Traditional Mexican Food: Phenolic Content and Public Health Relationship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.2.1. Survey of Food Consumption with a High Level of Phenolic Compounds
2.2.2. Validation
2.3. Data Analysis Methods
2.3.1. Clustering Analysis
2.3.2. Comparisons between LD and MD Groups
2.3.3. Risk of Developing Disease
3. Results
3.1. Demographic Results
3.2. Phenolic Compounds Intake Results
3.2.1. Phenolic Compounds Intake: Group and Sex Distribution
3.2.2. Phenolic Compounds Intake: Group and Age Distribution
3.3. Risk of Developing Diseases
4. Discussion
4.1. Demographic Data
4.2. Frequency of Food Consumption
4.3. Comparisons between LD and MD Groups
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Items | Answer Choices |
---|---|
Identification data (Datos de identificación) | |
Age (Edad) | 18–29/30–39/40–40/50–40/>59 |
Sex (Sexo) | Male (hombre)/Female (mujer) |
Marital status (Estado civil) | Single (Soltero (a)) Married (Casada(a)) Free union (Unión libre) Divorced (Divorciado (a)) Widow (Viudo (a)) |
Occupation (Ocupación) | |
Scholarship (Escolaridad) | |
Residencie’ place (Lugar de residencia) | |
Anthropometric data (Datos antropométricos) | |
Height(m) (Estatura) | |
Weight (kg) (Peso) | |
Medical records (Datos clínicos) | |
Have you had the following gastrointestinal diseases? Indicate which one. (Seleccione sí presenta las siguientes enfermedades gastrointestinales) | Constipation (Estreñimiento) Gastritis Irritable bowel syndrome (IBS) (Síndrome de intestino irritable) Peptic ulcer (Úlcera péptica) Bacterial overgrowth Syndrome (BOS) (Síndrome de Sobrecrecimiento Bacteriano) Ulcerative colitis (UC) (Colitis ulcerativa CUCI) None (Ninguna) |
Have you had the following chronic diseases? Indicate which one. (Seleccione sí presenta alguna de las siguientes enfermedades crónicas) | Diabetes Hypertension (Hipertensión) Hypercholesterolemia (Hipercolesterolemia) Hypertriglyceridemia (Hipertrigliceridemia) Kidney diseases (Enfermedades renales) Fatty liver (Hígado graso) None (Ninguna) |
Do you suffer from insomnia? (¿Usted padece insomnio?) | Yes/No (Si/No) |
Have you recently had medical treatment? Indicate which one. (¿Ha tenido tratamiento médico recientemente?, en caso afirmativo, ¿cuál?) | Yes/No (Si/No) |
Have you been doing any physical activity in the last 3 months? Indicate which type and duration (¿En los últimos 3 meses, usted está realizando alguna actividad física? Mencione tipo y tiempo | Yes/No (Si/No) |
Do you smoke? (¿Usted fuma?) | Yes/No (Si/No) |
Do you consume alcoholic beverages? Indicate quantity and frequency (¿Usted consume bebidas alcohólicas? De ser así mencione tipo, cantidad y frecuencia) | Yes/No (Si/No) |
Food intake frequency (frecuencia de consumo de alimentos) | |
Indicate how often you have consumed the following foods in the last month (¿En el último mes, con qué frecuencia ha consumido los siguientes alimentos? | |
Fruits (frutas) | |
Grape (Uva) Plum (Ciruela) Cranberry (Arándano) Peach (Durazno) Raspberry (Frambuesa) Blueberry (Mora azul) Prickly pear (Tuna) Apple (Manzana) Pink grapefruit (Toronja) Kiwi Orange (Naranja) Guava (Guayaba) Strawberry (Fresa) Pomegranate (Granada) Cherry (Cereza) Pear (Pera) | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Vegetables (Vegetales) | |
Huitlacoche Cambray onion (Cebollita cambray) Mushroom (Fungi) (Champiñón) Peppers (Pimientos) Carrot (Zanahoria) Beetroot (Betabel) Swiss chard (Acelga) Tomato (Jitomate) Chilies (Chiles (variedades)) Lettuce (Lechuga) Celery (Apio) Brussels sprouts (Col de Bruselas) Prickly pear cactus (Nopal) Radish (Rábano) Broccoli (Brócoli) White onion (Cebolla blanca) Purple onion (Cebolla morada) Potato (Papa) | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Cereals (Cereales) | |
Rice (Arroz) Oatmeal (Avena) Barley (Cebada) Flaxseed (Linaza) Wheat (Trigo) Corn (Maíz) Millet (Mijo) Sorghum (Sorgo) | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Legumes (Leguminosas) | |
Soybean (Soya) Beans (Frijol) Bread beans (Haba) Lentil (Lenteja) | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Seeds (Semillas) | |
Cocoa (Cacao) Almont (Almendra) Nut (Nuez) Peanut (Cacahuate) Linseed (Chía) | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Spices (Especias) | |
Parsley (Perejil) Coriander (Cilantro) Oregano Epazote Garlic (Ajo) Clove (Clavo) Paprika Marjoram (Mejorana) Eucalyptus (Eucalipto) Annatto (Achiote) Sesame Seed (Ajonjolí) Ginger (Jengibre) Black pepper (Pimienta) Chaya Fennel (Hinojo) Linden (Tila) Saffron (Azafrán) Anise (Anís) Mexican pepper leaf (Hoja santa) Papalo | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Beverages (Bebidas) | |
Coffee (Café) Green tea (Té verde) Wine (Vino) Hibiscus water (Jamaica) Chamomile tea (Manzanilla) | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Mexican dishes (Platillos Mexicanos) | |
Mole Arroz con frijol Enfrijoladas Enchiladas Salsas rojas Salsas verdes Cochinita pibil Huazontles Quintoniles Pipian Romeritos Verdolagas Ensalada con espinacas | Frequently (Frecuentemente) Sometimes (A veces) By season (Por temporada) Never (Nunca) |
Mexican Dish | Ingredients | Grams Per person | TPC mg GAE/100g | References |
---|---|---|---|---|
Mole rojo | Turkey | 100 | 6.6 | [98] |
Tomato | 20 | 15.3 | [27] | |
Chipotle chilies | 3.3 | 715.1 | [27] | |
Ancho chilies | 6.6 | 3591.8 | [27] | |
Mulato chilies | 16.7 | 41.1 | [27] | |
Pasilla chilies | 2.1 | 20.4 | [27] | |
Almond | 8.3 | 315.02 | [72] | |
Sesame seed | 1.2 | 0.12 | [85] | |
Garlic | 0.2 | 0.48 | [80] | |
Cinnamon | 0.8 | 10.92 | [99] | |
Anise | 0.5 | 1.49 | [81] | |
Pepper | 0.2 | 0.009 | [87] | |
Clove | 0.2 | 44.38 | [81] | |
Coriander seed | 0.2 | 0.2 | [100] | |
Bread | 1.5 | 3.99 | [102] | |
Corn | 0.4 | 2.69 | [59] | |
Chocolate | 4.5 | 62.19 | [71] | |
Vegetal oil | 15 | 2.85 | [71] | |
Sugar | 0.2 | ND | ||
Mole verde | Pork shank | 100 | 70.2 | [101] |
Green bean | 12.6 | 37.08 | [103] | |
Squash (Chayote) | 35 | 100.45 | [27] | |
Tomatillo | 50 | 262.0 | [27] | |
Serrano chilies | 3.3 | 8.03 | [27] | |
Corn | 4.5 | 30.2 | [59] | |
Onion | 20 | 4.86 | [59] | |
Garlic | 3 | 7.2 | [80] | |
Mexican Pepper leaf | 3 | 11.9 | [91] | |
Epazote | 2 | 23.9 | [79] | |
Parsley | 2 | 4.3 | [76] | |
Vegetal oil | 6 | 1.14 | [71] | |
Mole poblano | Turkey | 100 | 6.6 | [98] |
Mulato chilies | 6.7 | 16.5 | [27] | |
Ancho chilies | 6.7 | 3646.2 | [27] | |
Pasilla chilies | 1.7 | 16.5 | [27] | |
Chipotle chilies | 1.6 | 346.7 | [27] | |
Tomato | 20 | 15.3 | [27] | |
Sesame seed | 1.7 | 0.18 | [85] | |
Raisin | 1.7 | 7.7 | [104] | |
Peanut | 1.7 | 6.4 | [73] | |
Bread | 1 | 2.6 | [102] | |
Pimiento | 5 | 4.2 | [27] | |
Clove | 0.03 | 6.6 | [81] | |
Anise | 0.03 | 0.08 | [81] | |
Cinnamon | 0.8 | 10.9 | [99] | |
Onion | 20 | 4.8 | [59] | |
Tortilla | 0.4 | 0.2 | [105] | |
Garlic | 0.7 | 1.6 | [80] | |
Chocolate | 1.5 | 20.7 | [71] | |
Vegetal oil | 10 | 1.9 | [71] | |
Sugar | 0.5 | ND | ||
Mole de olla | Beef shank | 100 | ND | |
Corn dough | 20 | 134.5 | [59] | |
Pasilla chilies | 6.6 | 64.3 | [27] | |
Ancho chilies | 6.6 | 3591.8 | [27] | |
Tomato | 90 | 68.8 | [27] | |
Corn | 240 | 1614.1 | [59] | |
Green beans | 4.6 | 13.5 | [103] | |
Xoconostle | 33.2 | 68.7 | [106] | |
Onion | 20 | 4.8 | [59] | |
Garlic | 6 | 14.4 | [80] | |
Black pepper | 0.5 | 0.02 | [87] | |
Clove | 0.2 | 44.4 | [81] | |
Epazote | 4 | 47.9 | [79] | |
Arroz con frijol | Rice | 100 | 23.8 | [61] |
Bean | 100 | 1368.48 | [68] | |
Carrot | 33 | 23.1 | [51] | |
Onion | 66.6 | 16.2 | [59] | |
Epazote | 13.3 | 159.4 | [79] | |
Butter | 10 | ND | ||
Enfrijoladas | Tortilla | 92 | 54.57 | [105] |
Bean | 100 | 1368.48 | [68] | |
Chicken | 100 | 6.6 | [98] | |
Onion | 33 | 8.01 | [59] | |
Sour cream | 16.7 | 0.01 | [107] | |
Fresh cheese | 33 | ND | ||
Epazote | 13 | 155.8 | [79] | |
Red sauce | 33.3 | 25.5 | [27] | |
Enchiladas rojas | Corn tortilla | 92 | 54.57 | [105] |
Guajillo chilies | 33 | 33.2 | [108] | |
Ancho chilies | 20 | 10,884.4 | [27] | |
Garlic | 6 | 14.43 | [80] | |
White onion | 50 | 12.1 | [59] | |
Cumin | 5 | 107.2 | [109] | |
Oregan | 0.4 | 1.7 | [78] | |
Pepper | 0.4 | 0.02 | [87] | |
Vegetal oil | 16.7 | 3.1 | [71] | |
Enchiladas verdes | Chicken breast | 100 | 6.6 | [98] |
Corn tortilla | 92 | 54.6 | [105] | |
Coriander | 13.3 | 18.3 | [77] | |
Tomatillo | 141.7 | 742.5 | [27] | |
Garlic | 10 | 24.1 | [80] | |
Serrano chilies | 3.3 | 8.03 | [27] | |
Onion | 33.3 | 8.1 | [59] | |
Vegetal oil | 16.7 | 3.1 | [71] | |
Sour cream | 15 | 0.01 | [107] | |
Enchiladas de Olla | Corn tortilla | 92 | 54.6 | [105] |
Corn dough | 100 | 672.5 | [59] | |
Ancho chilies | 1.6 | 870.7 | [27] | |
Poblano chilies | 1.6 | 3.9 | [27] | |
Cheese | 30 | ND | ||
Lettuce | 30 | 0.93 | [54] | |
Vegetal oil | 5 | 0.95 | [71] | |
Enchiladas Suizas | Corn tortilla | 92 | 54.6 | [105] |
Tomatillo | 100 | 524 | [27] | |
Cream cheese | 21 | 0.01 | [107] | |
Serrano chilies | 8.5 | 20.7 | [27] | |
Garlic | 3.2 | 7.7 | [80] | |
Onion | 21 | 5.1 | [59] | |
Coriander | 4.2 | 5.7 | [77] | |
Black pepper | 2.1 | 0.1 | [87] | |
Vegetal oil | 10.7 | 2.0 | [71] | |
Enchiladas de requeson y verdolagas | Corn tortilla | 92 | 54.6 | [105] |
Cheese | 19.6 | ND | ||
Requesón (fresh cheese) | 106.9 | 31.8 | [110] | |
Tomatillo | 100 | 524 | [27] | |
Serrano chilies | 2.1 | 5.1 | [27] | |
Onion | 41 | 10 | [59] | |
Coriander/Epazote | 3.2 | 38.3 | [79] | |
Black pepper | 1 | 0.04 | [87] | |
Garlic | 11.8 | 28.3 | [80] | |
Purslane | 274.5 | 3129.3 | [111] | |
Sour cream | 9.8 | 0.007 | [107] | |
Vegetal oil | 3.2 | 0.6 | [71] | |
Salsa taquera | Tomato | 100 | 76.5 | [27] |
Tomatillo | 56.7 | 297.1 | [27] | |
Garlic | 10 | 24 | [80] | |
Onion | 44.4 | 10.8 | [59] | |
Arbol chilies | 50 | 210.5 | [27] | |
Salsa de chile habanero con tomate | Tomatillo | 100 | 76.5 | [27] |
Habanero chilies | 1.8 | 2.2 | [27] | |
Garlic | 5 | 12 | [80] | |
Onion | 10 | 2.4 | [59] | |
Vegetal oil | 5 | 0.95 | [71] | |
Salsa ranchera roja | Tomato | 100 | 76.5 | [27] |
Jalapeño Chilies | 6.7 | 16.2 | [27] | |
Garlic | 5 | 12 | [80] | |
Onion | 15 | 3.6 | [113] | |
Salsa de chile morita | Tomato | 100 | 76.5 | [27] |
Morita chilies | 2.8 | 606.7 | [27] | |
Onion | 13.3 | 3.23 | [59] | |
Garlic | 2 | 4.8 | [80] | |
Thyme | 0.7 | 5.6 | [112] | |
Marjoram | 0.7 | 19.4 | [82] | |
Black pepper | 0.7 | 0.03 | [87] | |
Salsa de chile piquín | Chiltepín chilies | 30 | 4374 | [113] |
Cumin | 3.7 | 79.3 | [109] | |
Oregan | 7.5 | 33.1 | [78] | |
Black pepper | 3.7 | 0.17 | [87] | |
Onion | 66.7 | 16.2 | [59] | |
Garlic | 5 | 12 | [80] | |
Vegetal oil | 15 | 2.8 | [71] | |
Vinegar | 7.5 | ND | ||
Salsas verdes | Tomatillo | 255 | 1336.2 | [27] |
Serrano chilies | 30 | 73.1 | [27] | |
Jalapeño chilies | 20 | 48.5 | [27] | |
Onion | 45 | 10.9 | [59] | |
Garlic | 15 | 36.1 | [80] | |
Cochinita pibil | Pork leg | 100 | 70.2 | [101] |
Achiote (Annato) | 1.5 | 1.1 | [84] | |
Garlic | 1 | 2.4 | [80] | |
Orange juice | 46 | 1069.5 | [43] | |
Tabasco pepper (Pimenta dioica L. Merrill) | 0.6 | 33.1 | [114] | |
Oregan | 0.0002 | 0.0008 | [78] | |
Clove | 0.0001 | 0.02 | [81] | |
Bay leaf (Laurus nobilis L. leaves) | 0.0002 | 0.01 | [115] | |
Banana leaf | 0.05 | 0.7 | [116] | |
Huazontles | Huazontles | 100 | 432.9 | [117] |
Cheese | 25 | ND | ||
Flour | 15 | 25.8 | [71] | |
Egg | 21.9 | ND | ||
Corn oil | 25 | 4.75 | [71] | |
Onion | 30 | 7.29 | [59] | |
Tomatillo | 75 | 393.0 | [27] | |
Garlic | 0.7 | 1.7 | [80] | |
Jalapeño chilies | 6 | 14.6 | [27] | |
Quintoniles | Turkey | 100 | 6.6 | [98] |
Tomatillo | 25 | 131.0 | [27] | |
Serrano chilies | 2.5 | 6.1 | [27] | |
Onion | 5 | 1.2 | [59] | |
Garlic | 1.5 | 3.6 | [80] | |
Quintoniles | 200 | 763.5 | [117] | |
Pipian con hojas santa | Turkey or Chicken | 100 | 6.6 | [98] |
Chilies | 3 | 8.6 | [27] | |
Pumpkin seed | 18 | 24.2 | [118] | |
Toasted bread | 6.2 | 0.4 | [119] | |
Cinnamon | 2.5 | 34.1 | [99] | |
Clove | 0.05 | 11.1 | [81] | |
Black pepper | 0.05 | 0.002 | [87] | |
Raisin | 1.2 | 5.5 | [104] | |
Jalapeño chilies | 3 | 7.2 | [27] | |
Olive | 2.5 | 1.8 | [71] | |
Sesame seed | 6.2 | 0.6 | [85] | |
Almond | 6.2 | 235.3 | [72] | |
Mexican pepper leaf | 2.5 | 10 | [91] | |
Romeritos | Dry shrimp | 20 | ND | |
Potato | 100 | 13.8 | [60] | |
Romeritos | 200 | 346.0 | [117] | |
Baking soda | 1 | ND | ||
Mole in paste | 50 | 2058.1 | [27,59,71,73,80,81,85,98,99,102,104,105] | |
Nopal | 50 | 8.5 | [57] | |
Vegetal oil | 3 | 0.6 | [71] | |
Espinazo con verdolagas | Pork backbone | 100 | 70.2 | [101] |
Purslane | 200 | 2280.0 | [111] | |
Mexican pepper | 1 | 4 | [91] | |
Bay leaf (Laurus nobilis L. leaves) | 0.0004 | 0.02 | [115] | |
Clove | 0.1 | 22.2 | [81] | |
Thyme | 0.1 | 0.8 | [112] | |
Onion | 40 | 9.7 | [59] | |
Ancho chilies | 6.6 | 3591.8 | [27] | |
Guajillo chilies | 9.9 | 10 | [108] | |
Garlic | 3 | 7.2 | [80] | |
Tomato | 210 | 160.6 | [27] | |
Cumin | 0.0004 | 0.008 | [109] | |
Black pepper | 0.0004 | 0.00002 | [87] | |
Verdolagas en salsa | Purslane | 100 | 1140.0 | [111] |
Onion | 20 | 4.86 | [59] | |
Aji | 0.7 | 0.4 | [120] | |
Pepper | 0.004 | 0.0002 | [87] | |
Parsley | 10 | 21.5 | [76] | |
Pimiento | 30 | 25.2 | [27] | |
Carrot | 25 | 17.5 | [51] | |
Celery | 5 | 232.0 | [55] | |
Garlic | 1.5 | 3.6 | [80] | |
Tomato puree | 12.5 | 9.5 | [27] | |
Espinacas ensalada | Spinach | 100 | 1060.0 | [121] |
Nuts | 12 | 166.0 | [73] | |
Balsamic vinegar | 12 | ND | ||
Mexican lime | 16 | 98.5 | [122] | |
Pepper | 0.0004 | 0.00001 | [87] | |
Goat Cheese | 20 | 5.96 | [110] | |
Olive oil | 12 | 8.82 | [71] |
Disease | Predictor Variables | Coefficient Standardized | Model | ANOVA | |||
---|---|---|---|---|---|---|---|
β | t | p-Value | R2 | F | p-Value | ||
Diabetes | Age | 0.2 | 7.4 | <0.001 | 0.1 | 23.3 | <0.001 |
White onion | −0.2 | −3.5 | 0.001 | ||||
Tomato | 0.2 | 3.2 | 0.001 | ||||
Carrot | −0.1 | −2.3 | 0.02 | ||||
Hypertension | Age | 0.2 | 7.0 | <0.001 | 0.1 | 18.8 | <0.001 |
Strawberry | −0.1 | −3.2 | 0.001 | ||||
Potato | −0.1 | −2.9 | 0.004 | ||||
Scholarship | −0.1 | −2.4 | 0.01 | ||||
Apple | 0.1 | 2.8 | 0.004 | ||||
Chilies | −0.1 | −2.4 | 0.02 | ||||
Hypercholesterolemia | Age | 0.2 | 7.9 | <0.001 | 0.1 | 32.4 | <0.001 |
Chilies | −0.1 | −2.8 | 0.004 | ||||
Grape | −0.1 | −2.7 | 0.004 | ||||
Hypertriglyceridemia | Age | 0.2 | 6.2 | <0.001 | 0.1 | 16.6 | <0.001 |
Chilies | −0.1 | −3.8 | <0.001 | ||||
Beetroot | −0.1 | −3.2 | 0.001 | ||||
Mexican pepper leaf | 0.1 | 3.2 | 0.001 | ||||
Pipian | −0.1 | −2.6 | 0.008 | ||||
Soybean | 0.1 | 2.3 | 0.02 |
Weight Status | Participants (n) | ANOVA Main Effect of Group | ||
PCI Comparisons of All Foods (M) | F | p-Value | ||
Underweight (BMI < 18.5) | LD (25) MD (0) | LD (177.61) MD (ND) | ||
Normal weight (BMI: 18.5–24.9) | LD (501) MD (0) | LD (152.07) MD (ND) | ||
Overweight (BMI: 25.0–29.9) | LD (114) MD (192) | LD (133.19) MD (124.08) | 11.44 | <0.001 |
Obesity (BMI: 30.0–39.9) | LD (0) MD (102) | LD (ND) MD (108.43) | ||
Extreme obesity (BMI > 40.0) | LD (0) MD (30) | LD (ND) MD (87.98) | ||
ANOVA Main Effect of Group | ||||
PCI Comparisons of All Foods Regardless of LD and MD (M) | F | p-Value | ||
Underweight (BMI < 18.5) | 25 | 177.61 | 160.56 | <0.001 |
Normal weight (BMI: 18.5–24.9) | 501 | 150.10 | ||
Overweight (BMI: 25.0–29.9) | 306 | 127.47 | ||
Obesity (BMI: 30.0–39.9) | –102 | 108.43 | ||
Extreme obesity (BMI > 40.0) | 30 | 87.98 |
Variables Correlated (n = 964) | Pearson Correlation | p | |
---|---|---|---|
BMI | Number of diseases | 0.25 | <0.001 |
BMI | Fruits | ||
Grape | −0.44 | <0.001 | |
Plum | −0.31 | <0.001 | |
Cranberry | −0.36 | <0.001 | |
Peach | −0.4 | <0.001 | |
Raspberry | −0.32 | <0.001 | |
Blueberry | −0.3 | <0.001 | |
Prickly pear | −35 | <0.001 | |
Apple | −0.66 | <0.001 | |
Pink grapefruit | −0.27 | <0.001 | |
Kiwi | −0.35 | <0.001 | |
Orange | −0.57 | <0.001 | |
Guava | −0.44 | <0.001 | |
Strawberry | −0.52 | <0.001 | |
Pomegranate | −0.31 | <0.001 | |
Cherry | −0.25 | <0.001 | |
Pear | −0.41 | <0.001 | |
Vegetables | |||
BMI | Huitlacoche | −0.24 | <0.001 |
Spring onion | −0.38 | <0.001 | |
Mushroom (Fungi) | −0.46 | <0.001 | |
Peppers | −0.5 | <0.001 | |
Carrot | −0.69 | <0.001 | |
Beetroot | −0.4 | <0.001 | |
Swiss chard | −0.37 | <0.001 | |
Tomato | −0.79 | <0.001 | |
Chilies | −0.58 | <0.001 | |
Lettuce | −0.71 | <0.001 | |
Celery | −0.37 | <0.001 | |
Brussels sprouts | −0.24 | <0.001 | |
Nopal (Prickly pear cactus) | −0.51 | <0.001 | |
Red Radish | −0.29 | <0.001 | |
Broccoli | −0.56 | <0.001 | |
White onion | −0.68 | <0.001 | |
Purple onion | −0.41 | <0.001 | |
Potato | −0.57 | <0.001 | |
BMI | Cereals | ||
Rice cooked | −0.64 | <0.001 | |
Oatmeal | −0.56 | <0.001 | |
Barley | −0.28 | <0.001 | |
Flaxseed | −0.28 | <0.001 | |
Wheat | −0.37 | <0.001 | |
Corn | −0.69 | <0.001 | |
Millet | −0.18 | <0.001 | |
Sorghum | −0.29 | <0.001 | |
BMI | Legumes | ||
Soybean | −0.64 | <0.001 | |
Beans | −0.33 | <0.001 | |
Haba | −0.33 | <0.001 | |
Lentil | −0.49 | <0.001 | |
BMI | Seeds | ||
Almont | −0.51 | <0.001 | |
Nut | −0.51 | <0.001 | |
Peanut | −0.54 | <0.001 | |
Chia | −0.36 | <0.001 | |
Flaxseed | −0.28 | <0.001 | |
Spices | |||
Parsley | −0.47 | <0.001 | |
Coriander | −0.69 | <0.001 | |
Oregano | −0.57 | <0.001 | |
Epazote | −0.37 | <0.001 | |
Garlic | −0.73 | <0.001 | |
Clove | −0.4 | <0.001 | |
Paprika | −0.35 | <0.001 | |
Marjoram | −0.27 | <0.001 | |
Eucalyptus | −0.21 | <0.001 | |
Achiote (Annatto) | −0.27 | <0.001 | |
Sesame Seed | −0.43 | <0.001 | |
Ginger | −0.29 | <0.001 | |
Black pepper | −0.56 | <0.001 | |
Chaya | −0.17 | <0.001 | |
Fennel | −0.22 | <0.001 | |
Linden | −0.25 | <0.001 | |
Saffron | −0.23 | <0.001 | |
Anise | −0.23 | <0.001 | |
Mexican pepper leaf | −0.21 | <0.001 | |
Papalo | −0.16 | <0.001 | |
BMI | Beverages | ||
Coffee | −0.47 | <0.001 | |
Green tea | −0.39 | <0.001 | |
Wine | −0.39 | <0.001 | |
Hibiscus water | −0.59 | <0.001 | |
Chamomile tea | −0.55 | <0.001 | |
BMI | Mexican dishes | ||
Mole | −0.32 | <0.001 | |
Arroz con frijol | −0.49 | <0.001 | |
Enfrijoladas | −0.53 | <0.001 | |
Enchiladas | −0.59 | <0.001 | |
Salsas rojas | −0.55 | <0.001 | |
Salsas verdes | −0.57 | <0.001 | |
Cochinita pibil | −0.32 | <0.001 | |
Huazontles | −0.25 | <0.001 | |
Quintoniles | −0.24 | <0.001 | |
Pipián | −0.23 | <0.001 | |
Romeritos | −0.24 | <0.001 | |
Verdolagas | −0.30 | <0.001 | |
Ensalada con espinacas | −0.45 | <0.001 |
References
- Hasler, C.M. Functional foods: Benefits, concerns and challenges—A position paper from the American Council on Science and Health. J. Nutr. 2002, 132, 3772–3781. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-inflammatory and anti-allergic potential of dietary flavonoids: A review. Biomed. Pharm. 2022, 156, 113945. [Google Scholar] [CrossRef]
- Redan, B.W.; Buhman, K.K.; Novotny, J.A.; Ferruzzi, M.G. Altered transport and metabolism of phenolic compounds in obesity and diabetes: Implications for functional food development and assessment. Adv. Nutr. 2016, 7, 1090–1104. [Google Scholar] [CrossRef] [Green Version]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef]
- Bucciantini, M.; Leri, M.; Nardiello, P.; Casamenti, F.; Stefani, M. Olive Polyphenols: Antioxidant and Anti-Inflammatory Properties. Antioxidants 2021, 10, 1044. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Rizvi, M.K.; Rabail, R.; Munir, S.; Inam-Ur-Raheem, M.; Qayyum, M.M.N.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Astounding Health Benefits of Jamun (Syzygium cumini) toward Metabolic Syndrome. Molecules 2022, 27, 7184. [Google Scholar] [CrossRef]
- Munir, S.; Liu, Z.-W.; Tariq, T.; Rabail, R.; Kowalczewski, P.Ł.; Lewandowicz, J.; Blecharczyk, A.; Abid, M.; Inam-Ur-Raheem, M.; Aadil, R.M. Delving into the Therapeutic Potential of Carica papaya Leaf against Thrombocytopenia. Molecules 2022, 27, 2760. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Olefsky, J.M. Inflammatory mechanisms linking obesity and metabolic disease. J. Clin. Investig. 2017, 127, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Silvester, A.J.; Aseer, K.R.; Yun, J.W. Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem. 2019, 64, 1–12. [Google Scholar] [PubMed]
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [PubMed] [Green Version]
- Hsu, C.L.; Yen, G.C. Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol. Nutr. Food Res. 2008, 52, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Mele, L.; Bidault, G.; Mena, P.; Crozier, A.; Brighenti, F.; Vidal-Puig, A.; Del Rio, D. Dietary (poly)phenols, brown adipose tissue activation, and energy expenditure: A narrative review. Adv. Nutr. 2017, 8, 694–704. [Google Scholar] [PubMed] [Green Version]
- Asayama, K.; Nakane, T.; Dobashi, K.; Kodera, K.; Hayashibe, H.; Uchida, N.; Nakazawa, S. Effect of obesity and troglitazone on expression of two glutathione peroxidases: Cellular and extracellular types in serum, kidney and adipose tissue. Free Radic. Res. 2001, 34, 337–347. [Google Scholar]
- Carmiel-Haggai, M.; Cederbaum, A.I.; Nieto, N. A high-fat diet leads to the progression of non-alcoholic fatty liver disease in obese rats. FASEB J. 2005, 19, 136–138. [Google Scholar]
- Kerner, W.; Brückel, J. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2014, 122, 384–386. [Google Scholar]
- Francula-Zaninovic, S.; Nola, I.A. Management of Measurable Variable Cardiovascular Disease’ Risk Factors. Curr. Cardiol. Rev. 2018, 14, 153–163. [Google Scholar] [CrossRef]
- Behl, T.; Bungau, S.; Kumar, K.; Zengin, G.; Khan, F.; Kumar, A.; Kaur, R.; Venkatachalam, T.; Tit, D.M.; Vesa, C.M.; et al. Pleotropic Effects of Polyphenols in Cardiovascular System. Biomed. Pharm. 2020, 130, 110714. [Google Scholar]
- Yousefian, M.; Shakour, N.; Hosseinzadeh, H.; Hayes, A.W.; Hadizadeh, F.; Karimi, G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine 2019, 55, 200–213. [Google Scholar]
- Saavedra, O.M.; Nahúm, E.; Vázquez, J.; Roberto, M.; Guapillo, B.; Manuel, G.; Reyes, C.; Bolaina, E.M. Radicales libres y su papel en las enfermedades. Rev. Med. UV 2010, 1, 29–32. [Google Scholar]
- Sebastian, R.S.; Enns, C.W.; Goldman, J.D.; Martin, C.L.; Steinfeldt, L.C.; Murayi, T.; Moshfegh, A.J. A new database facilitates characterization of flavonoid intake, sources, and positive associations with diet quality among US adults. J. Nutr. 2015, 145, 1239–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-ruault, C.; Touillaud, M.; et al. Europe PMC Funders Group Dietary polyphenol intake in Europe: The European Prospective Investigation into Cancer and Nutrition ( EPIC ) study. Eur. J. Nutr. 2018, 55, 1359–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016, 115, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valerino-Perea, S.; Lara-Castor, L.; Armstrong, M.E.G.; Papadaki, A. Definition of the traditional mexican diet and its role in health: A systematic review. Nutrients 2019, 11, 2803. [Google Scholar] [CrossRef] [Green Version]
- Mercado-Mercado, G.; de la Rosa Carrillo, L.; Wall-Medrano, A.; Díaz, J.A.L.; Parrilla, J.Á. Compuestos polifenólicos y capacidad antioxidante de especias típicas consumidas en México. Nutr. Hosp. 2013, 28, 36–46. [Google Scholar]
- Gómez-Maqueo, A.; Escobedo-Avellaneda, Z.; Welti-Chanes, J. Phenolic compounds in mesoamerican fruits—Characterization, health potential and processing with innovative technologies. Int. J. Mol. Sci. 2020, 21, 8357. [Google Scholar] [CrossRef]
- Barquera, S.; Hernández-Barrera, L.; Trejo-Valdivia, B.; Shamah, T.; Campos-Nonato, I.; Rivera-Dommarco, J. Obesidad en México, prevalencia y tendencias en adultos. Ensanut 2018–19. Salud Publica Mex. 2020, 62, 682–692. [Google Scholar] [CrossRef]
- Himmelgreen, D.; Romero-Daza, N.; Heuer, J.; Lucas, W.; Salinas-Miranda, A.A.; Stoddard, T. Using syndemic theory to understand food insecurity and diet-related chronic diseases. Soc. Sci. Med. 2022, 295, 113124. [Google Scholar] [CrossRef]
- Rivera, J.A.; Barquera, S.; González-Cossío, T.; Olaiz, G.; Sepúlveda, J. Nutrition transition in Mexico and in other Latin American countries. Nutr. Rev. 2004, 62, S149–S157. [Google Scholar] [CrossRef]
- Bin, D. Phenolic content and antioxidant activity of wine grapes and table grapes. J. Med. Plants Res. 2012, 6, 3381–3387. [Google Scholar] [CrossRef]
- Cosmulescu, S.; Trandafir, I.; Nour, V.; Botu, M. Total Phenolic, Flavonoid Distribution and Antioxidant Capacity in Skin, Pulp and Fruit Extracts of Plum Cultivars. J. Food Biochem. 2015, 39, 64–69. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Aguayo-Rojas, J.; Mora-Rochín, S.; Tovar-Jiménez, X.; Rochín-Medina, J.J.; Navarro-Cortez, R.O. Fitoquímicos y propiedades nutraceúticas de durazno (Prunus persica L.) cultivado en Zacatecas. Polibotánica 2022, 53, 151–166. [Google Scholar] [CrossRef]
- Frías-Moreno, M.N.; Parra-Quezada, R.Á.; Ruíz-Carrizales, J.; González-Aguilar, G.A.; Sepulveda, D.; Molina-Corral, F.J.; Jacobo-Cuellar, J.L.; Olivas, G.I. Quality, bioactive compounds and antioxidant capacity of raspberries cultivated in northern Mexico. Int. J. Food Prop. 2021, 24, 603–614. [Google Scholar] [CrossRef]
- Alba-Jimenez, J.E.; Chavez-Servia, J.L.; Verdalet-Guzman, I.; Jesus, M.-A.; Aquino-Bolanos, E.N. Betalains, polyphenols and antioxidant activity in minimally processed red prickly pear stored in controlled atmospheres. Gayana Bot. 2014, 71, 222–226. [Google Scholar]
- Albano, C.; Negro, C.; Tommasi, N.; Gerardi, C.; Mita, G.; Miceli, A.; de Bellis, L.; Blando, F. Betalains, phenols and antioxidant capacity in cactus pear [opuntia ficus-indica (L.) mill.] fruits from Apulia (South Italy) genotypes. Antioxidants 2015, 4, 269–280. [Google Scholar] [CrossRef]
- Cardador-Martínez, A.; Jiménez-Martínez, C.; Sandoval, G. Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Food Sci. Technol. 2011, 31, 782–788. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.-F.; Hsieh, C.-L.; Yen, G.-C. The protective effect of Opuntia dillenii Haw fruit against low-density lipoprotein peroxidation and its active compounds. Food Chem. 2008, 106, 569–575. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R.H. Antioxidant activity of apple peels. J. Agric. Food Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef]
- Sir Elkhatim, K.A.; Elagib, R.A.A.; Hassan, A.B. Content of phenolic compounds and vitamin C and antioxidant activity in wasted parts of Sudanese citrus fruits. Food Sci. Nutr. 2018, 6, 1214–1219. [Google Scholar] [CrossRef]
- Zhu, C.; Chou, O.; Lee, F.Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Characterization of phenolics in rejected kiwifruit and their antioxidant potential. Processes 2021, 9, 781. [Google Scholar] [CrossRef]
- Ghasemi, K.; Ghasemi, Y.; Ebrahimzadeh, M.A. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci. 2009, 22, 277–281. [Google Scholar]
- Rekika, D.; Khanizadeh, S.; Deschênes, M.; Levasseur, A.; Charles, M.T.; Tsao, R.; Yang, R. Antioxidant capacity and phenolic content of selected strawberry genotypes. HortScience 2005, 40, 1777–1781. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Escarcega, G.; Sánchez-Chávez, E.; Pérez-Álvarez, S.; Soto-Caballero, M.; Soto-Parra, J.M.; Flores-Córdova, M.A.; Salas-Salazar, N.A.; Ojeda-Barrios, D.L. Determination of antioxidant phenolic, nutritional quality and volatiles in pomegranates (Punica granatum L.) cultivated in Mexico. Int. J. Food Prop. 2020, 23, 979–991. [Google Scholar] [CrossRef]
- Hu, T.; Subbiah, V.; Wu, H.; BK, A.; Rauf, A.; Alhumaydhi, F.A.; Suleria, H.A.R. Determination and Characterization of Phenolic Compounds from Australia-Grown Sweet Cherries (Prunus avium L.) and Their Potential Antioxidant Properties. ACS Omega 2022, 7, 9086. [Google Scholar] [CrossRef]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A comparative investigation on phenolic composition, characterization and antioxidant potentials of five different australian grown pear varieties. Antioxidants 2021, 10, 151. [Google Scholar] [CrossRef]
- Beas, R.; Loarca, G.; Guzmán, S.H.; Rodriguez, M.G.; Vasco, N.L.; Guevara, F. Potencial nutracéutico de componentes bioactivos presentes en huitlacoche de la zona centro de México. Rev. Mex. Cienc. Farm. 2011, 42, 36–44. [Google Scholar]
- Aslam, Z.; Akhtar, S.; Imran, M.; Nadeem, M.; Gilani, S.; Elnashar, M.; Ahmed, E. Antioxidant Activity, Anti-Inflammatory Activities, Anti-Cancer and Chemical Composition of Spring Onion (Allium Fistolisum) Extracts. Res. J. Pharm. Biol. Chem. Sci. 2018, 8, 1880–1890. [Google Scholar]
- Valchev, N. Nutritional and amino acid content of stem and cap of agaricus bisporus, Bulgaria. Bulg. J. Agric. Sci. 2020, 26, 192–201. [Google Scholar]
- Zhang, D.; Hamauzu, Y. Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.). Int. J. Food, Agric. Environ. 1985, 2, 332. [Google Scholar]
- Guiné, R.P.F.; Correia, P.M.D.R.; Ferrão, A.C.; Gonçalves, F.; Lerat, C.; El-Idrissi, T.; Rodrigo, E. Evaluation of phenolic and antioxidant properties of strawberry as a function of extraction conditions. Braz. J. Food Technol. 2020, 23, 1–11. [Google Scholar] [CrossRef]
- Zein, H.; El-Moneim, A.; Hashish, S.; Ismaiel, G.H.H. The antioxidant and Anticancer Activities of Swiss Chard and Red Beetroot Leaves. Curr. Sci. Int. 2015, 4, 491–498. [Google Scholar]
- Jiménez-Aguilar, D.M.; Grusak, M.A. Evaluation of Minerals, Phytochemical Compounds and Antioxidant Activity of Mexican, Central American, and African Green Leafy Vegetables. Plant Foods Hum. Nutr. 2015, 70, 357–364. [Google Scholar] [CrossRef]
- Jung, W.; Chung, I.; Kim, H.; Kim, M.Y.; Ahmad, A.; Praveen, N. In vitro antioxidant activity, total phenolics and flavonoids from celery (Apium graveolens) leaves. J. Med. Plants Res. 2011, 5, 7022–7030. [Google Scholar]
- Zhou, X.; Li, M.; Li, L.; Zhang, Y.; Cui, J.; Liu, J.; Chen, C. The semantic system is involved in mathematical problem solving. Neuroimage 2018, 166, 360–370. [Google Scholar] [CrossRef]
- Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.W.; De León-Rodríguez, A.; Fomsgaard, I.S.; Barba de la Rosa, A.P. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J. Food Compos. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C.N. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Martinez, L.X.; Oliart-Ros, R.M.; Valerio-Alfaro, G.; Lee, C.-H.; Parkin, K.L.; Garcia, H.S. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Technol. 2009, 42, 1187–1192. [Google Scholar] [CrossRef]
- Robles-Ramírez, M.D.C.; Monterrubio-López, R.; Mora-Escobedo, R.; Beltrán-Orozco, M.D.C. Evaluation of extracts from potato and tomato wastes as natural antioxidant additives. Arch. Latinoam. Nutr. 2016, 66, 66–73. [Google Scholar]
- Heuberger, A.L.; Lewis, M.R.; Chen, M.H.; Brick, M.A.; Leach, J.E.; Ryan, E.P. Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice. PLoS ONE 2010, 5, e12915. [Google Scholar] [CrossRef]
- Jian, G.X.; Cheng, R.T.; Qing, P.H.; Ji, Y.L.; Xiang, D.W.; Xiang, D.T. Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. J. Agric. Food Chem. 2009, 57, 10392–10398. [Google Scholar]
- Horvat, D.; Šimić, G.; Drezner, G.; Lalić, A.; Ledenčan, T.; Tucak, M.; Plavšić, H.; Andrić, L.; Zdunić, Z. Phenolic acid profiles and antioxidant activity of major cereal crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Ereifej, K.; Alli, I. Distribution, antioxidant and characterisation of phenolic compounds in soybeans, flaxseed and olives. Food Chem. 2013, 139, 93–99. [Google Scholar] [CrossRef]
- Belman-Ramirez, I.J.; Sosa-Morales, M.E.; Ceron-Garcia, A. Evaluacion de componentes bioactivos y compuestos antinutricionales en semillas de mijo perla (Pennisetum glaucum). Jovenes en la Cienc. 2016, 2, 1172–1176. [Google Scholar]
- Flores-Naveda, A.; Díaz-Vázquez, F.; Ruiz-Torres, N.A.; Vázquez-Badillo, M.E.; Niño-Medina, G.; Camposeco-Montejo, N.; Rodríquez-Salinas, P.; García-López, J.I. Compuestos fenólicos y actividad antioxidante en líneas experimentales de sorgo pigmentado cultivado en Coahuila México. Inf. Tec. Econ. Agrar. 2021, 117, 478–493. [Google Scholar] [CrossRef]
- Xu, B.J.; Chang, S.K.C. A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J. Food Sci. 2007, 72, S159–S166. [Google Scholar] [CrossRef]
- Perez-Hernandez, L.M.; Hernández-Álvarez, A.J.; Morgan, M.; Boesch, C.; Orfila, C. Polyphenol bioaccessibility and anti-inflammatory activity of Mexican common beans (Phaseolus vulgaris L.) with diverse seed colour. CYTA-J. Food 2021, 19, 682–690. [Google Scholar] [CrossRef]
- Ortiz-López, M.; Delgado-Alvarado, A.; Herrera-Cabrera, B.E.; Árevalo-Galarza, M.D.L.; Barrera-Rodríguez, A.I. Efecto de dos métodos de secado en los compuestos fenólicos totales, L-DOPA y la actividad antioxidante de Vicia faba L. Nov. Sci. 2019, 11, 198–219. [Google Scholar]
- Zou, Y.; Chang, S.K.C.; Gu, Y.; Qian, S.Y. Antioxidant Activity and Phenolic Compositions of Lentil (Lens culinaris var. Morton) Extract and Its Fractions. J. Agric. Food Chem. 2011, 59, 2268–2276. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Beta, T. Food Sources of Phenolics Compounds. In Natural Products 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2527–2558. [Google Scholar]
- Dhingra, N.; Kar, A.; Sharma, R.; Bhasin, S. In-vitro antioxidative potential of different fractions from Prunus dulcis seeds: Vis a vis antiproliferative and antibacterial activities of active compounds. S. Afr. J. Bot. 2017, 108, 184–192. [Google Scholar] [CrossRef]
- Rosales-Martínez, P.; Arellano-Cárdenas, S.; Dorantes-Álvarez, L.; García-Ochoa, F.; López-Cortez, M.D.S. Comparison between antioxidant activities of phenolic extracts from mexican peanuts, peanuts skins, nuts and pistachios. J. Mex. Chem. Soc. 2014, 58, 185–193. [Google Scholar]
- Oliveira-Alves, S.C.; Vendramini-Costa, D.B.; Betim Cazarin, C.B.; Maróstica Júnior, M.R.; Borges Ferreira, J.P.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 2017, 232, 295–305. [Google Scholar] [CrossRef]
- Anwar, F.; Przybylski, R. Effect of solvents extraction on total phenolics and antioxidant activity of extracts from flaxseed (Linum usitatissimum L.). Acta Sci. Pol. Technol. Aliment. 2012, 11, 293–302. [Google Scholar]
- Andrei, S.; Bunea, A.; Bele, C.; Tudor, C.; Pintea, A. Bioactive Compounds and Antioxidant Activity in Some Fresh and Canned Aromatic Herbs. Bull. UASVM Food Sci. Technol. 2018, 75, 180. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Rodríguez, R.; Balagurusamy, N.; Carrillo, M.L.; Belmares, R.; Contreras, J.C.; Nevárez, G.V.; Aguilar, C.N. Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L. CYTA-J. Food 2014, 12, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Chitala, M.D.C.; Flores-Martínez, H.; Orozco-ávila, I.; León-Campos, C.; Suárez-Jacobo, Á.; Estarrón-Espinosa, M.; López-Muraira, I. Identification and quantification of phenolic compounds from mexican oregano (Lippia graveolens hbk) hydroethanolic extracts and evaluation of its antioxidant capacity. Molecules 2021, 26, 702. [Google Scholar] [CrossRef]
- Flores-Flores, J.; López-Rodríguez, B.; Hernández-López, D.; Guzmán-Maldonado, S.H. Caracterización fenólica y capacidad antioxidante de plantas de uso medicinal. Investig. Desarro Cienc. Tecnol. Aliment. Determ. 2019, 4, 834–840. [Google Scholar]
- Beato, V.M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in Phenolic Compounds in Garlic (Allium sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Hum. Nutr. 2011, 66, 218–223. [Google Scholar] [CrossRef]
- Torres-Aguirre, G.; Muñoz-Bernal, Ó.; Álvarez-Parrilla, E.; Núñez-Gastélum, J.; Wall-Medrano, A.; Sáyago-Ayerdi, S. Optimization of the extraction and identification of polyphenolic compounds in aniseed (Pimpinella anisum), clove (Syzygium aromaticum) and coriander (Coriandrum sativum) through HPLC coupled to mass spectrometry. TIP Rev. Espec. En Cienc. Químico-Biológicas 2018, 21, 103–115. [Google Scholar]
- Chrpová, D.; Kourimská, L.; Gordon, M.H.; Hermanová, V.; Roubícková, I.; Pánek, J. Antioxidant activity of selected phenols and herbs used in diets for medical conditions. Czech. J. Food Sci. 2010, 28, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Wong-Paz, J.E.; Muñiz-Márquez, D.B.; Aguilar-Zárate, P.; Rodríguez-Herrera, R.; Aguilar, C.N. Microplate quantification of total phenolic content from plant extracts obtained by conventional and ultrasound methods. Phytochem. Anal. 2014, 25, 439–444. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ciro-Gómez, G.L.; Ruiz-Navajas, Y.; Zapata-Montoya, J.E.; Sendra, E.; Pérez-Álvarez, J.A.; Fernández-López, J. In vitro Antioxidant and Antibacterial Activities of Extracts from Annatto (Bixa orellana L.) Leaves and Seeds. J. Food Saf. 2012, 32, 399–406. [Google Scholar] [CrossRef]
- Kouighat, M.; Nabloussi, A.; Adiba, A.; El Fechtali, M.; Hanine, H. First Study of Improved Nutritional Properties and Anti-Oxidant Activity in Novel Sesame Mutant Lines as Compared to Their Wild-Types. Plants 2022, 11, 1099. [Google Scholar] [CrossRef]
- Valadez-Villarreal ALópez-Hernandez EGarcía-Jiménez, R. Investigación y Desarrollo en Ciencia y Tecnología de Alimentos Comparación de dos técnicas de extracción de jengibre (Zingiber officinale Roscoe) y cuantificación de fenólicos totales y capacidad antioxidante Investigación y Desarrollo en Ciencia y Tec. Investig. Desarro. Cienc. Tecnol. Aliment. 2019, 4, 813–817. [Google Scholar]
- Gülçin, I. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. [Google Scholar] [CrossRef]
- Kuri-García, A.; Chávez-Servín, J.L.; Guzmán-Maldonado, S. Phenolic profile and antioxidant capacity of Cnidoscolus chayamansa and Cnidoscolus aconitifolius: A review. J. Med. Plants Res. 2017, 11, 713–727. [Google Scholar]
- De Marino, S.; Gala, F.; Borbone, N.; Zollo, F.; Vitalini, S.; Visioli, F.; Iorizzi, M. Phenolic glycosides from Foeniculum vulgare fruit and evaluation of antioxidative activity. Phytochemistry 2007, 68, 1805–1812. [Google Scholar] [CrossRef]
- Cittan, M.; Altuntaş, E.; Çelik, A. Evaluation of antioxidant capacities and phenolic profiles in Tilia cordata fruit extracts: A comparative study to determine the efficiency of traditional hot water infusion method. Ind. Crops Prod. 2018, 122, 553–558. [Google Scholar] [CrossRef]
- Conde-Hernández, L.A.; Guerrero-Beltrán, J.Á. Total phenolics and antioxidant activity of piper auritum and porophyllum ruderale. Food Chem. 2014, 142, 455–460. [Google Scholar] [CrossRef]
- Antonietti, S.; Silva, A.M.; Simões, C.; Almeida, D.; Félix, L.M.; Papetti, A.; Nunes, F.M. Chemical Composition and Potential Biological Activity of Melanoidins From Instant Soluble Coffee and Instant Soluble Barley: A Comparative Study. Front. Nutr. 2022, 9, 34. [Google Scholar] [CrossRef]
- Moraes-de-Souza, R.A.; Oldoni, T.L.C.; Regitano-d’Arce, M.A.B.; Alencar, S.M. Actividad Antioxidante Y Compuestos Fenólicos En Infusiones Herbarias Consumidas En Brasil. Cienc. Tecnol. 2008, 6, 41–47. [Google Scholar]
- Urías-Orona, V.; Martínez-Ávila, G.C.G.; Rojas-Molina, R.; Niño-Medina, G. Compuestos fenólicos y capacidad antioxidante en bebidas comerciales de consumo frecuente en términos de tamaño de porción. Temas. Cienc. y Tecnol. 2020, 24, 29–33. [Google Scholar]
- Taco-Sosapanta, R.E. Evaluación Del Efecto Antioxidante Del Extracto de Semillas de Uva y Estudio de Métodos Para Determinar el Envejecimiento Acelerado en Vinos Tintos; Escuela Agrícola Panamericana: Zamorano, Honduras, 2017. [Google Scholar]
- Cid-Ortega, S.; Guerrero-Beltrán, J. Propiedades funcionales de la jamaica (Hibiscus sabdariffa L.). Temas. Sel. Ing. Aliment. 2012, 2, 47–63. [Google Scholar]
- Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative analysis of phenolic composition of six commercially available chamomile (Matricaria chamomilla l.) extracts: Potential biological implications. Int. J. Mol. Sci. 2021, 22, 10601. [Google Scholar] [CrossRef] [PubMed]
- Okarini, I.A.; Purnomo, H.; Aulanni’am; Radiati, L.E. Proximate, total phenolic, antioxidant activity and amino acids profile of Bali indigenous chicken, spent laying hen and broiler breast fillet. Int. J. Poult. Sci. 2013, 12, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Muchuweti, M.; Kativu, E.; Mupure, C.H.; Chidewe, C.; Ndhlala, A.R.; Benhura, M.A.N. Phenolic composition and antioxidant properties of some spices. Am. J. Food Technol. 2007, 2, 414–420. [Google Scholar] [CrossRef]
- Msaada, K.; Taârit, M.; Hosni, K.; Nidhal, S.; Tammar, S.; Bettaieb, I.; Hammami, M.; Limam, F.; Marzouk, B. Comparison of Different Extraction Methods for the Determination of Essential oils and Related Compounds from Coriander (Coriandrum sativum L.). Acta Chim. Slov. 2012, 59, 803–813. [Google Scholar]
- Araújo, L.R.S.; Watanabe, P.H.; Fernandes, D.R.; de O Maia, I.R.; da Silva, E.C.; Pinheiro, R.R.S.; de Melo, M.C.A.; Dos Santos, E.O.; Owen, R.W.; Trevisan, M.T.S.; et al. Dietary ethanol extract of mango increases antioxidant activity of pork. Animal 2021, 15, 100099. [Google Scholar] [CrossRef]
- Wahyono, A.; Dewi, A.C.; Oktavia, S.; Jamilah, S.; Kang, W.W. Antioxidant activity and Total Phenolic Contents of Bread Enriched with Pumpkin Flour. IOP Conf. Ser. Earth Environ. Sci. 2020, 411, 012049. [Google Scholar] [CrossRef]
- Aquino-Bolaños, E.N.; Garzón-García, A.K.; Alba-Jiménez, J.E.; Chávez-Servia, J.L.; Vera-Guzmán, A.M.; Carrillo-Rodríguez, J.C.; Santos-Basurto, M.A. Physicochemical Characterization and Functional Potential of Phaseolus vulgaris L. and Phaseolus coccineus L. Landrace Green Beans. Agronomy 2021, 11, 803. [Google Scholar] [CrossRef]
- Meng, J.; Fang, Y.; Zhang, A.; Chen, S.; Xu, T.; Ren, Z.; Han, G.; Liu, J.; Li, H.; Zhang, Z.; et al. Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province. Food Res. Int. 2011, 44, 2830–2836. [Google Scholar] [CrossRef]
- Salinas-Moreno, Y.; Hernandez-Martinez, V.; Trejo-Téllez, L.; Ramírez-Díaz, J.L.; Iñiguez-Gómez, O. Nutritional composition and bioactive compounds in tortillas of native populations of corn with blue/purple grain. Rev. Mex. Cienc. Agríc. 2017, 8, 1483–1496. [Google Scholar]
- Osorio-Esquivel, O.; Alicia-Ortiz-Moreno; Álvarez, V.B.; Dorantes-Álvarez, L.; Giusti, M.M. Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res. Int. 2011, 44, 2160–2168. [Google Scholar] [CrossRef]
- Tsen, S.Y.; Siew, J.; Lau, E.K.L.; Afiqah bte Roslee, F.; Chan, H.M.; Loke, W.M. Cow’s milk as a dietary source of equol and phenolic antioxidants: Differential distribution in the milk aqueous and lipid fractions. Dairy Sci. Technol. 2014, 94, 625–632. [Google Scholar] [CrossRef]
- Martinez-Damián, M.T.; Cruz-Alvarez, O.; Moreno-Perez, E.D.C.; Valle-Guadarrama, S. Intensidad de color y compuestos bioactivos en colectas de chile guajillo del norte de Mexico. Rev. Mex. Ciencias Agrícolas 2019, 10, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Rebey, I.B.; Kefi, S.; Bourgou, S.; Ouerghemmi, I.; Ksouri, R.; Tounsi, M.S.; Marzouk, B. Ripening Stage and Extraction Method Effects on Physical Properties, Polyphenol Composition and Antioxidant Activities of Cumin (Cuminum cyminum L.) Seeds. Plant Foods Hum. Nutr. 2014, 69, 358–364. [Google Scholar] [CrossRef]
- Cuchillo-Hilario, M.; Delgadillo-Puga, C.; Navarro-Ocaña, A.; Pérez-Gil-Romo, F. Antioxidant activity, bioactive polyphenols in Mexican goats’ milk cheeses on summer grazing. J. Dairy Res. 2010, 77, 20–26. [Google Scholar] [CrossRef] [Green Version]
- del Pilar Fernández-Poyatos, M.; Llorent-Martínez, E.J.; Ruiz-Medina, A. Phytochemical Composition and Antioxidant Activity of Portulaca oleracea: Influence of the Steaming Cooking Process. Foods 2021, 10, 94. [Google Scholar] [CrossRef]
- Mohamed Hussein, R.H.; Mohamed Atef, S.; Khaled Abdel-Hamed, S.; Khalel Ibrahim, K. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind. Crops Prod. 2013, 43, 827–831. [Google Scholar]
- Moreno-Ramírez, Y.; Martínez-Ávila, G.; González-Hernández, V.; Castro-López, C.; Torres-Castillo, J. Free Radical-Scavenging Capacities, Phenolics and Capsaicinoids in Wild Piquin Chili (Capsicum annuum var. Glabriusculum). Molecules 2018, 23, 2655. [Google Scholar] [CrossRef] [Green Version]
- Vásquez-Hernández, S.; Cruz-Cruz, C.A.; Santiago-Santiago, M.; Bello-Bello, J.J. Evaluation of different antioxidants during in vitro establishment of allspice (Pimenta dioica L. Merrill): A recalcitrant species. Agro. Product 2021. Epub ahead of print. [Google Scholar] [CrossRef]
- Konovalov, D.A.; Alieva, N.M. Phenolic compounds of laurus nobilis (review). Pharm. Pharmacol. 2019, 7, 244–259. [Google Scholar] [CrossRef]
- Handayani, R.; Fans, K.; Mastuti, T.S.; Rosa, D. Comparison study of antioxidant activity from three banana leaves extracts. J. Teknol. dan Ind. Pangan 2021, 32, 92–97. [Google Scholar] [CrossRef]
- Román-Cortés, N.R.; García-Mateos, M.D.R.; Castillo-González, A.M.; Sahagún-Castellanos, J.; Jiménez-Arellanes, M.A. Caracteristicas nutricionales y nutraceuticas de hortalizas de uso ancestral en Mexico. Rev. Fitotec. Mex. 2018, 41, 245–253. [Google Scholar]
- Hussain, A.; Kausar, T.; Din, A.; Murtaza, M.A.; Jamil, M.A.; Noreen, S.; Rehman, H.U.; Shabbir, H.; Ramzan, M.A. Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). J. Food Process. Preserv. 2021, 45, e15542. [Google Scholar] [CrossRef]
- Abdel-Samea, R.R. Nutritional Evaluation Of Toast Bread Fortified With Mango Peels And Seed Kernels Powder. J. Home Econ. 2014, 24, 145–170. [Google Scholar]
- García-González, C.A.; Ayala-González, M.B.; Cedeño-Saritama, R.E.; Armijos-Aguilar, J.C. Determinación de Fenoles en Ají Gallinazo (Capsicum Frutescens)—Ají Rocoto Aplicando Espectrofotometría; UTMACH: Machala, Ecuador, 2018. [Google Scholar]
- Lutz, M.; Hernández, J.; Henríquez, C. Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. CYTA-J. Food 2015, 13, 541–547. [Google Scholar]
- Hijaz, F.; Al-Rimawi, F.; Manthey, J.A.; Killiny, N. Phenolics, flavonoids and antioxidant capacities in Citrus species with different degree of tolerance to Huanglongbing. Plant Signal. Behav. 2020, 15, 1752447. [Google Scholar] [CrossRef]
- Dávila-Cervantes, C.A.; Agudelo-Botero, M. Sex disparities in the epidemic of type 2 diabetes in Mexico: National and state level results based on the global burden of disease study, 1990–2017. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1023–1033. [Google Scholar] [CrossRef] [Green Version]
- WHO. Noncommunicable Diseases, Coutry Profiles 2018; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Staniforth, V.; Huang, W.C.; Aravindaram, K.; Yang, N.S. Ferulic acid, a phenolic phytochemical, inhibits UVB-induced matrix metalloproteinases in mouse skin via posttranslational mechanisms. J. Nutr. Biochem. 2012, 23, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Nicolás-García, M.; Jiménez-Martínez, C.; Perucini-Avendaño, M.; Hildeliza Camacho-Díaz, B.; Ruperto Jiménez-Aparicio, A.; Dávila-Ortiz, G. Phenolic Compounds in Legumes: Composition, Processing and Gut Health. In Legumes Research; IntechOpen: London, UK, 2021; Volume 2, pp. 25–240. [Google Scholar]
- Mullins, A.P.; Arjmandi, B.H. Health benefits of plant-based nutrition: Focus on beans in cardiometabolic diseases. Nutrients 2021, 13, 519. [Google Scholar] [CrossRef]
- Cicerale, S.; Lucas, L.; Keast, R. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil. Int. J. Mol. Sci. 2010, 11, 458–479. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Yuan, B.; Zeng, M.; Chen, J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res. Int. 2011, 44, 530–536. [Google Scholar] [CrossRef]
- Farah, A.; Donangelo, C.M. Phenolic compounds in coffee. Braz. J. Plant Physiol. 2006, 18, 23–36. [Google Scholar] [CrossRef]
- Ilavenil, S.; Arasu, M.V.; Lee, J.-C.; Kim, D.H.; Roh, S.G.; Park, H.S.; Choi, G.J.; Mayakrishnan, V.; Choi, K.C. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine 2014, 21, 758–765. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A Review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phyther. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef]
- Imran, M.; Ghorat, F.; Ul-haq, I.; Ur-rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvengadam, M.; et al. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants 2020, 9, 706. [Google Scholar] [CrossRef]
Scientific Name | TPC mg GAE/100g (A) | References | |
---|---|---|---|
Fruits | |||
Grape | Vitis vinifera L. “Red Globe” | 122.2 | [31] |
Plum | Prunus domestica | 219.9 | [32] |
Cranberry | Vaccinium subg. Oxycoccus | 392.37 | [33] |
Peach | Prunus persica L. | 74.5 | [34] |
Raspberry | Rubus idaeus | 248.25 | [35] |
Blueberry | Vaccinium sect. Cyanococcus | 335 | [33] |
Prickly pear | Opuntia ficus indica L. | 94.3 | [36,37,38,39] |
Apple | Malus domestica | 131.95 | [40] |
Pink grapefruit | Citrus paradisi L. | 192.0 | [41] |
Kiwi | Actinidia deliciosa | 47.0 | [42] |
Orange | Citrus sinensis L. | 2325.0 | [43] |
Guava | Psidium guajava | 318.5 | [27] |
Strawberry | Fragaria X ananassa | 389.6 | [44] |
Pomegranate | Punica granatum L. | 15,699.0 | [45] |
Cherry | Prunus avium L. | 124.0 | [46] |
Pear | Pyrus communis L. | 49.68 | [47] |
Vegetables | |||
Huitlacoche (Fungi) | Ustilago maydis | 53.0 | [48] |
Spring onion | Allium fistolisum | 72.7 | [49] |
Mushroom (Fungi) | Agaricus bisporus | 287.4 | [50] |
Peppers | Capsicum annuum L. | 160.2 | [27] |
Carrot | Daucus carota L. | 70.1 | [51] |
Beetroot | Beta vulgaris L. | 207.5 | [52] |
Swiss chard | Beta vulgaris L. | 126.0 | [53] |
Tomato | Solanum lycopersicum L. | 76.5 | [27] |
Chilies | Capsicum frutescens | 286.7 | [27] |
Lettuce | Lactuca sativa L. | 3.13 | [54] |
Celery | Apium graveolens L. | 4640.0 | [55] |
Brussels sprouts | Brassica oleracea var. gemmifera | 192.0 | [56] |
Nopal (Prickly pear cactus) | Opuntia Streptacantha and Fuliginosa | 17.13 | [57] |
Red Radish | Raphanus sativus L. | 68.0 | [58] |
Broccoli | Brassica oleracea L. | 106.0 | [58] |
White onion | Allium cepa blanc L. | 24.3 | [59] |
Purple onion Potato | Allium cepa L. Solanum tuberosum L. | 42.7 13.8 | [59] [60] |
Cereals | |||
Rice cooked | Oryza sativa L. | 23.8 | [61] |
Oatmeal | Avena sativa L. | 144.0 | [62] |
Barley | Hordeum distichon L. | 138.5 | [63] |
Flaxseed | Linum usitatissimum L. | 469.0 | [64] |
Wheat | Triticum aestivum | 87.25 | [63] |
Corn | Zea mays L. | 672.54 | [59] |
Millet | Pennisetum glaucum | 6000.0 | [65] |
Sorghum | Andropogon sorghum L. | 609.52 | [66] |
Legumes | |||
Soybean | Glycine max L. | 212.04 | [67] |
Beans | Phaseolus vulgaris L. | 3421.2 | [68] |
Haba | Vicia faba L. | 106.3 | [69] |
Lentil | Lens culinaris L. | 3846.5 | [70] |
Seeds | |||
Cocoa powder | Theobroma cacao L. | 1104.5 | [71] |
Almont | Prunus dulcis | 3795.5 | [72] |
Nut | Juglans regia L. | 1383.5 | [73] |
Peanut | Arachis hypogaea L. | 379.0 | [73] |
Chia | Salvia hispanica L. | 116.0 | [74] |
Flaxseed | Linum usitatissimum L. | 2310.0 | [75] |
Spices | |||
Parsley | Pretroselinum crispum | 215.0 | [76] |
Coriander | Coriandrum sativum L. | 138.0 | [77] |
Oregano | Lippia graveolens | 441.0 | [78] |
Epazote | Chenopodium ambrosioides L. | 1198.6 | [79] |
Garlic | Allium sativum L. | 240.5 | [80] |
Clove | Syzygium aromaticum | 896.0 | [81] |
Paprika | Capsicum annuum L. | 368.5 | [71] |
Marjoram | Origanum majorana L. | 2770.0 | [82] |
Eucalyptus | Eucalyptus camaldulensis | 1412.0 | [83] |
Achiote (Annatto) | Bixa Orellana L. | 73.0 | [84] |
Sesame Seed | Sesamun indicum L. | 10.67 | [85] |
Ginger | Zingiber officinale Roscoe | 1280.5 | [86] |
Black pepper | Piper nigrum | 4.85 | [87] |
Chaya | Cnidoscolus aconitifolius | 634.0 | [88] |
Fennel | Foeniculum vulgare Miller | 123.7 | [89] |
Linden | Tilia cordata | 1118.4 | [90] |
Saffron | Crocus sativus | 610.0 | [26] |
Anise | Pimpinella anisum | 298.6 | [81] |
Mexican pepper leaf | Piper auritum Kunth | 398.1 | [91] |
Papalo | Porophyllum ruderale | 680.4 | [91] |
Beverages | |||
Coffee | Coffea | 18,500.0 | [92] |
Green tea | Camellia sinensis L. | 218.1 | [93] |
8916.6 | [82] | ||
Wine | Vinum | 260.0 | [94,95] |
Hibiscus water | Hibiscus sabdariffa L. | 3742.0 | [96] |
Chamomile tea | Matricaria chamomilla L. | 3002.8 | [97] |
Mexican dishes | TPCr | ||
Mole 1 | Mole rojo Mole verde Mole Poblano Mole de olla | 4834.9 561.5 4116.3 5667.5 A: 3795.1 | [27,59,71,72,73,76,79,80,81,85,87,91,98,99,100,101,102,103,104,105,106] |
Arroz con frijol 2 | 1591.0 | [51,59,61,68,79] | |
Enfrijoladas 3 | 1619.0 | [27,59,68,79,98,105,107] | |
Enchiladas 4 | Enchiladas rojas, Enchiladas verdes, Enchiladas de olla, Enchiladas suizas, Enchiladas de verdolagas con requesón | 11,111.0 865.4 1603.7 620.0 3822.2 A: 3604.5 | [27,54,59,71,77,78,80,87,98,105,107,108,109,110,111] |
Salsas rojas 5 | Salsa Taquera, Salsa de chile habanero con tomate, Salsa Ranchera, Salsa de chile morita, Salsa de chile piquín. | 618.9 541.6 108.4 716.4 4517.7 A: 1300.6 | [27,59,71,78,80,82,87,109,112,113] |
Salsas verdes 6 | 1504.8 | [27,59,80] | |
Cochinita pibil 7 | 1177.1 | [43,78,80,81,84,101,114,115,116] | |
Huazontles 8 | 880.0 | [27,59,71,80,117] | |
Quintoniles 9 | 912.1 | [27,59,80,98,117] | |
Pipián 10 | 345.6 | [27,71,72,81,85,87,91,98,99,104,118,119] | |
Romeritos 11 | 369.0 | [27,57,59,60,71,73,80,81,85,98,99,102,104,105,117] | |
Verdolagas 12 | Verdolagas con espinazo, Verdolagas en salsa, Verdolagas en ensalada. | 6156.7 1454.7 1247.3 A: 2952.9 | [27,51,55,59,76,80,81,87,91,101,108,109,111,112,115,120] |
Ensalada con 13 espinacas | 1339.3 | [71,73,87,110,121,122] |
Sex | Group | n (F/M) | % (F/M) |
---|---|---|---|
LD | 559/90 | 86.1/13.9 | |
MD | 239/85 | 73.7/26.2 | |
Age category | n | % | |
18–29 | LD | 333 | 51.3 |
MD | 107 | 33.0 | |
30–39 | LD | 168 | 25.9 |
MD | 95 | 29.3 | |
40–49 | LD | 86 | 13.3 |
MD | 70 | 21.6 | |
50–59 | LD | 44 | 6.8 |
MD | 38 | 11.7 | |
>59 | LD | 18 | 2.8 |
MD | 14 | 4.3 |
Group | ||
---|---|---|
LD | MD | |
Diseases | n (%) | |
Diabetes mellitus | 17 (2.6) | 14 (4.3) |
Hypertension | 14 (2.2) | 22 (6.8) |
Hypercholesterolemia | 13 (2.0) | 31 (9.6) |
Hypertriglyceridemia | 19 (2.9) | 34 (10.5) |
Kidney disease | 11 (1.7) | 9 (2.8) |
Fatty liver | 8 (1.2) | 28 (8.6) |
Obesity | 126 (19.4) | 304 (93.8) |
Symptoms of GD | ||
Constipation | 138 (21.3) | 82 (25.3) |
Gastritis | 152 (23.4) | 90 (30.2) |
IBS | 115 (17.7) | 45 (13.9) |
Peptic ulcer | 3 (0.5) | 1 (0.3) |
BOS | 3 (0.5) | 0 (0) |
UC | 2 (0.3) | 0 (0) |
Participants (n) | ANOVA Main Effect of Group | |||
---|---|---|---|---|
PCI Comparisons | F/M, (M) | F (1, 962) | p | |
Sex F (798) M (175) | Fruits | 122.32/133.54 | 8.65 | 0.003 |
Vegetables | 43.66/40.73 | 6.99 | 0.008 | |
Cereals | 31.34/31.42 | 0.01 | 0.916 | |
Legumes | 283.42/257.00 | 18.87 | <0.001 | |
Seeds | 193.61/176.99 | 12.32 | <0.001 | |
Spices | 62.04/64.77 | 2.74 | 0.10 | |
Beverages | 724.30/684.77 | 6.91 | 0.009 | |
Mexican dishes | 182.83/189.00 | 2.53 | 0.11 | |
(M) | F (4, 959) | p | ||
Age 18–29 (436) 30–39 (262) 40–49 (156) 50–59 (81) >59 (29) | Fruits | 18–29 (123.46) 30–39 (123.03) 40–49 (126.67) 50–59 (122.94) >59 (118.78) | 0.34 | 0.85 |
Vegetables | 18–29 (41.57) 30–39 (42.94) 40–49 (45.17) 50–59 (44.79) >59 (44.14) | 3.1 | 0.02 | |
Cereals | 18–29 (32.02) 30–39 (31.16) 40–49 (30.90) 50–59 (30.60) >59 (27.56) | 2.24 | 0.06 | |
Legumes | 18–29 (288.88) 30–39 (275.56) 40–49 (270.44) 50–59 (259.95) >59 (251.97) | 5.16 | <0.001 | |
Seeds | 18–29 (192.09) 30–39 (191.09) 40–49 (189.73) 50–59 (190.33) >59 (171.34) | 0.93 | 0.44 | |
Spices | 18–29 (59.14) 30–39 (63.42) 40–49 (65.20) 50–59 (70.37) >59 (68.97) | 8.44 | <0.001 | |
Beverages | 18–29 (728.08) 30–39 (725.80) 40–49 (695.55) 50–59 (679.28) >59 (701.32) | 2.10 | 0.08 | |
Mexican dishes | 18–29 (184.88) 30–39 (183.22) 40–49 (180.36) 50–59 (184.18) >59 (194.28) | 0.66 | 0.63 |
Disease | Variables | Coefficient Standardized | Model | ANOVA | |||
---|---|---|---|---|---|---|---|
Predictor | β | T | p-Value | R2 | F | p-Value | |
LD/MD | Tomato | −0.2 | −5.7 | <0.001 | 0.5 | 78.5 | <0.001 |
Garlic | −0.2 | −4.8 | <0.001 | ||||
Lettuce | −0.2 | −4.7 | <0.001 | ||||
Corn | −0.1 | −4.3 | <0.001 | ||||
Grape | −0.1 | −3.1 | 0.002 | ||||
Wine | −0.1 | −2.4 | 0.02 | ||||
Cranberry | 0.1 | 2.4 | 0.01 | ||||
Romeritos | −0.1 | −3.1 | 0.002 | ||||
Age | 0.1 | 2.7 | 0.007 | ||||
Wheat | 0.1 | 2.9 | 0.002 | ||||
Scholarship | −0.05 | −2.3 | 0.02 | ||||
Arroz con frijol | −0.05 | −2.0 | 0.05 | ||||
Obesity | Tomato | −0.2 | −4.5 | <0.001 | 0.4 | 70.4 | <0.001 |
Corn | −0.2 | −6.1 | <0.001 | ||||
Garlic | −0.2 | −4.9 | <0.001 | ||||
Chamomile tea | −0.1 | −2.4 | 0.01 | ||||
Coffee | −0.1 | −2.3 | 0.02 | ||||
Grape | −0.1 | −3.2 | 0.002 | ||||
Plum | 0.1 | 3.5 | <0.001 | ||||
Swiss chard | −0.1 | −3.0 | 0.003 | ||||
Enchiladas | −0.1 | −2.3 | 0.02 | ||||
Wine | −0.1 | −2.3 | 0.02 | ||||
Oregano | 0.1 | 2.3 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatorre-Cruz, J.M.; Carreño-López, R.; Alatorre-Cruz, G.C.; Paredes-Esquivel, L.J.; Santiago-Saenz, Y.O.; Nieva-Vázquez, A. Traditional Mexican Food: Phenolic Content and Public Health Relationship. Foods 2023, 12, 1233. https://doi.org/10.3390/foods12061233
Alatorre-Cruz JM, Carreño-López R, Alatorre-Cruz GC, Paredes-Esquivel LJ, Santiago-Saenz YO, Nieva-Vázquez A. Traditional Mexican Food: Phenolic Content and Public Health Relationship. Foods. 2023; 12(6):1233. https://doi.org/10.3390/foods12061233
Chicago/Turabian StyleAlatorre-Cruz, Julia María, Ricardo Carreño-López, Graciela Catalina Alatorre-Cruz, Leslie Janiret Paredes-Esquivel, Yair Olovaldo Santiago-Saenz, and Adriana Nieva-Vázquez. 2023. "Traditional Mexican Food: Phenolic Content and Public Health Relationship" Foods 12, no. 6: 1233. https://doi.org/10.3390/foods12061233
APA StyleAlatorre-Cruz, J. M., Carreño-López, R., Alatorre-Cruz, G. C., Paredes-Esquivel, L. J., Santiago-Saenz, Y. O., & Nieva-Vázquez, A. (2023). Traditional Mexican Food: Phenolic Content and Public Health Relationship. Foods, 12(6), 1233. https://doi.org/10.3390/foods12061233