 7.3 | 90 | 9 | 11 |
Lindane | 2.2–14.9 | 0.9941 | 2.1 | 7.1 | 103 | 9 | 13 |
ζ-HCH | 2.2–14.9 | 0.9926 | 1.8 | 5.9 | 91 | 8 | 11 |
PCB 28 | 2.2–18.7 | 0.9928 | 2.2 | 7.3 | 90 | 9 | 10 |
Aldrin | 1.5–18.7 | 0.9989 | 1.2 | 4.2 | 99 | 8 | 9 |
PCB 101 | 1.5–18.7 | 0.9986 | 1.4 | 4.7 | 110 | 10 | 12 |
End I | 1.5–18.7 | 0.9995 | 0.8 | 2.8 | 105 | 12 | 15 |
p,p′-DDE | 2.2–18.7 | 0.9939 | 1.7 | 5.6 | 99 | 8 | 9 |
Dieldrin | 1.5–18.7 | 0.9990 | 1.1 | 3.6 | 114 | 8 | 10 |
PCB 118 | 1.5–18.7 | 0.9987 | 1.1 | 3.7 | 90 | 9 | 12 |
BDE 28 | 1.5–18.7 | 0.9999 | 0.3 | 1.0 | 99 | 8 | 11 |
p,p′-DDD | 1.5–18.7 | 0.9998 | 0.2 | 0.6 | 91 | 10 | 14 |
o,p′-DDT | 1.5–18.7 | 0.9992 | 1.0 | 3.2 | 90 | 13 | 15 |
PCB 153 | 1.5–18.7 | 0.9996 | 0.7 | 2.2 | 106 | 9 | 11 |
Methoxychlor | 2.2–18.7 | 0.9965 | 1.9 | 6.3 | 93 | 9 | 14 |
PCB 180 | 1.5–18.7 | 0.9983 | 1.3 | 4.3 | 122 | 8 | 9 |
BDE 47 | 1.5–18.7 | 0.9995 | 0.7 | 2.3 | 108 | 8 | 10 |
BDE 100 | 2.2–18.7 | 0.9929 | 2.0 | 6.6 | 99 | 13 | 15 |
BDE 99 | 1.5–18.7 | 0.9990 | 1.0 | 3.3 | 103 | 9 | 12 |
BDE 153 | 1.5–18.7 | 0.9993 | 0.8 | 2.8 | 122 | 7 | 9 |
BDE 154 | 1.5–18.7 | 0.9998 | 0.4 | 1.4 | 95 | 6 | 9 |
BDE 183 | 1.5–18.7 | 0.9995 | 0.7 | 2.3 | 91 | 9 | 12 |
Dimethoate | 2.2–18.7 | 0.9938 | 1.9 | 6.3 | 90 | 8 | 11 |
Chlorpyrifos-methyl | 2.2–18.7 | 0.9931 | 2.2 | 7.3 | 93 | 7 | 9 |
Methyl parathion | 2.2–18.7 | 0.9960 | 1.7 | 5.7 | 105 | 9 | 10 |
Malathion | 2.2–18.7 | 0.9929 | 2.0 | 6.6 | 94 | 10 | 13 |
Chlorpyrifos | 1.5–18.7 | 0.9993 | 0.9 | 2.9 | 97 | 8 | 10 |
Chlorfenvinphos | 1.5–18.7 | 0.9989 | 1.1 | 3.6 | 90 | 13 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, V.C.; Podlasiak, M.; Vieira, E.F.; Rodrigues, F.; Grosso, C.; Moreira, M.M.; Delerue-Matos, C. Multiple Organic Contaminants Determination Including Multiclass of Pesticides, Polychlorinated Biphenyls, and Brominated Flame Retardants in Portuguese Kiwano Fruits by Gas Chromatography. Foods 2023, 12, 993. https://doi.org/10.3390/foods12050993
Fernandes VC, Podlasiak M, Vieira EF, Rodrigues F, Grosso C, Moreira MM, Delerue-Matos C. Multiple Organic Contaminants Determination Including Multiclass of Pesticides, Polychlorinated Biphenyls, and Brominated Flame Retardants in Portuguese Kiwano Fruits by Gas Chromatography. Foods. 2023; 12(5):993. https://doi.org/10.3390/foods12050993
Chicago/Turabian StyleFernandes, Virgínia Cruz, Martyna Podlasiak, Elsa F. Vieira, Francisca Rodrigues, Clara Grosso, Manuela M. Moreira, and Cristina Delerue-Matos. 2023. "Multiple Organic Contaminants Determination Including Multiclass of Pesticides, Polychlorinated Biphenyls, and Brominated Flame Retardants in Portuguese Kiwano Fruits by Gas Chromatography" Foods 12, no. 5: 993. https://doi.org/10.3390/foods12050993
APA StyleFernandes, V. C., Podlasiak, M., Vieira, E. F., Rodrigues, F., Grosso, C., Moreira, M. M., & Delerue-Matos, C. (2023). Multiple Organic Contaminants Determination Including Multiclass of Pesticides, Polychlorinated Biphenyls, and Brominated Flame Retardants in Portuguese Kiwano Fruits by Gas Chromatography. Foods, 12(5), 993. https://doi.org/10.3390/foods12050993