Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits
Abstract
:1. Introduction
2. Agronomic Protocols Used in Organic and Conventional Wheat Production
2.1. Tillage
2.2. Rotational Design
2.3. Fertilization Regimes
2.4. Crop Protection
3. Wheat Breeding/Selection Objectives
3.1. Productivity
3.2. Protein Concentrations and Processing Quality Traits
3.3. Nutritional Quality Traits
4. Breeding/Selection Methods, Strategies and Approaches
4.1. Traditional Breeding Programs
4.2. Molecular Breeding Tools/Strategies
4.3. Farmer Participatory Breeding Approaches
4.4. Evolutionary Plant Breeding
4.5. Breeding for Nutritional Quality Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated Soil and Crop Management in Organic Agriculture: A Logical Framework to Ensure Food Quality and Human Health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- EC. The EU Nitrates Directive. 2010. Available online: http://ec.europa.eu/environment/pubs/pdf/factsheets/nitrates.pdf (accessed on 19 November 2018).
- EEA. European Environmental Agency Briefing on: Agricultural Land: Nitrogen Balance. 2018. Available online: https://www.eea.europa.eu/airs/2018/natural-capital/agricultural-land-nitrogen-balance (accessed on 26 February 2023).
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Schmidt, C.; Shotton, P.; Volakakis, N.; Cakmak, I.; et al. The effect of organic and conventional crop production systems on the yield and quality of wheat (Triticum aestivum) grown in a long-term field trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Dominika Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.N.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Rempelos, L.; Almuayrifi, M.S.B.; Baranski, M.; Tetard-Jones, C.; Barkla, B.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; Hall, G.; et al. The effect of agronomic factors on crop health and performance of winter wheat varieties bred for the conventional and the low input farming sector. Field Crops Res. 2020, 254, 107822. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef] [PubMed]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Quantitative proteomics to study the response of potato to contrasting fertilisation regimes. Mol. Breed. 2013, 31, 363–378. [Google Scholar] [CrossRef]
- Magistrali, A.; Vavera, R.; Janovska, D.; Rempelos, L.; Cakmak, I.; Leifert, C.; Grausgruber, H.; Butler, G.; Wilkinson, A.; Bilsborrow, P. Evaluating the effect of agronomic management practices on the performance of differing spelt (Triticum spelta) cultivars in contrasting environments. Field Crops Res. 2020, 255, 107869. [Google Scholar] [CrossRef]
- Tétard-Jones, C.; Edwards, M.G.; Rempelos, L.; Gatehouse, A.M.R.; Eyre, M.; Wilcockson, S.J.; Leifert, C. Effects of previous crop management, fertilization regime and water supply on potato tuber proteome and yield. Agronomy 2013, 3, 59–85. [Google Scholar] [CrossRef] [Green Version]
- Tétard-Jones, C.; Shotton, P.N.; Rempelos, L.; Cooper, J.; Eyre, M.; Orr, C.H.; Leifert, C.; Gatehouse, A.M. Quantitative proteomics to study the response of wheat to contrasting fertilisation regimes. Mol. Breed. 2013, 31, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Berry, P.M.; Sylvester-Bradley, R.; Philipps, L.; Hatch, D.J.; Cuttle, S.P.; Rayns, F.W.; Gosling, P. Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag. 2002, 18, 248–255. [Google Scholar] [CrossRef]
- Sander, J.F.; Heitefuss, R. Susceptibility to Erysiphe graminis f. sp. tritici and phenolic acid content of wheat as influenced by different levels of nitrogen fertilization. J. Phytopathol. 1988, 14, 495–507. [Google Scholar]
- Leser, C.; Treutter, D. Effects of nitrogen supply on growth, contents of phenolic compounds and pathogen (scab) resistance of apple trees. Physiol. Plant 2004, 123, 49–56. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, J.; Li, Y.; Luo, G.; Li, L.; Yuan, H.; Mur, L.A.J.; Guo, S. Negative effects of the simulated nitrogen deposition plant phenolic metabolism: A meta-analysis. Sci. Total Environ. 2020, 719, 137442. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Toufexi, E.; Kizis, D.; Balayiannis, G.; Anagnostopoulos, C.; Theocharis, A.; Rempelos, L.; Troyanos, Y.; Leifert, C.; Markellou, E. Reynoutria sachalinensis extract elicits SA-dependent defence responses in courgette genotypes against powdery mildew caused by Podosphaera xanthii. Sci. Rep. 2020, 10, 3354. [Google Scholar] [CrossRef] [Green Version]
- Margaritopoulou, T.; Kizis, D.; Kotopoulis, D.; Papadakis, I.E.; Anagnostopoulos, C.; Baira, E.; Termentzi, A.; Vichou, A.E.; Leifert, C.; Markellou, E. Enriched HeK4me3 marks at Pm-0 resistance-related genes prime courgette against Podosphaera xanthii. Plant Physiol. 2021, 188, 576–592. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Vigar, V.; Myers, S.; Oliver, C.; Arellano, J.; Robinson, S.; Leifert, C. Systematic Review of Organic Versus Conventional Food Consumption: Is There a Measurable Benefit on Human Health? Nutrients 2020, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Willson, A.; Goltz, M.; Markellou, E.; Volakakis, N.; Leifert, C. Integrating the use of resistant rootstocks/cultivars, suppressive composts and elicitors to improve yields and quality in protected organic cultivation systems. Acta Hort. 2020, 1268, 155–164. [Google Scholar] [CrossRef]
- Rempelos, L.; Wang, J.; Barański, M.; Watson, A.; Volakakis, N.; Hoppe, H.W.; Kühn-Velten, W.N.; Hadall, C.; Hasanaliyeva, G.; Chatzidimitriou, E.; et al. Diet and food type affect urinary pesticide residue excretion profiles in healthy individuals; results of a randomized, controlled dietary intervention trial. Am. J. Clin. Nutr. 2022, 115, 364–377. [Google Scholar] [CrossRef]
- Albrecht, H. Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming. Weed Res. 2005, 45, 339–350. [Google Scholar]
- Eyre, M.D.; Critchley, C.N.R.; Leifert, C.; Wilcockson, S.J. Crop sequence, crop protection and fertility management effects on weed cover in an organic/conventional farm management trial. Eur. J. Agron. 2011, 59, 4715–4724. [Google Scholar] [CrossRef]
- Jastrzębska, M.; Jastrzębski, W.P.; Hołdyński, C.; Kostrzewska, M.K. Weed species diversity in organic and integrated farming systems. Acta Agrobot. 2013, 66, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Tyšer, L.; Kolářova, M.; Tulačka, O.; Hamouz, P. Weed vegetation in conventional and organic farming in West Bohemia (Czech Republic). Plant Soil Environ. 2021, 67, 376–382. [Google Scholar] [CrossRef]
- Tamm, L.; Thürig, B.; Bruns, C.; Fuchs, J.G.; Köpke, U.; Laustela, M.; Leifert, C.; Mahlberg, N.; Nietlispach, B.; Schmidt, C.; et al. Soil type, management history, and soil amendments influence the development of soilborne (Rhizoctonia solani, Pythium ultimum) and airborne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. Eur. J. Plant Pathol. 2010, 127, 465–481. [Google Scholar] [CrossRef]
- Eyre, M.E.; Luff, M.L.; Atlihan, R.; Leifert, C. Ground beetle species (Carabidae, Coleoptera) activity and richness in relation to crop type, fertility management and crop protection in a farm management comparison trial. Ann. Appl. Biol. 2012, 161, 169–179. [Google Scholar] [CrossRef]
- Eyre, M.D.; Luff, M.L.; Leifert, C. Crop, field boundary, productivity and disturbance influences on ground beetles (Coleoptera, Carabidae) in the agroecosystem. Agric. Ecosyst. Environ. 2013, 165, 60–67. [Google Scholar] [CrossRef]
- Haghighi, R.S.; Critchley, N.; Leifert, C.; Eyre, M.; Cooper, J. Individual and interactive effects of crop type and management on weed and seed bank composition in an organic rotation. Int. J. Plant Prod. 2013, 7, 243–268. [Google Scholar]
- Terzidis, A.N.; Wilcockson, S.; Leifert, C. The tomato leaf miner (Tuta absoluta) Conventional pest problem, organic management solutions? Org. Agric. 2014, 4, 43–61. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Jones, S.S.; Tamm, L.; Murphy, K.M.; Myers, J.R.; Leifert, C.; Messmer, M.M. The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS-Wagening. J. Life Sci. 2011, 58, 193–205. [Google Scholar] [CrossRef]
- Lammerts van Bueren, E.T.; Myers, J.R. Organic Crop Breeding; Wiley-Blackwell: Hoboken, NY, USA, 2012. [Google Scholar]
- Arterburn, M.; Murphy, K.M.; Jones, S.S. Organic Wheat Breeding. In Organic Crop Breeding; van Bueren, E.L., Myers, J., Eds.; Wiley-Blackwell: Hoboken, NY, USA, 2012. [Google Scholar]
- Nuijten, E.; Messmer, M.M.; Lammerts van Bueren, E.T. Concepts and Strategies of Organic Plant Breeding in Light of Novel Breeding Techniques. Sustainability 2017, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analysis. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AHDB Nutrient Management Guide (RB209) Section 4 Arable Crops. UK Agricultural and Horticultural Development Board. 2018. Available online: https://media.ahdb.org.uk/media/Default/Imported%20Publication%20Docs/RB209%20Arable%20crops.pdf (accessed on 17 January 2022).
- Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Bilsborrow, P.; Janovska, D.; Leifert, A.; Winter, S.; Willson, A.; et al. Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece. Agronomy 2021, 11, 890. [Google Scholar] [CrossRef]
- Wang, J.; Barański, M.; Hasanaliyeva, G.; Korkut, R.; Kalee, H.A.; Leifert, A.; Winter, S.; Janovska, D.; Willson, A.; Barkla, B.; et al. Effect of irrigation, fertiliser type and variety choice on grain yield and nutritional quality parameters in spelt wheat (Triticum spelta) grown under semi-arid conditions. Food Chem. 2021, 358, 129826. [Google Scholar] [CrossRef] [PubMed]
- Vijaya Bhaskar, A.V.; Davies, W.P.; Cannon, N.D.; Conway, J.S. Organic wheat performance following conventional and non-inversion tillage systems. Biol. Agric. Hortic. 2013, 29, 236–243. [Google Scholar] [CrossRef]
- Crittenden, S.J.; Poot, N.; Heinen, M.; van Balen, D.J.M.; Pulleman, M.M. Soil physical quality in contrasting tillage systems in organic and conventional farming. Soil Tillage Res. 2015, 154, 136–144. [Google Scholar] [CrossRef]
- Gruver, J.; Wander, M. Use of Tillage in Organic Farming Systems: The Basics. EOrganic. 2020. Available online: https://eorganic.org/node/2428 (accessed on 17 January 2022).
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced soil quality with reduced tillage and solid manures in organic farming—A synthesis of 15 years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [Green Version]
- Posner, J.L.; Baldock, J.O.; Hedtcke, J.L. Organic and Conventional Production Systems in the Wisconsin Integrated Cropping Systems Trials: I. Productivity 1990–2002. Agron. J. 2008, 100, 253–260. [Google Scholar] [CrossRef]
- McErlich, A.F.; Boydston, R.A. Current State of Weed Management in Organic and Conventional Cropping Systems; USDA-ARS/UNL Faculty 11-32: Washington, DC, USA, 2014; Available online: https://digitalcommons.unl.edu/usdaarsfacpub/1387 (accessed on 26 February 2023).
- Pannacci, E.; Tei, F.; Guiducci, M. Mechanical weed control in organic winter wheat. Ital. J. Agron. 2017, 12, 900. [Google Scholar] [CrossRef] [Green Version]
- Robson, M.C.; Fowler, S.M.; Lampkin, N.H.; Leifert, C.; Leitch, M.; Robinson, D.; Watson, C.A.; Litterick, A.M. The agronomic and economic potential of break crops for ley/arable rotations in temperate organic agriculture. Adv. Agron. 2002, 77, 370–427. [Google Scholar] [CrossRef]
- Barbieri, P.; Pellerin, S.; Nesme, T. Comparing crop rotations between organic and conventional farming. Sci. Rep. 2017, 7, 13761. [Google Scholar] [CrossRef] [Green Version]
- Döring, T.F.; Neuhoff, D. Upper limits to sustainable organic wheat yields. Sci. Rep. 2021, 11, 12729. [Google Scholar] [CrossRef] [PubMed]
- EC. Statistics on Agricultural Use of Pesticides in the European Union. 2019. Available online: https://ec.europa.eu/eurostat/documents/749240/0/Statistics+on+the+agricultural+use+of+pesticides+in+the+EU/fd403698-259e-4027-92d1-a2be4b0acbac (accessed on 10 January 2022).
- Eurostat, Agri-Environmental Indicators—Consumption of Pesticides. 2021. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agri-environmental_indicator_-_consumption_of_pesticides (accessed on 10 January 2022).
- Bernhoft, A.; Wang, J.; Leifert, C. Effect of organic and conventional cereal production methods on Fusarium head blight and mycotoxins contamination levels. Agronomy 2022, 12, 797. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields in organic and conventional agriculture. Nature 2012, 485, 229–234. [Google Scholar] [CrossRef]
- De Ponti, T.; Rijk, B.; van Ittersum, M.K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 2012, 108, 1–9. [Google Scholar] [CrossRef]
- Schram, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Wilbois, K.P.; Schmidt, J.E. Reframing the Debate Surrounding the Yield Gap between Organic and Conventional Farming. Agronomy 2019, 9, 82. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Gordon, T.; Hole, D.; Zhao, W.; Isham, K.; Bonman, J.M.; Goates, B.; Chen, J. Identification and assessment of two major QTLs for dwarf bunt resistance in winter wheat line ‘IDO835’. Theor. Appl. Genet. 2019, 132, 2755–2766. [Google Scholar] [CrossRef]
- Wilkinson, A. Improving the Agronomic Management and Utilisation of Organic Bread Making Wheat. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2018. [Google Scholar]
- Dawson, J.C.; Murphy, K.M.; Huggins, D.R.; Jones, S.S. Evaluation of winter wheat breeding lines for traits related to nitrogen use in organic systems. Org. Agric. 2011, 1, 65–80. [Google Scholar] [CrossRef]
- Osman, A.M.; Almekinders, C.J.M.; Struik, P.C.; Lammerts van Bueren, E.T. Adapting spring wheat breeding to the needs of the organic sector. NJAS-Wagening. J. Life Sci. 2016, 76, 55–63. [Google Scholar] [CrossRef]
- Mäder, P.; Hahn, D.; Dubois, D.; Gunst, L.; Alföldi, T.; Bergmann, H.; Oehme, M.; Amadò, R.; Schneider, H.; Graf, U.; et al. Wheat quality in organic and conventional farming: Results of a 21year field experiment. J. Sci. Food Agric. 2007, 87, 1826–1835. [Google Scholar] [CrossRef]
- Baudry, J.; Méjean, C.; Péneau, S.; Galan, P.; Hercberg, S.; Lairon, D.; Kesse-Guyot, E. Health and dietary traits of organic food consumers: Results from the NutriNet-Santé study. Br. J. Nutr. 2015, 114, 2064–2073. [Google Scholar] [CrossRef] [Green Version]
- Eisinger-Watzl, M.; Wittig, F.; Heuer, T.; Hoffmann, I. Customers Purchasing Organic Food—Do They Live Healthier? Results of the German National Nutrition Survey II. Eur. J. Nutr. Food Saf. 2015, 5, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Gélinas, P.; Morin, C.; Frégeau Reid, J.; Lachance, P. Wheat cultivars grown under organic agriculture and bread making performance of stone-ground whole wheat flour. Int. J. Food Sci. 2009, 44, 525–530. [Google Scholar] [CrossRef]
- Lazo-Vélez, M.A.; Caroca-Cáceres, R.; Suárez-Estrella, D.; Serna Saldivar, S.O. Chapter 3—Organic farming of wheat and sourdough quality. Trends Wheat Bread Mak. 2021, 67, 94. [Google Scholar] [CrossRef]
- Plessas, S. Innovations in Sourdough Bread Making. Fermentation 2021, 7, 29. [Google Scholar] [CrossRef]
- Murphy, K.M.; Campbell, K.G.; Lyon, S.R.; Jones, S.S. Evidence of varietal adaptation to organic farming systems. Field Crops Res. 2007, 102, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Nuijten, E. An evolutionary breeding approach to improve bread quality of spring wheat for low input organic farming systems. Scientific Report Lois Bolk Instituut, Bunnik, The Netherlands, 2019. Available online: www.louisbolk.nl/sites/default/files/publication/pdf/evolutionary-breeding-approach-improve-bread-quality-spring-wheat-low-input-organic-farming-systems.pdf (accessed on 8 March 2023).
- Zuchowski, J.; Jonczyk, K.; Pecio, L.; Oleszek, W. Phenolic acid concentrations in organically and conventionally cultivated spring and winter wheat. J. Sci. Food Agric. 2011, 91, 1089–1095. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Gromadzka-Ostrowska, J.; Skwarło-Sońta, K.; Rembiałkowska, E.; Hajslova, J.; Schulzova, V.; Çakmak, I.; Öztürk, L.; Królikowski, T.; et al. Effect of crop protection and fertilization regimes used in organic and conventional production systems on feed composition and selected physiological parameters in rats. J. Agric. Food Chem. 2013, 61, 1017–1029. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Rempelos, L.; Hasanaliyeva, G.; Gromadzka-Ostrowska, J.; Skwarło-Sońta, K.; Królikowski, T.; Rembiałkowska, E.; Hajslova, J.; Schulzova, V.; et al. Feed Composition Differences Resulting from Organic and Conventional Farming Practices Affect Physiological Parameters in Wistar Rats—Results from a Factorial, Two-Generation Dietary Intervention Trial. Nutrients 2021, 13, 377. [Google Scholar] [CrossRef]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanaliyeva, G.; Markellou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—2. Antioxidant activity, and phenolic and mineral content. Food Chem. X 2020, 6, 100091. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hasanalieva, G.; Wood, L.; Anagnostopoulos, C.; Ampadogiannis, G.; Bempelou, E.; Kiousi, M.; Markellou, E.; Iversen, P.O.; Seal, C.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—3. Pesticide residue content. Food Chem. X 2020, 6, 100089. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hasanalieva, G.; Wood, L.; Markellou, E.; Iversen, P.O.; Bernhoft, A.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour; results of a retail survey in the UK and Germany—1. mycotoxin content. Food Chem. 2020, 327, 127011. [Google Scholar] [CrossRef] [PubMed]
- Almuayrifi, A.M. Effect of Fertilisation, Crop Protection, Pre-Crop and Variety Choice on Yield of Phenols Content Diseases Severity and Yield of Winter Wheat. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2013. [Google Scholar]
- Shewry, P.R. Do ancient types of wheat have health benefits compared with modern bread wheat? J. Cereal Sci. 2018, 79, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Şerban, L.R.; Păucean, A.; Man, S.M.; Chiş, M.S.; Mureşan, V. Ancient Wheat Species: Biochemical Profile and Impact on Sourdough Bread Characteristics-A Review. Processes 2021, 9, 2008. [Google Scholar] [CrossRef]
- Wirz, J.; Kunz, P.; Hurter, U. Seed as Commons; Breeding as a Source for Real Economy, Law and Culture; Section for Agriculture—Goetheanum: Dornach, Switzerland, 2017; Available online: www.organic-plant-breeding.org/sites/default/files/public/pdf/organic-plant-breeding_seeds_as_a_commons_wirz_al.pdf (accessed on 10 January 2022).
- Löschenberger, F.; Fleck, A.; Grausgruber, H.; Hetzendorfer, H.; Hof, G.; Lafferty, J.; Marn, M.; Neumayer, A.; Pfaffinger, G.; Birschitzky, J. Breeding for organic agriculture: The example of winter wheat in Austria. Euphytica 2007, 163, 469–480. [Google Scholar] [CrossRef]
- Rakszegi, M.; Mikó, P.; Löschenberger, F.; Hiltbrunner, J.; Aebi, R.; Knapp, S.; Tremmel-Bede, K.; Megyeri, M.; Kovács, G.; Molnár-Láng, M. Comparison of quality parameters of wheat varieties with different breeding origin under organic and low-input conventional conditions. J. Cereal Sci. 2016, 69, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Pagnotta, M.A.; Bonfiglioli, L.; Forte, P. Selection of durum wheat lines under organic management—Preliminary results. In Proceedings of the 71. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, Online Conference, Tulln an der Donau, Austria, 23–24 November 2020; Available online: https://zenodo.org/record/4675513#.YelQ_nrP02w (accessed on 10 January 2022).
- KWS, With Organic to More Sustainability. Available online: www.kws.com/gb/en/company/press/world-of-farming/with-organic-to-more-sustainability (accessed on 10 January 2022).
- Wilkinson, A.; Wilkinson, J.N.; Shotton, P.; Eyre, M.; Hasanaliyeva, G.; Bilsborrow, P.; Leifert, C.; Rempelos, L. Effect of Clover Sward Management on Nitrogen Fixation and Performance of Following Spring- and Winter Wheat Crops; Results of a 3-Year Pilot Study. Agronomy 2022, 12, 2085. [Google Scholar] [CrossRef]
- Bassi, F.M.; Bentley, A.R.; Charmet, G.; Ortiz, R.; Crossa, J. Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 2016, 242, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Lozada, D.N.; Carter, A.H. Genomic Selection in Winter Wheat Breeding Using a Recommender Approach. Genes 2020, 11, 779. [Google Scholar] [CrossRef]
- Tessema, B.B.; Liu, H.; Sørensen, A.C.; Andersen, J.R.; Jensen, J. Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs for Wheat. Front. Genet. 2020, 11, 578123. [Google Scholar] [CrossRef] [PubMed]
- Michel, S.; Kummer, C.; Gallee, M.; Hellinger, J.; Ametz, C.; Akgöl, B.; Epure, D.; Löschenberger, F.; Buerstmayr, H. Improving the baking quality of bread wheat by genomic selection in early generations. Theor. Appl. Genet. 2018, 131, 477–493. [Google Scholar] [CrossRef]
- Odilbekov, F.; Armoniené, R.; Koc, A.; Svensson, J.; Chawade, A. GWAS-Assisted Genomic Prediction to Predict Resistance to Septoria tritici Blotch in Nordic Winter Wheat at Seedling Stage. Front. Genet. 2019, 10, 1224. [Google Scholar] [CrossRef]
- Annonymous, NUE-CROPS: Improving Nutrient Efficiency in Major European Food, Feed and Biofuel Crops to Reduce the Negative Environmental Impact of Crop Production. Final Report. 2014. Available online: https://cordis.europa.eu/docs/results/222/222645/final1-nue-crops-core-final-report.pdf (accessed on 10 January 2022).
- Tétard-Jones, C.; Gatehouse, A.M.R.; Cooper, J.; Leifert, C.; Rushton, S. Modelling pathways to rubisco degradation: A structural equation network modelling approach. PLoS ONE 2014, 9, e87597. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.X.; Huard, F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Agnolucci, P.; De Lipsis, V. Long-run trend in agricultural yield and climatic factors in Europe. Clim. Change 2020, 159, 385–405. [Google Scholar] [CrossRef] [Green Version]
- Allison, R. Time to End Stagnant Wheat Yields. Farmers Weekly 15 April 2013. Available online: https://www.fwi.co.uk/arable/time-to-end-stagnant-wheat-yields (accessed on 10 January 2022).
- Moore, F.C.; Lobell, D.B. Climate fingerprint on European crop yields. Proc. Natl. Acad. Sci. USA 2015, 112, 2670–2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauberger, B.; Ben-Ari, T.; Makowski, D.; Kato, T.; Kato, H.; Ciais, P. Yield trends, variability and stagnation analysis of major crops in France over more than a century. Sci. Rep. 2018, 8, 16865. [Google Scholar] [CrossRef]
- Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takáč, J.; Ruget, F.; Ferrise, R.; et al. Decline in climate resilience of European wheat. Proc. Natl. Acad. Sci. USA 2019, 116, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Fadda, C.; Mengistu, D.K.; Kidane, Y.G.; Dell’Acqua, M.; Pè, M.E.; Van Etten, J. Integrating Conventional and Participatory Crop Improvement for Smallholder Agriculture Using the Seeds for Needs Approach: A Review. Front. Plant Sci. 2020, 11, 559515. [Google Scholar] [CrossRef] [PubMed]
- Ceccarelli, S. Efficiency of plant breeding. Crop Sci. 2014, 55, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Payne, T. Wheat—King Arthur Flour Is Proud to Support Steven Jones and the Bread Lab as They Recreate Local Grains Networks. King Arthur Flour Company Blog. 2018. Available online: www.kingarthurbaking.com/blog/2018/06/05/rediscovering-local-wheat (accessed on 18 January 2022).
- Döring, T.F.; Knapp, S.; Kovacs, G.; Murphy, K.; Wolfe, M.S. Evolutionary Plant Breeding in Cereals—Into a New Era. Sustainability 2011, 3, 1944–1971. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.L.; Wolfe, M.S. Evolutionary plant breeding for low input systems. J. Agric. Sci. 2005, 143, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Knapp, S.; Döring, T.F.; Jones, H.E.; Snape, J.; Wingen, L.U.; Wolfe, M.S.; Leverington-Waite, M.; Griffiths, S. Natural selection towards wild-type in composite cross populations of winter wheat. Front. Plant. Sci. 2020, 10, 1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrick, L.F.; Lyon, S.R.; Balow, K.A.; Murphy, K.M.; Jones, S.S.; Carter, A.H. Utilization of evolutionary plant breeding increases stability and adaptation of winter wheat across diverse precipitation zones. Sustainability 2020, 12, 9728. [Google Scholar] [CrossRef]
- Finckh, M.; Gacek, E.; Goyeau, H.; Lannou, C.; Merz, U.; Mundt, C.; Munk, L.; Nadziak, J.; Newton, A.; de Vallavieille-Pope, C.; et al. Cereal variety and species mixtures in practice, with emphasis on disease resistance. Agronomie 2000, 20, 813–837. [Google Scholar] [CrossRef] [Green Version]
- Shoffer, A.V.; Tooker, J.F. The potential of genotypically diverse cultivar mixtures to moderate aphid populations in wheat (Triticum aestivum L.). Arthropod-Plant Interact. 2013, 7, 33–43. [Google Scholar] [CrossRef]
- Döring, T.F.; Annicchiarico, P.; Clarke, S.; Haigh, Z.; Jones, H.E.; Pearce, H.; Snape, J.; Zhan, J.; Wolfe, M.S. Comparative analysis of performance and stability among composite cross populations, variety mixtures and pure lines of winter wheat in organic and conventional cropping systems. Field Crops Res. 2015, 183, 235–245. [Google Scholar] [CrossRef]
- Vidal, T.; Saint-Jean, S.; Lusley, P.; Leconte, M.M.; Ben Krima, S.; Boixel, A.-L.; de Valavieille-Pope, C. Cultivar mixture effects on disease and yield remain despite diversity in wheat height and earliness. Plant Pathol. 2020, 69, 1148–1160. [Google Scholar] [CrossRef]
- AHDB. Variety Blend Tool for Winter Wheat. Available online: https://ahdb.org.uk/variety-blend-tool-for-winter-wheat (accessed on 1 December 2022).
- Orellana-Torrejon, C.; Vidal, T.; Boixel, A.-L.; Gélisse, S.; Saint-Jean, S.; Suffert, F. Annual dynamics of Zymoseptoria tritici populations in wheat cultivar mixtures: A compromise between the efficiency and durability of a recently broken-down resistance gene? Plant Pathol. 2022, 71, 289–303. [Google Scholar] [CrossRef]
- Orellana-Torrejon, C.; Vidal, T.; Saint-Jean, S.; Suffert, F. The impact of wheat cultivar mixtures on virulence dynamics in Zymoseptoria tritici populations persist after interseason sexual reproduction. Plant Pathol. 2022, 71, 1537–1549. [Google Scholar] [CrossRef]
- Wakelyns. YQ Population Wheat at Wakelyns. Available online: https://wakelyns.co.uk/populations/ (accessed on 1 December 2022).
- Cooper, J.; Sanderson, R.; Cakmak, I.; Ozturk, L.; Shotton, P.; Carmichael, A.; Haghighi, R.S.; Tetard-Jones, C.; Volakakis, N.; Eyre, M.; et al. Effect of organic and conventional crop rotation, fertilization and crop protection practices on metal contents in wheat (Triticum aestivum). J. Agric. Food Chem. 2011, 59, 4715–4724. [Google Scholar] [CrossRef]
- Motta-Romero, H.; Niyongira, F.; Boehm, J.D., Jr.; Rose, D.J. Effects of foliar fungicide on yield, micronutrients, and cadmium in grains from historical and modern hard winter wheat genotypes. PLoS ONE 2021, 16, e0247809. [Google Scholar] [CrossRef]
- Sawers, R.J.H.; Ramírez-Flores, R.; Olalde-Portugal, V.; Paszkowski, U. The impact of domestication and crop improvement on arbuscular mycorrhizal symbiosis in cereals: Insights from genetics and genomics. New Phytol. 2018, 220, 1135–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariem, S.B.; Gámez, A.L.; Larraya, L.; Fuertes-Mendizabal, T.; Cañameras, N.; Araus, J.L.; McGrath, S.P.; Hawkesford, M.J.; Murua, C.G.; Gaudeul, M.; et al. Assessing the evolution of wheat grain traits during the last 166 years using archived samples. Sci. Rep. 2020, 10, 21828. [Google Scholar] [CrossRef] [PubMed]
- Mariem, S.B.; Gámez, A.L.; Larraya, L.; Fuertes-Mendizabal, T.; Cañameras, N.; Araus, J.L.; McGrath, S.P.; Hawkesford, M.J.; Murua, C.G.; Gaudeul, M.; et al. Genome-wide association study identifies five new cadmium uptake loci in wheat. Plant Genome 2020, 13, e20030. [Google Scholar]
- Poudel, R.; Bhinderwala, F.; Morton, M.; Powers, R.; Rose, D.J. Metabolic profiling of historical and modern wheat cultivars using proton nuclear magnetic resonance spectroscopy. Sci. Rep. 2021, 11, 3080. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Herrick, K.A.; Terry, A.L.; Hughes, J.P. Contribution of Whole Grains to Total Grains Intake among Adults Aged 20 and Over: United States, 2013–2016. National Centre for Health Statistics (NCHS) Data Brief No. 341. July 2019. Available online: https://www.cdc.gov/nchs/data/databriefs/db341-h.pdf (accessed on 18 January 2022).
- Hill, O. Organic Winter Wheat Yields 9.9t/ha in Scottish Borders. Farmers Weekly 20 September 2015. Available online: http://www.fwi.co.uk/arable/organic-winter-wheat-yields-99tha-in-scottish-borders.htm (accessed on 18 January 2022).
- Tucker, G. Using Lower Protein Wheat for Bread Making. 2013. Available online: www.campdenbri.co.uk/blogs/lower-protein-wheat-bread.php (accessed on 1 December 2022).
- Feyter, C.; Cossens, G.G.; Risk, W.H. Effects of rainfall on nitrogen responses of spring-sown wheats. N. Z. J. Exp. Agric. 1977, 5, 161–165. [Google Scholar] [CrossRef]
Grain | Stem | Septoria Severity | Grain Protein | Leaf Phenolics | |||
---|---|---|---|---|---|---|---|
Yield | Lodging | (AUDPC 1) | Concentration | Phenolic | Flavonoids | ||
Factor | (t/ha) | % 2 | Flag leaf | Leaf 2 | (%) | acids (mg/g) | (mg/g) |
Fertilizer type | |||||||
Cattle manure | 2.9 ± 0.14 | 7 ± 2 | 187 ± 16 | 246 ± 23 | 10.1 ± 0.2 | 16.6 ± 1.0 | 13.8 ± 1.2 |
Mineral N | 4.2 ± 0.23 | 35 ± 6 | 257 ± 16 | 272 ± 23 | 11.4 ± 0.2 | 11.9 ± 0.7 | 10.7 ± 1.0 |
Fertilizer level | |||||||
170 kg N/ha | 3.8 ± 0.24 | 25 ± 5 | 218 ± 18 | 257 ± 23 | 11.1 ± 0.2 | 14.1 ± 0.9 | 11.9 ± 1.1 |
85 kg N/ha | 3.3 ± 0.16 | 16 ± 4 | 226 ± 15 | 261 ± 22 | 10.4 ± 0.2 | 14.5 ± 0.9 | 12.7 ± 1.2 |
Crop Protection | |||||||
Conventional | 3.8 ± 0.22 | 13 ± 4 | 202 ± 14 | 252 ± 21 | 10.8 ± 0.2 | 13.1 ± 0.8 | 11.9 ± 1.1 |
Organic | 3.3 ± 0.18 | 28 ± 5 | 242 ± 18 | 266 ± 25 | 10.8 ± 0.2 | 15.4 ± 1.0 | 12.7 ± 1.1 |
Variety | |||||||
Aszita (OBP) | 3.3 ± 0.16 | 21 2 | 168 ± 13 | 193 ± 19 | 12.0 ± 0.2 | 16.2 ± 1.1 | 14.3 ± 1.3 |
Solstice (CBP) | 3.8 ± 0.24 | - | 276 ± 17 | 325 ± 23 | 9.5 ± 0.1 | 12.3 ± 0.6 | 10.2 ± 0.8 |
ANOVA (p-values) | |||||||
Main Effects | |||||||
Fertilizer type (FT) | 0.0180 | 0.0002 | 0.0347 | NS | <0.001 | 0.0033 | 0.0034 |
Fertilizer level (FL) | NS | 0.0114 | NS | NS | 0.0005 | NS | NS |
Crop protection (CP) | 0.0007 | <0.001 | NS | NS | NS | 0.0072 | NS |
Variety (VR) | <0.001 | - | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Interactions | |||||||
FT × FL | T | 0.0150 | NS | NS | <0.001 | NS | NS |
FT × CP | NS | 0.0079 3 | NS | 0.0005 | NS | T | NS |
FT × VR | <0.001 4 | - | NS | 0.0041 | 0.0040 | T 7 | 0.0155 7 |
FL × VR | T | - | 0.0035 | NS | NS | NS | NS |
CP × VR | NS | - | 0.0378 5 | NS | 0.0289 | NS | NS |
FT × FL × VR | NS | - | T | 0.0316 6 | 0.00186 6 | NS | NS |
Factor 1. | Factor 2. Crop Protection | ||
---|---|---|---|
Parameter | Fertilizer type | Conventional | Organic |
Stem lodging | Cattle Manure | 2 ± 1 a B | 5 ± 2 a B |
(%) | Mineral N | 12 ± 4 b A | 23 ± 6 a A |
Factor 1 | Factor 2. Variety | ||
---|---|---|---|
Parameter | Fertilizer type | Aszita (OBP) | Solstice (CBP) |
Grain yield | Cattle Manure | 2.9 ± 0.2 a B | 2.9 ± 0.2 a B |
(t/ha) | Mineral N | 3.7 ± 0.2 b A | 4.7 ± 0.4 a A |
Factor 1 | Factor 2. Variety choice | ||
---|---|---|---|
Parameter | Crop Protection | Aszita (OBP) | Solstice (CBP) |
Septoria severity | Conventional | 162 ± 18 b A | 240 ± 20 a B |
Flag leaf (AUDPC 1) | Organic | 173 ± 19 b A | 310 ± 26 a A |
Factor 1 | Factor 2 | Factor 3. Variety | ||
---|---|---|---|---|
Parameter | Fertilizer Type | Fertilizer Level | Aszita (OBP) | Solstice (CBP) |
Septoria severity | Cattle Manure | 170 kg N/ha | 234 ± 42 A a | 233 ± 44 B a |
Leaf 2 (AUDPC 1) | 85 kg N/ha | 200 ± 52 A b | 318 ± 47 A a | |
Mineral N | 170 kg N/ha | 155 ± 25 A b | 407 ± 51 A a | |
85 kg N/ha | 184 ± 33 A b | 341 ± 38 A a | ||
Grain protein | Cattle Manure | 170 kg N/ha | 11.1 ± 0.4 C a | 9.1 ± 0.1 B b |
concentration (%) | 85 kg N/ha | 11.5 ± 0.3 BC a | 8.9 ± 0.2 B b | |
Mineral N | 170 kg N/ha | 13.7 ± 0.2 A a | 10.6 ± 0.2 A b | |
85 kg N/ha | 11.9 ± 0.2 B a | 9.4 ± 0.2 B b |
Grain | Chlorophyll | Septoria Severity 1 | Yellow Rust Severity 1 | |||
---|---|---|---|---|---|---|
Yield | Levels 1 | Flag Leaf | Leaf 2 | Flag Leaf | Leaf 2 | |
Factor | (t/ha) | (SPAD) | (% 2) | (% 2) | (% 2) | (% 2) |
Site | ||||||
Courtyard | 4.4 ± 0.1 a | 42.0 ± 0.5 b | 0.2 ± 0.1 b | 6.1 ± 1.3 b | 1.7 ± 0.5 b | 0.3 ± 0.1 b |
Gilchesters | 4.2 ± 0.3 a | 45.6 ± 1.4 a | 0.5 ± 0.2 a | 4.8 ± 1.6 b | 12.8 ± 3.5 a | 10.5 ± 3.9 a |
Sheepdrove | 2.9 ± 0.1 b | 42.3 ± 0.8 b | 0.2 ± 0.1 b | 11.1 ± 1.9 a | 11.1 ± 2.7a | 9.5 ± 2.6 a |
Variety | ||||||
Fasan (100 3) | 4.1 ± 0.3 b | 41.4 ± 1.1 c | 0.5 ± 0.2 ab | 12.2 ± 2.1 a | 7.9 ± 1.8 b | 3.0 ± 1.0 b |
Zebra (98 3) | 2.8 ± 0.4 e | 37.6 ± 1.9 d | 0.1 ± 0.1 b | 10.9 ± 2.8 a | 37.0 ± 6.2 a | 33.5 ± 7.5 a |
Amaretto (92 3) | 3.8 ± 0.3 cd | 44.7 ± 1.3 ab | 0.1 ± 0.1 b | 3.7 ± 0.8 c | 2.9 ± 0.6 bc | 1.2 ± 0.3 b |
Paragon (90 3) | 4.1 ± 0.3 bc | 46.3 ± 1.0 a | 0.1 ± 0.1 b | 4.6 ± 1.0 b | 0.0 ± 0.0 c | 0.0 ± 0.0 b |
Monsun (90 3) | 3.7 ± 0.3 d | 44.0± 1.0 b | 0.8 ± 0.3 a | 11.2 ± 3.8 a | 3.2 ± 0.7 bc | 2.9 ± 0.8 b |
Tybalt (81 3) | 4.6 ± 0.3 a | 5.9 ± 0.9 ab | 0.2 ± 0.1 b | 1.4 ± 0.3 c | 0.0 ± 0.0 c | 0.0 ± 0.0 b |
ANOVA | ||||||
Main Effects | ||||||
Site (TS) | <0.001 | 0.0003 | 0.0158 | 0.0083 | <0.001 | <0.001 |
Variety (VR) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Interaction | ||||||
TS × VR | <0.001 4 | <0.001 4 | <0.001 | 0.0053 4 | <0.001 4 | <0.001 |
Bread-Making Quality | Toxic | |||||
---|---|---|---|---|---|---|
Protein | Protein | Metal | Micronutrient Concentration | |||
Content | Quality 1 | Cd | Ca | Zn | Fe | |
Factor | (%) | (%) | (μg/kg) | (mg/g) | (mg/kg) | (mg/kg) |
Site | ||||||
Courtyard | 11.5 ± 0.2 c | 3.35 ± 0.04 | 35 ± 3 b | 0.43 ± 0.01 b | 26 ± 1 c | 27 ± 1 b |
Gilchesters | 14.5 ± 0.1 a | - | 44 ± 2 a | 0.36 ± 0.02 c | 33 ± 1 b | 38 ± 1 a |
Sheepdrove | 14.0 ± 0.2 b | 3.61 ± 0.04 | 43 ± 2 a | 0.49 ± 0.02 a | 44 ± 1 a | 34 ± 1 c |
Variety (mean stem length in cm) | ||||||
Fasan (100) | 13.2 ± 0.3 c | 3.7 ± 0.1 a | 37 ± 3 b | 0.46 ± 0.02 a | 32 ± 2 bc | 31 ± 1 c |
Zebra (98) | 14.2 ± 0.4 a | 3.6 ± 0.1 b | 50 ± 4 a | 0.45 ± 0.03 ab | 37 ± 2 a | 33 ± 1 b |
Amaretto (92) | 12.9 ± 0.3 c | 3.5 ± 0.1 bc | 36 ± 3 b | 0.44 ± 0.02 ab | 32 ± 2 c | 32 ± 1 b |
Paragon (90) | 13.6 ± 0.3 b | 3.3 ± 0.1 e | 36 ± 3 b | 0.45 ± 0.03 ab | 34 ± 2 bc | 33 ± 1 b |
Monsun (90) | 12.9 ± 0.4 c | 3.4 ± 0.1 cd | 48 ± 3 a | 0.41 ± 0.02 b | 35 ± 2 b | 33 ± 1 b |
Tybalt (81) | 13.0 ± 0.4 c | 3.4 ± 0.1 d | 38 ± 4 b | 0.36 ± 0.01 c | 34 ± 2 b | 36 ± 1 a |
ANOVA | ||||||
Main Effects | ||||||
Trial site (TS) | <0.001 | <0.001 | 0.0002 | <0.001 | <0.001 | <0.001 |
Variety (VR) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Interactions | ||||||
ST × VR | <0.001 2 | 0.0095 2 | 0.0008 2 | NS | <0.001 2 | 0.0145 2 |
Variety | |||||||
---|---|---|---|---|---|---|---|
Parameter | Site | Amaretto | Fasan | Monsun | Paragon | Tybalt | Zebra |
Grain yield | Courtyard | 3.8 ± 0.2 AB | 4.9 ± 0.3 A | 4.3 ± 0.2 A | 4.2 ± 0.3 B | 5.6 ± 0.3 A | 3.7 ± 0.4 A |
(t/ha) | Gilchester | 4.4 ± 0.9 A | 4.5 ± 0.7 AB | 4.1 ± 0.8 A | 4.8 ± 0.8 A | 4.3 ± 0.8 B | 3.2 ± 0.9 A |
Sheepdrove | 3.2 ± 0.3 B | 3.0 ± 0.2 B | 2.7 ± 0.3 B | 3.2 ± 0.2 C | 3.9 ± 0.2 B | 1.6 ± 0.3 B | |
Chlorophyll | Courtyard | 42 ± 1 B | 40 ± 1 A | 42 ± 1 B | 43 ± 1 B | 43 ± 1 B | 42 ± 1 A |
Levels * | Gilchester | 48 ± 3 A | 43 ± 3 A | 47 ± 2 A | 50 ± 2 A | 49 ± 2 A | 36 ± 5 B |
(SPAD) | Sheepdrove | 45 ± 2 AB | 41 ± 1 A | 43 ± 2 AB | 46 ± 1 AB | 45 ± 1 AB | 34 ± 2 B |
Septoria | Courtyard | 4 ± 1 A | 8 ± 3 B | 4 ± 1 B | 4 ± 1 A | 2 ± 1 A | 14 ± 6 A |
on leaf L2 * | Gilchester | 2 ± 1 A | 5 ± 1 B | 16 ± 8 A | 1 ± 1 A | 1 ± 1 A | 3 ± 2 B |
(% 1) | Sheepdrove | 5 ± 2 A | 23 ± 3 A | 13 ± 8 AB | 9 ± 2 A | 1 ± 0 A | 15 ± 5 A |
Yellow rust | Courtyard | 1 ± 1 A | 1 ± 0 B | 0 ± 0 A | 0 ± 0 A | 0 ± 0 A | 7 ± 2 B |
on flag leaf * | Gilchester | 4 ± 1 A | 11 ± 2 A | 5 ± 2 A | 0 ± 0 A | 0 ± 0 A | 57 ± 18 A |
(% 1) | Sheepdrove | 3 ± 1 A | 12 ± 4 A | 4 ± 1 A | 0 ± 0 A | 0 ± 0 A | 47 ± 6 A |
Protein | Courtyard | 11.5 ± 0.4 B | 11.2 ± 0.3 B | 10.6 ± 0.4 B | 12.3 ± 0.6 B | 11.0 ± 0.3 C | 12.3 ± 0.5 B |
content | Gilchester | 13.8 ± 0.2 A | 14.5 ± 0.3 A | 14.1 ± 0.3 A | 14.7 ± 0.1 A | 15.0 ± 0.3 A | 15.1 ± 0.4 A |
(%) | Sheepdrove | 13.5 ± 0.3 A | 13.9 ± 0.4 A | 14.0 ± 0.3 A | 14.1 ± 0.4 A | 13.1 ± 0.4 B | 15.2 ± 0.2 A |
Protein | Courtyard | 3.4 ± 0.1 B | 3.6 ± 0.1 B | 3.2 ± 0.1 B | 3.2 ± 0.1 A | 3.3 ± 0.1 B | 3.4 ± 0.1 B |
Quality * | Gilchester | - | - | - | - | - | - |
(%) | Sheepdrove | 3.6 ± 0.1 A bc | 3.9 ± 0.1 A a | 3.7± 0.1 A b | 3.3 ± 0.1 A d | 3.5 ± 0.1 A c | 3.7 ± 0.1 A b |
Grain Zn | Courtyard | 24 ± 1 C | 24 ± 1 C | 26 ± 2 C | 28 ± 1 C | 24 ± 2 C | 28 ± 2 C |
concentration | Gilchester | 32 ± 1 B | 32 ± 2 B | 34 ± 2 B | 32 ± 1 B | 36 ± 2 B | 35 ± 1 B |
(mg/kg) | Sheepdrove | 41 ± 1 A | 42 ± 2 A | 46 ± 2 A | 42 ± 2 A | 42 ± 2 A | 48 ± 2 A |
Grain Fe | Courtyard | 27 ± 2 C | 25 ± 2 C | 25 ± 1 B | 29 ± 2 C | 29 ± 1 C | 27 ± 1 B |
concentration | Gilchester | 37 ± 2 A | 36 ± 2 A | 38 ± 3 A | 38 ± 2 A | 42 ± 2 A | 38 ± 1 A |
(mg/kg) | Sheepdrove | 33 ± 1 B | 31 ± 1 B | 35 ± 1 A | 33 ± 1 B | 36 ± 1 B | 35 ± 1 A |
Factor 1 | Factor 2. Variety | ||
---|---|---|---|
Parameter | Fertilizer Type | Aszita (OBP) | Solstice (CBP) |
Leaf phenolic acid | Cattle Manure | 19 ± 2 a | 14 ± 1 b |
concentrations (mg/g) | Mineral N | 12 ± 2 bc | 11 ± 1 c |
Leaf flavonoid | Cattle Manure | 17 ± 2 a | 11 ± 1 bc |
concentrations (mg/g) | Mineral N | 12 ± 2 b | 9 ± 1 c |
Grain Cd | Cattle Manure | 9.9 ± 0.9 b | 8.3 ± 0.8 b |
concentrations (µg/kg) | Mineral N | 16.3 ± 1.5 a | 10.7 ± 0.7 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rempelos, L.; Wang, J.; Sufar, E.K.; Almuayrifi, M.S.B.; Knutt, D.; Leifert, H.; Leifert, A.; Wilkinson, A.; Shotton, P.; Hasanaliyeva, G.; et al. Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits. Foods 2023, 12, 1209. https://doi.org/10.3390/foods12061209
Rempelos L, Wang J, Sufar EK, Almuayrifi MSB, Knutt D, Leifert H, Leifert A, Wilkinson A, Shotton P, Hasanaliyeva G, et al. Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits. Foods. 2023; 12(6):1209. https://doi.org/10.3390/foods12061209
Chicago/Turabian StyleRempelos, Leonidas, Juan Wang, Enas Khalid Sufar, Mohammed Saleh Bady Almuayrifi, Daryl Knutt, Halima Leifert, Alice Leifert, Andrew Wilkinson, Peter Shotton, Gultekin Hasanaliyeva, and et al. 2023. "Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits" Foods 12, no. 6: 1209. https://doi.org/10.3390/foods12061209
APA StyleRempelos, L., Wang, J., Sufar, E. K., Almuayrifi, M. S. B., Knutt, D., Leifert, H., Leifert, A., Wilkinson, A., Shotton, P., Hasanaliyeva, G., Bilsborrow, P., Wilcockson, S., Volakakis, N., Markellou, E., Zhao, B., Jones, S., Iversen, P. O., & Leifert, C. (2023). Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits. Foods, 12(6), 1209. https://doi.org/10.3390/foods12061209