Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- Step one: Isolation, morphological and biochemical characterisation of LABs. Bacteria with morphological and biochemical characteristics typical of LAB and able to grow at 45 °C were isolated from Sardinian raw sheep milk;
- Step two: In vitro assessment of cPC and LABs antilisterial activity. The antilisterial activities of cPC and LAB cultures were tested and compared using an agar well diffusion assay (AWDA) method.
- Step three: Investigation of the mode of action of cPC and LABs. AWDA using cPC and LAB cell-free supernatants was conducted.
- Step four: Evaluation of antilisterial activity and viable count enumeration of cPC and LABs after growth in “scotta” (the residual whey from ricotta cheese production). cPC and LAB antilisterial activities were tested using scotta as growth media to investigate their adaptability to the manufacturing technology of the cheese.
2.2. Step One: Isolation, Morphological and Biochemical Characterisation of LABs
2.3. Step Two: In Vitro Assessment of cPC and LABs Antilisterial Activity
2.4. Step Three: Investigation of the Mode of Action of cPC and LABs
2.5. Step Four: Evaluation of Antilisterial Activity and Viable Count Enumeration of cPC and LABs after Growth in “Scotta”
2.6. Molecular Identification of Autochthonous Thermophilic Presumptive Lactic Acid Bacteria
3. Results
3.1. Step One: Isolation, Morphological and Biochemical Characterisation of LABs
3.2. Step Two: In Vitro Assessment of cPC and LAB Antilisterial Activity
3.3. Step Three: Investigation of cPC and LAB Modes of Action
3.4. Step Four: Evaluation of Antilisterial Activity and Viable Count Enumeration of cPC and LABs after Growth in “Scotta”
3.5. Molecular Identification of Autochthonous Thermophilic Presumptive Lactic Acid Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention (CDC). Listeria (Listeriosis). Available online: https://www.cdc.gov/listeria/index.htmlAuthor (accessed on 15 November 2022).
- European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar]
- Ray, L.C.; Collins, J.P.; Griffin, P.M.; Shah, H.J.; Boyle, M.M.; Cieslak, P.R.; Dunn, J.; Lathrop, S.; McGuire, S.; Rissman, T.; et al. Decreased Incidence of Infections Caused by Pathogens Transmitted Commonly Through Food During the COVID-19 Pandemic—Foodborne Diseases Active Surveillance Network, 10 US Sites, 2017–2020. MMWR 2021, 70, 1332. [Google Scholar] [CrossRef] [PubMed]
- Gahan, C.G.; Hill, C. Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract. Front. Cell Infect. Microbiol. 2014, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Listeriosis. Available online: https://www.who.int/news-room/fact-sheets/detail/listeriosis (accessed on 21 September 2022).
- Lahou, E.; Uyttendaele, M. Growth potential of Listeria monocytogenes in soft, semi-soft and semi-hard artisanal cheeses after post-processing contamination in deli retail establishments. Food Control 2017, 76, 13–23. [Google Scholar] [CrossRef]
- Niamah, A.K. Detection of Listeria monocytogenes bacteria in four types of milk using PCR. Pak. J. Nutr. 2012, 11, 1158. [Google Scholar] [CrossRef] [Green Version]
- Yap, P.C.; MatRahim, N.A.; AbuBakar, S.; Lee, H.Y. Antilisterial potential of lac-tic acid bacteria in eliminating Listeria mono-cytogenes in host and ready-to-eat food application. Microbiol. Res. 2021, 12, 234–257. [Google Scholar] [CrossRef]
- Melo, J.; Andrew, P.W.; Faleiro, M.L. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res. Int. 2015, 67, 75–90. [Google Scholar] [CrossRef]
- Coelho, M.C.; Silva, C.C.G.; Ribeiro, S.C.; Dapkevicius, M.L.N.E.; Rosa, H.J.D. Control of Listeria monocytogenes in fresh cheese using protective lactic acid bacteria. Int. J. Food Microbiol. 2014, 191, 53–59. [Google Scholar] [CrossRef]
- Commission of the European Communities. Commission Regulation (EC) No 2073/2005 on Microbiological Criteria for Foodstuffs. Off. J. Eur. Union 2005, 338, 1–29. [Google Scholar]
- ISMEA Mercati. La Competitività della Filiera Ovina in Italia. Available online: https://www.ismea.it/flex/cm/pages/ServeAttachment.php/L/IT/D/a%252F2%252Fd%252FD.416c7a8300d7996fcf62/P/BLOB%3AID%3D10572/E/pdf (accessed on 15 November 2022).
- ISTAT. Consistenze Degli Allevamenti. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_CONSISTENZE (accessed on 25 August 2022).
- ISMEA Mercati. Ovicaprini. Available online: https://www.ismeamercati.it/flex/files/1/2/f/D.71a3e469835bde270968/Scheda_Ovicaprino_2022.pdf (accessed on 16 November 2022).
- ISMEA Mercati. Tendenze e Dinamiche Recenti. Latte Ovino–_luglio 2022. Available online: https://www.ismeamercati.it/flex/cm/pages/ServeAttachment.php/L/IT/D/1%252Fd%252Fc%252FD.a1634bb16ee38d05afbe/P/BLOB%3AID%3D12224/E/pdf?mode=download (accessed on 18 November 2022).
- Agenzia Laore Sardegna. Dati Sull’allevamento Ovino, Caprino e Bovino da Latte in Sardegna. 2019. Available online: http://www.sardegnaagricoltura.it/index.php?xsl=443&s=413001&v=2&c=94525&vd=1 (accessed on 8 September 2022).
- Vagnoni, E.; Franca, A.; Porqueddu, C.; Duce, P. Environmental profile of Sardinian sheep milk cheese supply chain: A comparison between two contrasting dairy systems. J. Clean. Prod. 2017, 165, 1078–1089. [Google Scholar] [CrossRef]
- Mulas, G.; Roggio, T.; Uzzau, S.; Anedda, R. A new magnetic resonance imaging approach for discriminating Sardinian sheep milk cheese made from heat-treated or raw milk. J. Dairy Sci. 2013, 96, 7393–7403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Commission of the European Communities. Council Regulation (EC) No 1263/96 of 1 July 1996 supplementing the Annex to Regulation (EC) No 1107/96 on the registration of geographical indications and designations of origin under the procedure laid down in Article 17 of Regulation (EEC) No 2081/92. Off. J. Eur. Union 1996, L163, 19–21. [Google Scholar]
- Commission of the European Communities. European Commission Regulation (EU) No 1151/2012 of the European Parliament and of the Council of 21st November 2012 on quality schemes for agricultural products and foodstuffs. Off. J. Eur. Union 2012, L343, 1–29. [Google Scholar]
- Choi, K.H.; Lee, H.; Lee, S.; Kim, S.; Yoon, Y. Cheese microbial risk assessments-a review. AJAS 2016, 29, 307–314. [Google Scholar] [CrossRef]
- Hossain, M.I.; Sadekuzzaman, M.; Ha, S.-D. Probiotics as potential alternative biocontrol agents in the agriculture and food industries: A review. Food Res. Int. 2017, 100, 63–73. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Battelli, G.; Brasca, M. Can lactic acid bacteria be an efficient tool for controlling Listeria monocytogenes contamination on cheese surface? The case of Gorgonzola cheese. Food Control 2019, 96, 499–507. [Google Scholar] [CrossRef]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef]
- Quinto, E.J.; Jiménez, P.; Caro, I.; Tejero, J.; Mateo, J.; Girbés, T. Probiotic lactic acid bacteria: A review. Food Sci. Nutr. 2014, 5, 1765. [Google Scholar] [CrossRef] [Green Version]
- Khalid, K. An overview of lactic acid bacteria. Int. J. Biosci. 2011, 1, 1–13. [Google Scholar]
- Dicks, L.; Botes, M. Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microbes 2010, 1, 11–29. [Google Scholar] [CrossRef]
- Ortolani, M.B.T.; Moraes, P.M.; Perin, L.M.; Viçosa, G.N.; Carvalho, K.G.D.; Júnior, A.S.; Nero, L.A. Molecular identification of naturally occurring bacteriocinogenic and bac-teriocinogenic-like lactic acid bacteria in raw milk and soft cheese. J. Dairy Sci. 2010, 93, 2880–2886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panebianco, F.; Giarratana, F.; Caridi, A.; Sidari, R.; De Bru-no, A.; Giuffrida, A. Lactic acid bacteria isolated from traditional Italian dairy products: Activity against Listeria monocytogenes and modelling of microbial competition in soft cheese. LWT 2021, 137, 110446. [Google Scholar] [CrossRef]
- Scatassa, M.L.; Gaglio, R.; Cardamone, C.; Macaluso, G.; Arcuri, L.; Todaro, M.; Mancuso, I. Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses. IJFS 2017, 6, 6191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, I.; Rodríguez, A.; Alía, A.; Martínez-Blanco, M.; Lozano-Ojalvo, D.; Córdoba, J.J. Control of Listeria monocytogenes growth and virulence in a traditional soft cheese model system based on lactic acid bacteria and a whey protein hydrolysate with antimicrobial activity. Int. J. Food Microbiol. 2022, 361, 109444. [Google Scholar] [CrossRef] [PubMed]
- Sanna, R.; Piras, F.; Siddi, G.; Meloni, M.P.; Demontis, M.; Spanu, V.; Nieddu, G.; Cuccu, M.; De Santis, E.P.L.; Scarano, C. Use of commercial protective cultures in portioned sheep milk cheeses to control Listeria monocytogenes. Ital. J. Food Saf. 2023; in press. [Google Scholar]
- Zuo, F.L.; Feng, X.J.; Chen, L.L.; Chen, S.W. Identification and partial characterization of lactic acid bacteria isolated from traditional dairy products produced by herders in the western Tianshan Mountains of China. Lett. Appl. Microbiol. 2014, 59, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Hutkins, R.; Goh, Y.J. Streptococcus: Streptococcus thermophilus. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 554–559. [Google Scholar]
- Venegas-Ortega, M.G.; Flores-Gallegos, A.C.; Aguilar, C.N.; Rodríguez-Herrera, R.; Martínez-Hernández, J.L.; Nevárez-Moorillón, G.V. Multi-functional potential of presumptive lactic acid bacteria isolated from Chihuahua Cheese. Foods 2020, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.K.; Bisht, S.S.; De Mandal, S.; Kumar, N.S. Microbial diversity of thermophiles through the lens of next generation sequencing. In Microbial Diversity in the Genomic Era; Academic Press: Cambridge, MA, USA, 2019; pp. 217–226. [Google Scholar]
- Ao, X.; Zhang, X.; Shi, L.; Zhao, K.; Yu, J.; Dong, L.; Cao, Y.; Cai, Y. Identification of lactic acid bacteria in traditional fermented yak milk and evaluation of their application in fermented milk products. J. Dairy Sci. 2012, 95, 1073–1084. [Google Scholar] [CrossRef] [Green Version]
- Spanu, C.; Scarano, C.; Ibba, M.; Spanu, V.; De Santis, E.P.L. Occurrence and traceability of Listeria monocytogenes strains isolated from sheep’s milk cheese-making plants environment. Food Control 2015, 47, 318–325. [Google Scholar] [CrossRef]
- Moraes, P.M.; Perin, L.M.; Ortolani, M.B.T.; Yamazi, A.K.; Viçosa, G.N.; Nero, L.A. Protocols for the isolation and detection of lactic acid bacteria with bacteriocinogenic potential. LWT Food Sci. Technol. 2010, 43, 1320–1324. [Google Scholar] [CrossRef]
- Harris, L.J.; Daeschel, M.A.; Stiles, M.E.; Klaenhammer, T.R. Antimicrobial Activity of Lactic Acid Bacteria Against Listeria monocytogene s. J. Food Prot. 1989, 52, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Herreros, M.A.; Sandoval, H.; González, L.; Castro, J.M.; Fresno, J.M.; Tornadijo, M.E. Antimicrobial activity and antibiotic resistance of lactic acid bacteria isolated from Armada cheese (a Spanish goats’ milk cheese). Food Microbiol. 2005, 22, 455–459. [Google Scholar] [CrossRef]
- Jin, T.; Liu, L.; Zhang, H.; Hicks, K. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. Int. J. Food Sci. Technol. 2009, 44, 322–329. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaamouche, S.; Arakrak, A.; Bakkali, M.; Laglaoui, A. Antimicrobial activity of lactic acid bacteria and bacteriocins isolated from a traditional brine table olives against pathogenic bacteria. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 657–666. [Google Scholar]
- Wang, Y.; Qin, Y.; Xie, Q.; Zhang, Y.; Hu, J.; Li, P. Purification and characterization of plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish. Front. Microbiol. 2018, 9, 2276. [Google Scholar] [CrossRef]
- Lin, T.H.; Pan, T.M. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. J. Microbiol. Immunol. Infect. 2019, 52, 409–417. [Google Scholar] [CrossRef]
- Yang, E.; Fan, L.; Jiang, Y.; Doucette, C.; Fillmore, S. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express 2012, 2, 48. [Google Scholar] [CrossRef] [Green Version]
- Mannu, L.; Riu, G.; Comunian, R.; Fozzi, M.C.; Scintu, M.F. A preliminary study of lactic acid bacteria in whey starter culture and industrial pecorino sardo ewes’ milk cheese: PCR-identification and evolution during ripening. Int. Dairy J. 2002, 12, 17–26. [Google Scholar] [CrossRef]
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 degrees C. Available online: https://www.iso.org/standard/26853.html (accessed on 2 April 2019).
- Süle, J.; Kõrösi, T.; Hucker, A.; Varga, L. Evaluation of culture media for selective enumeration of bifidobacteria and lactic acid bacteria. Brazil. J. Microbiol. 2014, 45, 1023–1030. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharmaceut. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarridge, J.E. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Morgulis, A.; Coulouris, G.; Raytselis, Y.; Madden, T.L.; Agarwala, R.; Schäffer, A.A. Database indexing for production MegaBLAST searches. Bioinformatics 2008, 24, 1757–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddi, G.; Piras, F.; Spanu, V.; Meloni, M.P.; Sanna, R.; Carta, N.; Errico, M.; Cuccu, M.; De Santis, E.P.L.; Scarano, C. Selection of commercial protective cultures to be added in Sardinian fermented sausage to control Listeria monocytogenes. Ital. J. Food Saf. 2022, 11, 10368. [Google Scholar] [CrossRef]
- Aljasir, S.F.; Gensler, C.; Sun, L.; D’Amico, D.J. The efficacy of individual and combined commercial protective cultures against Listeria monocytogenes, Salmonella, O157 and non-O157 shiga toxin-producing Escherichia coli in growth medium and raw milk. Food Control 2020, 109, 106924. [Google Scholar] [CrossRef]
- Spanu, C.; Piras, F.; Mocci, A.M.; Nieddu, G.; De Santis, E.P.L.; Scarano, C. Use of Carnobacterium spp protective culture in MAP packed Ricotta fresca cheese to control Pseudomonas spp. Food Microbiol. 2018, 74, 50–56. [Google Scholar] [CrossRef]
- Settanni, L.; Moschetti, G. New trends in technology and identity of traditional dairy and fermented meat production processes: Preservation of typicality and hygiene. Trends Food Sci. Technol. 2014, 37, 51–58. [Google Scholar] [CrossRef]
- Palavecino Prpich, N.Z.; Camprubí, G.E.; Cayré, M.E.; Castro, M.P. Indigenous microbiota to leverage traditional dry sausage production. Int. J. Food Sci. 2021, 30, 6696856. [Google Scholar] [CrossRef]
- Chen, T.; Wang, L.; Li, Q.; Long, Y.; Lin, Y.; Yin, J.; Zeng, Y.; Huang, L.; Yao, T.; Abbasi, M.N.; et al. Functional probiotics of lactic acid bacteria from Hu sheep milk. BMC Microbiol. 2020, 20, 228. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteagudo-Mera, A.; Rodríguez-Aparicio, L.; Rúa, J.; Martínez-Blanco, H.; Navasa, N.; García-Armesto, M.R.; Ferrero, M.Á. In vitro evaluation of physiological probiotic properties of different lactic acid bacteria strains of dairy and human origin. JFF 2012, 4, 531–541. [Google Scholar] [CrossRef]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; Claro da Silva, R.; Ibrahim, S.A. Lactic acid bacteria: Food safety and human health applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- O’sullivan, L.; O’connor, E.B.; Ross, R.P.; Hill, C. Evaluation of live-culture-producing lacticin 3147 as a treatment for the control of Listeria monocytogenes on the surface of smear-ripened cheese. J. Appl. Microbiol. 2006, 100, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Kasra-Kermanshahi, R.; Mobarak-Qamsari, E. Inhibition effect of lactic acid bacteria against food born pathogen, Listeria monocytogenes. Appl. Food Biotechnol. 2015, 2, 11–19. [Google Scholar]
- Guarcello, R.; Carpino, S.; Gaglio, R.; Pino, A.; Rapisarda, T.; Caggia, C.; Marino, G.; Randazzo, C.L.; Settanni, L.; Todaro, M. A large factory-scale application of selected autochthonous lactic acid bacteria for PDO Pecorino Siciliano cheese production. Food Microbiol. 2016, 59, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Iranmanesh, M.; Ezzatpanah, H.; Mojgani, N.; Torshizi, M.K.; Aminafshar, M.; Maohamadi, M. Isolation of lactic acid bacteria from ewe milk, traditional yoghurt and sour buttermilk in Iran. Eur. J. Food Res. Rev. 2012, 2, 79–92. [Google Scholar]
- Reuben, R.C.; Roy, P.C.; Sarkar, S.L.; Alam, A.R.U.; Jahid, I.K. Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. J. Dairy Sci. 2020, 103, 1223–1237. [Google Scholar] [CrossRef]
- Sip, A.; Więckowicz, M.; Olejnik-Schmidt, A.; Grajek, W. Anti-Listeria activity of lactic acid bacteria isolated from golka, a regional cheese produced in Poland. Food Control 2012, 26, 117–124. [Google Scholar] [CrossRef]
- Campagnollo, F.B.; Margalho, L.P.; Kamimura, B.A.; Feliciano, M.D.; Freire, L.; Lopes, L.S.; Alvarenga, V.O.; Cadavez, V.A.; Gonzales-Barron, U.; Schaffner, D.W.; et al. Selection of indigenous lactic acid bacteria presenting anti-listerial activity, and their role in reducing the maturation period and assuring the safety of traditional Brazilian cheeses. Food Microbiol. 2018, 73, 288–297. [Google Scholar] [CrossRef]
- Gazzetta Ufficiale della Repubblica Italiana. Disciplinare di produzione della Denominazione di origine del formaggio “Pecorino Sardo”. DPCM 4 Novembre 1991. GURI, 8 April 1992.
- Casla, D.; Requena, T.; Gómez, R. Antimicrobial activity of lactic acid bacteria isolated from goat’s milk and artisanal cheeses: Characteristics of a bacteriocin produced by Lactobacillus curvatus IFPL105. J. Appl. Microbiol 1996, 81, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chessa, L.; Paba, A.; Daga, E.; Caredda, M.; Comunian, R. Optimization of scotta as growth medium to preserve biodiversity and maximise bacterial cells concentration of natural starter cultures for Pecorino Romano PDO cheese. FEMS Microbiol. Lett. 2020, 367, fnaa110. [Google Scholar] [CrossRef] [PubMed]
- Daba, H.; Lacroix, C.; Huang, J.; Simard, R.E. Influence of growth conditions on production and activity of mesenterocin 5 by a strain of Leuconostoc mesenteroides. Appl. Microbiol. Biotechnol. 1993, 39, 166–173. [Google Scholar] [CrossRef]
- Todorov, S.D.; Dicks, L.M.T. Effect of medium components on bacteriocin production by Lactobacillus plantarum strains ST23LD and ST341LD, isolated from spoiled olive brine. Microbiol. Res. 2006, 161, 102–108. [Google Scholar] [CrossRef] [PubMed]
Raw Sheep Milk Samples | Culture Media | ||
---|---|---|---|
MRS pH 5.5 4 | L—M17 5 | B—Elliker 6 | |
L1 1 | 2.1 2 ± 0.3 3 a | 3.6 ± 0.0 b | 3.5 ± 0.0 b |
L2 | 3.0 ± 0.7 a | 3.5 ± 0.1 b | 3.7 ± 0.2 b |
L3 | 1.4 ± 0.8 a | 3.6 ± 0.2 b | 3.8 ± 0.2 b |
L4 | 2.7 ± 0.1 a | 3.2 ± 0.6 b | 3.7 ± 0.3 b |
Raw Sheep Milk Samples | Culture Media | ||
---|---|---|---|
MRS pH 5.5 4 | L—M17 5 | B—Elliker 6 | |
L1 2 | 2.2 1 ± 0.1 3 a | 4.6 ± 0.3 b | 4.3 ± 0.2 b |
L2 | 2.8 ± 0.4 a | 4.5 ± 0.2 b | 4.6 ± 0.2 b |
L3 | 2.3 ± 0.1 a | 3.9 ± 0.3 b | 4.3 ± 0.3 b |
L4 | 3.0 ± 0.2 a | 4.8 ± 0.2 b | 4.5 ± 0.2 b |
Samples | cPC Mean Viable Counts | Agar Well Diffusion Assay | |
---|---|---|---|
After Growth in Traditional Media (cm) | After Growth in Scotta (cm) | ||
Blank scotta (without inoculum) | 0 ± 0.0 2 | - | - |
cPC | 8.81 ± 0.1 | 2.5 ± 0.3 a | 1.9 ± 0.3 b |
L4 M17 2A 1 | 7.60 ± 0.1 | 1.6 ± 0.1 a | 1.7 ± 0.2 a |
L1 MRS 1B | 8.02 ± 0.2 | 1.2 ± 0.1 a | 1.1 ± 0.0 b |
L2 MRS 7B | 7.66 ± 1.0 | 1.4 ± 0.2 a | 1.4 ± 0.2 a |
L2 MRS 8B | 7.54 ± 0.6 | 1.4 ± 0.3 a | 1.6 ± 0.4 a |
L2 MRS 9B | 7.92 ± 0.3 | 1.5 ± 0.2 a | 1.2 ± 0.1 b |
L3 MRS 5B | 7.61 ± 0.3 | 1.3 ± 0.2 a | 1.5 ± 0.3 a |
L4 MRS 4B | 7.74 ± 0.6 | 1.5 ± 0.2 a | 1.3 ± 0.2 a |
Isolate | Species | NCBI Accession No. |
---|---|---|
L4 M17 2A | Enterococcus faecalis strain 133170041-3 | CP046108 |
L1 MRS 1B | Lactobacillus helveticus strain LH5 | CP019581 |
L2 MRS 7B | Lactobacillus delbrueckii subsp. indicus | LC483566 |
L2 MRS 8B | Lactobacillus delbrueckii subsp. sunkii strain JCM 17838 | CP018217 |
L2 MRS 9B | Lactobacillus delbrueckii subsp. lactis strain KCTC 3035 | CP018156 |
L3 MRS 5B | Lactobacillus delbrueckii subsp. sunkii strain JCM 17838 | CP018217 |
L4 MRS 4B | Lactobacillus delbrueckii subsp. lactis strain KCTC 3035 | CP018156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meloni, M.P.; Piras, F.; Siddi, G.; Cabras, D.; Comassi, E.; Lai, R.; McAuliffe, O.; De Santis, E.P.L.; Scarano, C. Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses. Foods 2023, 12, 1182. https://doi.org/10.3390/foods12061182
Meloni MP, Piras F, Siddi G, Cabras D, Comassi E, Lai R, McAuliffe O, De Santis EPL, Scarano C. Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses. Foods. 2023; 12(6):1182. https://doi.org/10.3390/foods12061182
Chicago/Turabian StyleMeloni, Maria Pina, Francesca Piras, Giuliana Siddi, Daniela Cabras, Eleonora Comassi, Roberta Lai, Olivia McAuliffe, Enrico Pietro Luigi De Santis, and Christian Scarano. 2023. "Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses" Foods 12, no. 6: 1182. https://doi.org/10.3390/foods12061182
APA StyleMeloni, M. P., Piras, F., Siddi, G., Cabras, D., Comassi, E., Lai, R., McAuliffe, O., De Santis, E. P. L., & Scarano, C. (2023). Comparison of Activity of Commercial Protective Cultures and Thermophilic Lactic Acid Bacteria against Listeria monocytogenes: A New Perspective to Improve the Safety of Sardinian PDO Cheeses. Foods, 12(6), 1182. https://doi.org/10.3390/foods12061182