Effects of Novel Preparation Technology on Flavor of Vegetable-Soy Sauce Compound Condiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Vegetable-Soy Sauce Compound Condiment
2.3. Analysis of Basic Physical and Chemical Parameters for Vegetable-Soy Sauce Compound Condiment
2.4. Determination of Free Amino Acids
2.5. Determination of Total Phenolic and Flavonoid Content and Antioxidant Capacity
2.6. Electronic Nose Analysis
2.7. Electronic Tongue Analysis
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results and Discussion
3.1. General Physicochemical Property Analysis
3.2. Free Amino Acids (FAAs)
3.3. Total Phenolic, Flavonoid and Antioxidant Activity
3.4. Electronic Nose Analysis
3.5. Electronic Tongue Analysis
3.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devanthi, P.V.P.; Gkatzionis, K. Soy sauce fermentation: Microorganisms, aroma formation, and process modification. Food Res. Int. 2019, 120, 364–374. [Google Scholar] [CrossRef]
- Pujchakarn, T.; Suwonsichon, S.; Suwonsichon, T. Development of a sensory lexicon for a specific subcategory of soy sauce: Seasoning soy sauce. J. Sens. Stud. 2016, 31, 443–452. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Eichelsheim, C.; Mumm, R.; Hall, R.D. Chemical and Sensory Characteristics of Soy Sauce: A Review. J. Agric. Food Chem. 2020, 68, 11612–11630. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, C.; Zhao, H.; Gao, X.; Zhao, M.; Sun, W. Effect of koji fermentation on generation of volatile compounds in soy sauce production. Int. J. Food Sci. Technol. 2013, 48, 609–619. [Google Scholar] [CrossRef]
- Steinhaus, P.; Schieberle, P. Characterization of the Key Aroma Compounds in Soy Sauce Using Approaches of Molecular Sensory Science. J. Agric. Food Chem. 2007, 15, 6262–6269. [Google Scholar] [CrossRef] [PubMed]
- Seong, P.T.; Woong, K.D. Method for Producing Allium Hookeri Soy Sauce and Allium Hookeri Soy Sauce Using Thereof. Republic of Korea Patent KR101877875B1, 12 July 2018. [Google Scholar]
- Gong, Z. Method for Preparing Fruit and Vegetable Health-Care Soy Sauce and Fruit and Vegetable Health-Care Soy Sauce. China Patent CN102132860A, 27 July 2011. [Google Scholar]
- Ok, Y.S. Manufacturing Method of Soy Sauce. Republic of Korea Patent KR101423194B1, 28 July 2014. [Google Scholar]
- Soo, C.B.; Suck, C.K.; Kyung, L.M. Making Process of Soy Sauce Comprising Antimicrobial Substance and Soy Sauce Comprising Antimicrobial Substance. Republic of Korea Patent KR100874785B1, 18 December 2008. [Google Scholar]
- Ma, D. Toona Sinensis Soy Sauce Processing Method. China Patent CN105533635A, 14 May 2016. [Google Scholar]
- Bok, L.S. Herb Soy Sauce and Producing Method Thereof. Republic of Korea Patent KR100647878B1, 23 November 2016. [Google Scholar]
- Chen, H. Manufacturing Process and Preparation Method of Mustard Soy Sauce. China Patent CN112890163A, 4 June 2021. [Google Scholar]
- Wang, L. Rosmarinus Officinalis Health-Care Soy Sauce and Preparation Method Thereof. China Patent CN109418922A, 5 March 2019. [Google Scholar]
- Gao, X.; Zhang, J.; Liu, E.; Yang, M.; Chen, S.; Hu, F.; Ma, H.; Liu, Z.; Yu, X. Enhancing the taste of raw soy sauce using low intensity ultrasound treatment during moromi fermentation. Food Chem. 2019, 298, 124928. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, M.; Zhang, L.; Liu, Y. Effect of ultrasound combined with sodium bicarbonate pretreatment on the taste and flavor of chicken broth. J. Food Process Eng. 2022, e14072. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, M.; Fan, H.; Liu, Y. Effect of microwave combined with ultrasonic pretreatment on flavor and antioxidant activity of hydrolysates based on enzymatic hydrolysis of bovine bone. Food Biosci. 2021, 44, 101399. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.; Zhou, L. A promising pulse-spouted microwave freeze drying method used for Chinese yam cubes dehydration: Quality, energy consumption, and uniformity. Dry. Technol. 2021, 39, 148–161. [Google Scholar] [CrossRef]
- Chitrakar, B.; Zhang, M.; Zhang, X.; Bhandari, B. Valorization of asparagus-leaf by-product through nutritionally enriched chips to evaluate the effect of powder particle size on functional properties and rutin contents. Dry. Technol. 2023, 41, 34–45. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, M.; Bhandari, B.; Wang, Y.; Yi, S. Effects of superfine grinding on the properties and qualities of Cordyceps militaris and its spent substrate. J. Food Process. Preserv. 2019, 43, e14169. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, M.; Adhikari, B.; Chang, L. Microencapsulation of rose essential oil in mung bean protein isolate-apricot peel pectin complex coacervates and characterization of microcapsules. Food Hydrocoll. 2022, 124, 107366. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, M.; Law, C.L.; Guo, Z. High-voltage electrostatic field-assisted modified atmosphere packaging for long-term storage of pakchoi and avoidance of off-flavors. Innov. Food Sci. Emerg. Technol. 2022, 79, 103032. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, M.; Mujumdar, A.S.; Teng, X. 3D printed white radish/potato gel with microcapsules: Color/flavor change induced by microwave-infrared heating. Food Res. Int. 2022, 158, 111496. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhang, M.; Liu, W.; Liu, Y. Effect of beef tallow, phospholipid and microwave combined ultrasonic pretreatment on Maillard reaction of bovine bone enzymatic hydrolysate. Food Chem. 2022, 377, 131902. [Google Scholar] [CrossRef] [PubMed]
- Lao, Y.; Zhang, M.; Li, Z.; Bhandari, B. A novel combination of enzymatic hydrolysis and fermentation: Effects on the flavor and nutritional quality of fermented Cordyceps militaris beverage. LWT 2020, 120, 108934. [Google Scholar] [CrossRef]
- Wongthahan, P.; Sae-Eaw, A.; Prinyawiwatkul, W. Sensory lexicon and relationships among brown colour, saltiness perception and sensory liking evaluated by regular users and culinary chefs: A case of soy sauces. Int. J. Food Sci. Technol. 2020, 55, 2841–2850. [Google Scholar] [CrossRef]
- Ito, K.; Matsuyama, A. Koji Molds for Japanese Soy Sauce Brewing: Characteristics and Key Enzymes. J. Fungi 2021, 7, 658. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, H.; Liu, X.; Tamura, T.; Kyouno, N.; Chen, J.Y. Relationship between Chemical Characteristics and Sensory Evaluation of Koikuchi Soy Sauce. Anal. Lett. 2018, 51, 2192–2204. [Google Scholar] [CrossRef]
- Miyagi, A.; Suzuki, T.; Nabetani, H.; Nakajima, M. Color control of Japanese soy sauce (shoyu) using membrane technology. Food Bioprod. Process. 2013, 91, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Lee, Y.-S. A study of chemical characteristics of soy sauce and mixed soy sauce: Chemical characteristics of soy sauce. Eur. Food Res. Technol. 2007, 227, 933–944. [Google Scholar] [CrossRef]
- Syifaa, A.S.; Jinap, S.; Sanny, M.; Khatib, A. Chemical profiling of different types of soy sauce and the relationship with its sensory attributes. J. Food Qual. 2016, 39, 714–725. [Google Scholar] [CrossRef]
- Guidi, L.R.; Gloria, M.B. Bioactive amines in soy sauce: Validation of method, occurrence and potential health effects. Food Chem. 2012, 133, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Bahuguna, A.; Jo, I.G.; Lee, J.S.; Kim, M. Effects of Radishes, Apples, and Pears on the Lactic Acid Bacteria and Nutritional and Functional Qualities of Flavored Soy Sauce. Foods 2020, 9, 1562. [Google Scholar] [CrossRef]
- Hoang, N.X.; Ferng, S.; Ting, C.-H.; Huang, W.-H.; Chiou, R.Y.-Y.; Hsu, C.-K. Optimizing the initial moromi fermentation conditions to improve the quality of soy sauce. LWT 2016, 74, 242–250. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, H.; Zhao, M.; Cui, C. Relationships between antioxidant activity and quality indices of soy sauce: An application of multivariate analysis. Int. J. Food Sci. Technol. 2009, 45, 133–139. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Parkin, K.L. beta-carboline derivatives and diphenols from soy sauce are in vitro quinone reductase (QR) inducers. J. Agric. Food Chem. 2011, 59, 2332–2340. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qian, M.; Shen, Y.; Qin, X.; Huang, H.; Yang, H.; He, Y.; Bai, W. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation. Food Chem. 2021, 349, 129131. [Google Scholar] [CrossRef]
- Luo, T.; Xie, Y.; Dong, Y.; Liu, A.; Dong, Y. Quality assessment of soy sauce using underivatized amino acids by capillary electrophoresis. Int. J. Food Prop. 2018, 20, S3052–S3061. [Google Scholar] [CrossRef]
- Zhou, W.; Sun-Waterhouse, D.; Xiong, J.; Cui, C.; Wang, W.; Dong, K. Desired soy sauce characteristics and autolysis of Aspergillus oryzae induced by low temperature conditions during initial moromi fermentation. J. Food Sci. Technol. 2019, 56, 2888–2898. [Google Scholar] [CrossRef]
- Kong, Y.; Zhang, L.-L.; Zhang, Y.-Y.; Sun, B.-G.; Sun, Y.; Zhao, J.; Chen, H.-T. Evaluation of non-volatile taste components in commercial soy sauces. Int. J. Food Prop. 2018, 21, 1854–1866. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Song, J.; Hu, W.; Miao, J.; Gao, X. Relationship between Extracellular Cellulase, Pectinase and Xylanase Activity of Isolated Aspergillus oryzae Strains Grown on Koji and the Umami-Tasting Amino Acid Content of Soy Sauce. Food Biotechnol. 2016, 30, 278–291. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, S.S.; Qiu, W.Q.; Li, Q.L. Identification of Different Varieties of Oyster Juice Based on the Comparison of Free Amino Acids. Adv. Mater. Res. 2013, 781–784, 1534–1539. [Google Scholar] [CrossRef]
- Pérez-Santín, E.; Calvo, M.M.; López-Caballero, M.E.; Montero, P.; Gómez-Guillén, M.C. Compositional properties and bioactive potential of waste material from shrimp cooking juice. LWT—Food Sci. Technol. 2013, 54, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.S.; Baek, H.H.; Ahn, C.B.; Byun, D.S.; Jung, K.J.; Lee, H.G.; Cadwallader, K.R.; Kim, H.R. Development and characterization of a flavoring agent from oyster cooker effluent. J. Agric. Food Chem. 2000, 48, 4839–4843. [Google Scholar] [CrossRef]
- Sánchez-Vega, R.; Garde-Cerdán, T.; Rodríguez-Roque, M.J.; Elez-Martínez, P.; Martín-Belloso, O. High-intensity pulsed electric fields or thermal treatment of broccoli juice: The effects of processing on minerals and free amino acids. Eur. Food Res. Technol. 2020, 246, 539–548. [Google Scholar] [CrossRef]
- Gao, X.; Liu, E.; Zhang, J.; Yang, M.; Chen, S.; Liu, Z.; Ma, H.; Hu, F. Effects of sonication during moromi fermentation on antioxidant activities of compounds in raw soy sauce. LWT 2019, 116, 108605. [Google Scholar] [CrossRef]
- Peng, M.; Liu, J.; Liu, Z.; Fu, B.; Hu, Y.; Zhou, M.; Fu, C.; Gao, B.; Wang, C.; Li, D.; et al. Effect of citrus peel on phenolic compounds, organic acids and antioxidant activity of soy sauce. LWT 2018, 90, 627–635. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Piao, Y.Z.; Eun, J.B. Physicochemical characteristics and isoflavones content during manufacture of short-time fermented soybean product (cheonggukjang). J. Food Sci. Technol. 2020, 57, 2190–2197. [Google Scholar] [CrossRef]
- Chu, Y.F.; Sun, J.I.E.; Wu, X.; Liu, R.H. Antioxidant and antiproliferative activities of common vegetables. J. Agric. Food Chem. 2002, 50, 6910–6916. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Derito, C.M.; Liu, M.K.; He, X.; Dong, M.; Liu, R.H. Cellular antioxidant activity of common vegetables. J. Agric. Food Chem. 2010, 58, 6621–6629. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Chen, G.; Liu, H. Antioxidative Categorization of Twenty Amino Acids Based on Experimental Evaluation. Molecules 2017, 22, 2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Zhang, Y.; Chang, X.; Saito, M.; Li, Z. Changes in the radical scavenging activity of bacterial-type douchi, a traditional fermented soybean product, during the primary fermentation process. Biosci. Biotechnol. Biochem. 2009, 73, 2749–2753. [Google Scholar] [CrossRef] [Green Version]
- Marcuse, R. Antioxidative Effect of Amino-Acids. Nature 1960, 186, 886–887. [Google Scholar] [CrossRef]
- Du, H.; Chen, Q.; Liu, Q.; Wang, Y.; Kong, B. Evaluation of flavor characteristics of bacon smoked with different woodchips by HS-SPME-GC-MS combined with an electronic tongue and electronic nose. Meat Sci. 2021, 182, 108626. [Google Scholar] [CrossRef]
- Gao, L.; Liu, T.; An, X.; Zhang, J.; Ma, X.; Cui, J. Analysis of volatile flavor compounds influencing Chinese-type soy sauces using GC-MS combined with HS-SPME and discrimination with electronic nose. J. Food Sci. Technol. 2017, 54, 130–143. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Yan, Y.; Gu, D.-C.; Lu, Y.; Gan, J.-H.; Tao, N.-P.; Wang, X.-C.; Xu, C.-H. Rapid Quality Discrimination and Amino Nitrogen Quantitative Evaluation of Soy Sauces by Tri-Step IR and E-nose. Food Anal. Methods 2018, 11, 3201–3210. [Google Scholar] [CrossRef]
- Zhao, G.; Feng, Y.; Hadiatullah, H.; Zheng, F.; Yao, Y. Chemical Characteristics of Three Kinds of Japanese Soy Sauce Based on Electronic Senses and GC-MS Analyses. Front. Microbiol. 2020, 11, 579808. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Zhang, M.; Devahastin, S.; Liu, Y. Effect of two-step fermentation with lactic acid bacteria and Saccharomyces cerevisiae on key chemical properties, molecular structure and flavor characteristics of horseradish sauce. LWT 2021, 147, 111637. [Google Scholar] [CrossRef]
- McBurney, D.H.; Shick, T.R. Taste and water taste of twenty-six compounds for man. Percept. Psychophys. 1971, 10, 249–252. [Google Scholar] [CrossRef]
Sensor | Response Substance | Substance Category |
---|---|---|
S1 | Alkanes and smog | Propane, natural gas, and smog |
S2 | Alcohols, aldehydes, and short-chain alkanes | Alcohol, smog, isobutane, and formaldehyde |
S3 | Ozone | —— |
S4 | Sulfides | Hydrogen sulfide |
S5 | Organic amines | Ammonia, methylamine, and ethanolamine |
S6 | Organic gases, phenylketones, aldehydes, and aromatic compounds | Toluene, acetone, ethanol, hydrogen, and other organic vapors |
S7 | Short-chain alkanes | Methane, natural gas, and methane |
S8 | Short-chain alkanes | Propane and liquefied gas |
S9 | Aromatic compounds and aldehydes | Toluene, formaldehyde, benzene, alcohol, and acetone |
S10 | Hydrogen-containing gases | Hydrogen |
S11 | Alkanes and olefin | Liquefied gas, alkane, and alkene |
S12 | Short-chain alkanes | Liquefied gas and methane |
S13 | Combustible gases | Methane |
S14 | Flammable gas | Flammable gas and smoke |
S15 | Alkane and organic gas | Smoke, isobutane, organic acid esters, and aliphatic hydrocarbons |
S16 | Sulfides | Sulfur compounds |
S17 | Nitrides | Nitrogen oxides |
S18 | Ketone and alcohol | Acetone, ethanol, and organic solvent |
Attribute | Descriptive Terms | Full Score of 9 (Minimum of 1 is Extremely Poor or Disliked) |
---|---|---|
Colour | Thick, black, reddish brown or tawny, shiny, and bright. |
|
Appearance | Concentration, viscosity, clarity, the presence of precipitation, and the presence of suspended solids. |
|
Soy sauce flavor | Rich sauce flavor, mellow flavor, ester flavor, koji flavor, caramel flavor, amino acid flavor, ammonia gas, and musty flavor. |
|
Vegetable flavor | The delicate fragrance and pungent taste of vegetables. |
|
Seafood flavor | Rich or light seafood flavor and fishy smell. |
|
Likeability | _____ |
|
Samples | L* | a* | b* | pH | Total Acid (Lactic Acid, g/100 mL) | TSS (°Brix) | Sodium Chloride (g/100 mL) | Non-Salt Soluble Solid (g/100 mL) | Amino Acid Nitrogen (g/100 mL) |
---|---|---|---|---|---|---|---|---|---|
S | 34.29 ± 0.88 a | −0.14 ± 0.07 ab | −0.24 ± 0.06 e | 5.10 ± 0.03 e | 1.51 ± 0.02 a | 39.50 ± 0.05 a | 18.33 ± 0.55 a | 19.17 ± 0.20 a | 0.79 ± 0.04 a |
W1 | 24.39 ± 1.23 bc | −0.28 ± 0.2 abc | 0.80 ± 0.16 cd | 5.11 ± 0.02 de | 0.92 ± 0.02 c | 27.88 ± 0.54 d | 12.87 ± 0.96 b | 11.43 ± 0.45 d | 0.49 ± 0.02 d |
CE1 | 25.33 ± 1.04 b | −0.35 ± 0.11 bc | 0.72 ± 0.26 d | 5.12 ± 0.01 d | 1.04 ± 0.05 b | 28.25 ± 1.03 cd | 13.65 ± 0.55 b | 11.63 ± 0.13 cd | 0.59 ± 0.03 b |
CA1 | 25.44 ± 1.38 b | −0.29 ± 0.28 abc | 1.10 ± 0.36 bc | 5.11 ± 0.01 de | 1.06 ± 0.02 b | 29.38 ± 0.96 bc | 13.26 ± 0.55 b | 12.32 ± 0.33 bc | 0.56 ± 0.01 c |
ON1 | 24.43 ± 1.56 bc | −0.26 ± 0.12 ab | 1.00 ± 0.26 bcd | 5.11 ± 0.01 de | 1.01 ± 0.02 bc | 29.75 ± 0.25 b | 13.26 ± 0.55 b | 12.64 ± 0.25 b | 0.54 ± 0.01 c |
W2 | 25.69 ± 1.56 b | −0.49 ± 0.28 c | 0.67 ± 0.17 d | 5.16 ± 0.01 c | 0.52 ± 0.02 d | 17.75 ± 0.83 f | 8.78 ± 0.59 c | 3.08 ± 0.05 g | 0.25 ± 0.01 e |
CE2 | 22.81 ± 1.99 c | −0.27 ± 0.09 abc | 1.61 ± 0.46 a | 5.22 ± 0.01 b | 0.54 ± 0.05 d | 20.25 ± 0.25 e | 8.97 ± 0.55 c | 5.81 ± 0.02 f | 0.25 ± 0.01 e |
CA2 | 25.72 ± 1.34 b | −0.17 ± 0.13 ab | 1.90 ± 0.25 a | 5.24 ± 0.03 a | 0.56 ± 0.02 d | 20.75 ± 0.56 e | 8.97 ± 0.55 c | 6.51 ± 0.13 ef | 0.24 ± 0.02 ef |
ON2 | 26.23 ± 2.1 b | −0.10 ± 0.14 a | 1.28 ± 0.12 b | 5.22 ± 0.02 b | 0.50 ± 0.05 d | 20.75 ± 0.56 e | 8.58 ± 0.55 c | 6.65 ± 0.13 e | 0.22 ± 0.01 f |
Taste | FAAs (g/100 mL) | S | W1 | CE1 | CA1 | ON1 | W2 | CE2 | CA2 | ON2 |
---|---|---|---|---|---|---|---|---|---|---|
Umami | Asp | 0.50 ± 0.03 a | 0.36 ± 0.01 cd | 0.40 ± 0.01 b | 0.38 ± 0.01 bc | 0.34 ± 0.00 d | 0.17 ± 0.01 e | 0.18 ± 0.01 e | 0.18 ± 0.00 e | 0.18 ± 0.01 e |
Umami | Glu | 4.34 ± 0.03 a | 3.10 ± 0.09 c | 3.46 ± 0.09 b | 3.40 ± 0.07 b | 3.02 ± 0.03 c | 1.52 ± 0.12 d | 1.60 ± 0.05 d | 1.57 ± 0.02 d | 1.57 ± 0.04 d |
Relative | 61.58% | 61.57% | 61.66% | 61.97% | 61.76% | 61.23% | 59.73% | 59.52% | 59.12% | |
Sweet | Ser | 0.10 ± 0.01 a | 0.06 ± 0.00 c | 0.07 ± 0.00 b | 0.09 ± 0.00 a | 0.07 ± 0.00 b | 0.04 ± 0.01 d | 0.04 ± 0.00 d | 0.04 ± 0.00 d | 0.04 ± 0.00 d |
Sweet/Bitter | Lys | 0.29 ± 0.02 a | 0.20 ± 0.01 c | 0.22 ± 0.00 b | 0.23 ± 0.01 b | 0.20 ± 0.00 c | 0.10 ± 0.01 d | 0.11 ± 0.00 d | 0.11 ± 0.00 d | 0.11 ± 0.00 d |
Sweet/Bitter | Pro | 0.32 ± 0.03 a | 0.24 ± 0.01 b | 0.25 ± 0.00 b | 0.15 ± 0.03 c | 0.14 ± 0.01 c | 0.08 ± 0.02 d | 0.09 ± 0.01 d | 0.10 ± 0.01 d | 0.10 ± 0.00 d |
Sweet | Gly | 0.20 ± 0.01 a | 0.14 ± 0.00 c | 0.16 ± 0.00 b | 0.17 ± 0.00 b | 0.15 ± 0.00 c | 0.08 ± 0.00 e | 0.10 ± 0.00 d | 0.10 ± 0.00 d | 0.10 ± 0.01 d |
Sweet | Thr | 0.22 ± 0.01 a | 0.16 ± 0.00 c | 0.18 ± 0.00 b | 0.17 ± 0.00 b | 0.15 ± 0.00 c | 0.08 ± 0.01 d | 0.09 ± 0.00 d | 0.09 ± 0.00 d | 0.08 ± 0.01 d |
Sweet | Ala | 0.28 ± 0.02 a | 0.20 ± 0.01 c | 0.23 ± 0.01 b | 0.23 ± 0.00 b | 0.20 ± 0.00 c | 0.10 ± 0.01 d | 0.11 ± 0.00 d | 0.11 ± 0.00 d | 0.11 ± 0.00 d |
Relative | 17.94% | 17.79% | 17.73% | 17.05% | 16.73% | 17.39% | 18.12% | 18.71% | 18.24% | |
Bitter | Tyr | 0.08 ± 0.01 a | 0.06 ± 0.00 b | 0.07 ± 0.00 b | 0.07 ± 0.00 b | 0.06 ± 0.00 b | 0.03 ± 0.00 c | 0.04 ± 0.00 c | 0.04 ± 0.00 c | 0.04 ± 0.00 c |
Bitter | Val | 0.31 ± 0.02 a | 0.22 ± 0.01 c | 0.25 ± 0.01 b | 0.25 ± 0.00 b | 0.22 ± 0.00 c | 0.11 ± 0.01 d | 0.12 ± 0.00 d | 0.12 ± 0.00 d | 0.12 ± 0.01 d |
Bitter | Met | 0.07 ± 0.01 a | 0.05 ± 0.00 c | 0.06 ± 0.00 b | 0.06 ± 0.00 b | 0.05 ± 0.00 c | 0.02 ± 0.00 e | 0.03 ± 0.00 d | 0.03 ± 0.00 d | 0.03 ± 0.00 d |
Bitter | Phe | 0.24 ± 0.02 a | 0.17 ± 0.01 c | 0.19 ± 0.00 b | 0.19 ± 0.01 bc | 0.17 ± 0.00 c | 0.09 ± 0.01 d | 0.09 ± 0.00 d | 0.09 ± 0.00 d | 0.09 ± 0.00 d |
Bitter | Ile | 0.27 ± 0.02 a | 0.19 ± 0.01 c | 0.21 ± 0.00 b | 0.21 ± 0.00 b | 0.19 ± 0.00 c | 0.10 ± 0.01 d | 0.10 ± 0.00 d | 0.10 ± 0.00 d | 0.10 ± 0.00 d |
Bitter | Leu | 0.42 ± 0.03 a | 0.30 ± 0.01 c | 0.33 ± 0.01 b | 0.33 ± 0.01 b | 0.29 ± 0.00 c | 0.15 ± 0.01 d | 0.16 ± 0.01 d | 0.16 ± 0.00 d | 0.16 ± 0.01 d |
Bitter | His | 0.10 ± 0.01 a | 0.07 ± 0.00 bc | 0.08 ± 0.00 b | 0.07 ± 0.00 bc | 0.06 ± 0.00 c | 0.04 ± 0.00 d | 0.04 ± 0.00 d | 0.04 ± 0.01 d | 0.04 ± 0.00 d |
Bitter | Arg | 0.12 ± 0.01 a | 0.09 ± 0.00 c | 0.11 ± 0.00 b | 0.11 ± 0.00 b | 0.11 ± 0.00 b | 0.05 ± 0.00 f | 0.08 ± 0.00 de | 0.08 ± 0.00 e | 0.09 ± 0.00 cd |
Relative | 20.48% | 20.46% | 20.77% | 21.15% | 21.14% | 21.38% | 22.15% | 22.45% | 22.64% | |
Tasteless | Cys | 0.01 ± 0.01 a | 0.01 ± 0.00 a | 0.01 ± 0.00 ab | 0.01 ± 0.00 ab | 0.01 ± 0.00 ab | 0.01 ± 0.01 ab | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.01 ± 0.00 ab |
Relative | 0.13% | 0.18% | 0.16% | 0.16% | 0.18% | 0.36% | 0% | 0% | 0.34% | |
Total Amino Acids | 7.86 ± 0.55 a | 5.62 ± 0.17 cd | 6.26 ± 0.14 b | 6.10 ± 0.07 bc | 5.44 ± 0.04 d | 2.76 ± 0.22 e | 2.98 ± 0.05 e | 2.94 ± 0.03 e | 2.96 ± 0.10 e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Zhang, M.; Bhandari, B. Effects of Novel Preparation Technology on Flavor of Vegetable-Soy Sauce Compound Condiment. Foods 2023, 12, 1263. https://doi.org/10.3390/foods12061263
Tang T, Zhang M, Bhandari B. Effects of Novel Preparation Technology on Flavor of Vegetable-Soy Sauce Compound Condiment. Foods. 2023; 12(6):1263. https://doi.org/10.3390/foods12061263
Chicago/Turabian StyleTang, Tiantian, Min Zhang, and Bhesh Bhandari. 2023. "Effects of Novel Preparation Technology on Flavor of Vegetable-Soy Sauce Compound Condiment" Foods 12, no. 6: 1263. https://doi.org/10.3390/foods12061263
APA StyleTang, T., Zhang, M., & Bhandari, B. (2023). Effects of Novel Preparation Technology on Flavor of Vegetable-Soy Sauce Compound Condiment. Foods, 12(6), 1263. https://doi.org/10.3390/foods12061263