Antioxidant and Sensory Properties of Raw and Cooked Pork Meat Burgers Formulated with Extract from Non-Compliant Green Coffee Beans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Defatted Green Coffee Bean (dGCB) Extract
2.2. Pork Burger Manufacture and Storage
2.3. Burger Sampling and Analysis
2.3.1. Total Phenolic Content (TPC) and Antioxidant Activities
2.3.2. Thiobarbituric Acid Reactive Substances (TBARS)
2.3.3. Heme Iron (HI) and Non-Heme Iron (NHI)
2.3.4. Instrumental Color and pH
2.3.5. Cooking Loss Percentage (CL%)
2.3.6. Sensory Analysis
2.4. Data Analysis
3. Results
3.1. Chemical Profiling and Antioxidant Activities of the dGCB Extract
3.2. Total Phenolic Content (TCP), Antioxidant Activities, Heme (HI) and Non-Heme Iron (NHI) Content, and Lipid Oxidation of Raw and Cooked Burgers
3.3. pH and Colorimetric Evaluation of Raw and Cooked Burgers during Storage
3.4. Sensory Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, N.; Marquès, M.; Nadal, M.; Domingo, J.L. Meat consumption: Which are the current global risks? A review of recent (2010–2020) evidences. Food Res. Int. 2020, 137, 109341. [Google Scholar] [CrossRef] [PubMed]
- OECD/Food and Agriculture Organization of the United Nations. Meat. In OECD-FAO Agricultural Outlook 2022–2031; OECD Publishing: Paris, France, 2022; Available online: https://www.oecd-ilibrary.org/agriculture-and-food/oecd-fao-agricultural-outlook-2022-2031_ab129327-en (accessed on 15 February 2023).
- ASSICA. Rapporto Annuale 2021 Completo. 2022, p. 96. Available online: https://www.assica.it/it/pubblicazioni/rapporto-annuale.php (accessed on 15 February 2023).
- Carni & Consumi, Supplemento di Salumi & Consumi, 2017, N.1. Available online: https://www.alimentando.info/wp-content/uploads/2017/01/CAC01_17.pdf (accessed on 17 February 2023).
- Pretorius, B.; Schönfeldt, H.C.; Hall, N. Total and haem iron content lean meat cuts and the contribution to the diet. Food Chem. 2016, 193, 97–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. Review: A comprehensive Review on Lipid oxidation in Meat and Meat Products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soriano, A.; Alañón, M.E.; Alarcón, M.; García-Ruíz, A.; Díaz-Maroto, M.C. Oak wood extracts as natural antioxidants to increase shelf life of raw pork patties in modified atmosphere packaging. Food Res. Int. 2018, 111, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Alarcón, M.; Pérez-Coello, M.S.; Díaz-Maroto, M.C.; Alañón, M.E.; Soriano, A. Effect of winery by-product extracts on oxidative stability, volatile organic compounds and aroma profile of cooked pork model systems during chilled storage. LWT-Food Sci. Technol. 2021, 152, 112260. [Google Scholar] [CrossRef]
- Bastide, N.M.; Pierre, F.H.; Corpet, D.E. Heme iron from meat and risk of colorectal cancer: A meta-analysis and a review of the mechanisms involved. Cancer Prev. Res. 2011, 2, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Chiang, V.S.-C.; Quek, S.-Y. The relationship of red meat with cancer: Effects of thermal processing and related physiological mechanisms. Crit. Rev. Food Sci. Nutr. 2017, 57, 1153–1173. [Google Scholar] [CrossRef]
- Faustman, C.; Sun, Q.; Mancini, R.; Suman, S.P. Myoglobin and lipid oxidation interactions: Mechanistic bases and control: A review. Meat Sci. 2010, 86, 86–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, X.; Jiao, Y.; Wang, Y.; Dong, J.; Yang, N.; Yang Qu, W.; Wang, W. Free iron rather than heme iron mainly induces oxidation of lipids and proteins in meat cooking. Food Chem. 2022, 382, 132345. [Google Scholar] [CrossRef]
- Corpet, D.E. Red meat and colon cancer: Should we become vegetarians, or can we make meat safer? Meat Sci. 2011, 89, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Duthie, G.; Campbell, F.; Bestwick, C.; Stephen, S.; Russell, W. Antioxidant effectiveness of vegetable powders on the lipid and protein oxidative stability of cooked turkey meat patties: Implications for health. Nutrients 2013, 5, 1241–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanner, J. Review: Dietary advanced lipid oxidation endproducts are risk factors to human health. Mol. Nutr. Food Res. 2007, 51, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, R.A. Meat Science, 4th ed.; Pergamon Press: Oxford, UK, 1985. [Google Scholar]
- Faustman, C.; Cassens, R.G. The Biochemical basis for discoloration in fresh meat: A review. J. Muscle Foods. 1990, 1, 217–243. [Google Scholar] [CrossRef]
- Allen, K.E.; Cornforth, D.P. Myoglobin oxidation in a model system as affected by non-heme iron and iron chelating agents. J. Agric. Food Chem. 2006, 54, 10134–10140. [Google Scholar] [CrossRef]
- Hung, Y.; Verbeke, W.; de Kok, T.M. Stakeholder and consumer reactions towards innovative processed meat products: Insights from a qualitative study about nitrite reduction and phytochemical addition. Food Control 2016, 60, 690–698. [Google Scholar] [CrossRef]
- Karre, L.; Lopez, K.; Getty, K.J.K. Review. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
- Falowo, A.B.; Fayemi, P.O.; Muchenje, V. Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 2014, 64, 171–181. [Google Scholar] [CrossRef]
- Miura, Y.; Inai, M.; Honda, S.; Masuda, A.; Masuda, T. Reducing effects of polyphenols on metmyoglobin and the in vitro regeneration of bright meat color by polyphenols in the presence of cysteine. J. Agric. Food Chem. 2014, 62, 9472–9478. [Google Scholar] [CrossRef]
- Cheng, J.C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure-activity relationship. Food Chem. 2007, 104, 132–139. [Google Scholar] [CrossRef]
- Liang, N.; Xue, W.; Kennepohl, P.; Kitts, D.D. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chem. 2016, 213, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Kitts, D.D. Confirmation that the Maillard reactions is the principle contributor to the antioxidant capacity of coffee brews. Food Res. Int. 2011, 44, 2418–2424. [Google Scholar] [CrossRef]
- LIczbiński, P.; Bukowska, B. Tea and coffee polyphenols and their biological properties based on the latest in vitro investigations. Ind. Crops Prod. 2022, 175, 114265. [Google Scholar] [CrossRef] [PubMed]
- Budryn, G.; Zyzelewicz, D.; Nebesny, E.; Oracz, J.; Krysiak, W. Influence of addition of green tea and green coffee extracts on the properties of fine yeast pastry fried products. Food Res. Int. 2013, 50, 149–160. [Google Scholar] [CrossRef]
- Bee, S.; Brando, C.H.J.; Brumen, G.; Carvalhaes, N.; Kolling-Speer, I.; Speer, K.S.; Suggi Liverani, F.; Teixeira, A.A.; Teixeira, R.; Thomaziello, R.A.; et al. The raw bean. In Espresso Coffee, the Science of Quality, 2nd ed.; Illy, A., Viani, R., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2005; Chapter 3; pp. 87–178. [Google Scholar]
- Barbieri, G.; Bergamaschi, M.; Franceschini, M.; Barbieri, G. Feasibility of addition of polyphenol-rich vegetable extracts in whole cooked products: Benefits and drawbacks. Meat Sci. 2018, 139, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, G.; Bergamaschi, M.; Saccani, G.; Caruso, G.; Santangelo, A.; Tulumello, R.; Vibhute, B.; Barbieri, G. Processed meat and polyphenols: Opportunities, advantages, and difficulties. J. AOAC Int. 2019, 102, 1401–1406. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Liu, X.; Yuan, F.; Gao, Y. Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Ind. Crops Prod. 2015, 78, 946–954. [Google Scholar] [CrossRef]
- Ginting, A.R.; Kit, T.; Mingvanish, W.; Thanasupsin, S.P. Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. Sustainability 2022, 14, 8435. [Google Scholar] [CrossRef]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y. Subcritical water extraction of polyphenolic compounds from sorghum (Sorghum bicolor L.) bran and their biological activities. Food Chem. 2018, 262, 14–20. [Google Scholar] [CrossRef]
- Mikucka, W.; Zielinska, M.; Bulkowska, K.; Witonska, I. Subcritical water extraction of bioactive phenolic compounds from distillery stillage. J. Environ. Manag. 2022, 318, 115548. [Google Scholar] [CrossRef]
- Zain, M.Z.M.; Baba, A.S.; Shori, A.B. Effect of polyphenols enriched from green coffee bean on antioxidant activity and sensory evaluation of bread. J. King Saud Univ. Sci. 2018, 30, 278–282. [Google Scholar] [CrossRef]
- Budryn, G.; Zyzelewicz, D.; Oracz, J. Effect of addition of green coffee extract and nanoencapsulated chlorogenic acids on aroma of different food products. LWT-Food Sci. Technol. 2013, 71, 197–204. [Google Scholar] [CrossRef]
- Banerjee, R.; Verma, A.K.; Das, A.K.; Raikumar, V.; Shewalkar, A.A.; Narkhede, H.P. Antioxidant effects of broccoli powder extract in goat meat nuggets. Meat Sci. 2012, 91, 179–184. [Google Scholar] [CrossRef]
- Ferri, M.; Tassoni, A.; Franceschetti, M.; Righetti, L.; Naldrett, M.J.; Bagni, N. Chitosan treatment induces changes of protein expression profile and stilbene distribution in Vitis vinifera cell suspensions. Proteomics 2009, 9, 610–624. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Total antioxidant capacities of raw and cooked meats. Meat Sci. 2012, 90, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Saccani, G.; Bergamaschi, M.; Schivazappa, C.; Cirlini, M.; Galaverna, G.; Virgili, R. Evaluation of the antioxidant effect of a phytocomplex addition in clean label pork salami enriched in n-3 PUFA. Food Chem. 2023, 399, 133963. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cao, J.; Jiang, W. Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars. LWT-Food Sci. Technol. 2015, 63, 1042–1048. [Google Scholar] [CrossRef]
- Rudin, S.F.; Murray, D.W.; Whitfeld, T.J.S. Retrospective analysis of heavy metal contamination in Rhode Island based on old and new herbarium specimens. Appl. Plant Sci. 2017, 5, 1600108. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Official’s Analytical Chemists, 17th ed.; AOAC: Arlington, TX, USA, 2002. [Google Scholar]
- Witte, V.C.; Krause, G.F.; Bailey, M.E. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Ahn, D.U.; Wolfe, F.H.; Sim, J.S. Three methods for determining non-heme iron in turkey meat. J. Food Sci. 1993, 58, 288–291. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; dos Santos, J.M.; Carvalho, L.T.; Borgonovi, T.F.; Lorenzo, J.M.; de Silva-Barretto, A.C. Açaí extract powder as natural antioxidant on pork patties during the refrigerated storage. Meat Sci. 2022, 184, 108667. [Google Scholar] [CrossRef] [PubMed]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 3rd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, H.; Vallis, L.V. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–149. [Google Scholar] [CrossRef]
- Hall, R.D.; Trevisan, F.; de Vos, R.C.H. Coffee berry and green bean chemistry—Opportunities for improving cup quality and crop circularity. Food Res. Int. 2022, 151, 110825. [Google Scholar] [CrossRef] [PubMed]
- Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
- Pintaç, D.; Bekvalac, K.; Mimica-Dukić, N.; Rašeta, M.; Andelić, N.; Lesjak, M.; Orčić, D. Comparison study between popular brands of coffee, tea and red wine regarding polyphenols content and antioxidant activity. Food Chem. Adv. 2022, 1, 100030. [Google Scholar] [CrossRef]
- Wongsa, P.; Khampa, N.; Horadee, S.; Chaiwarith, J.; Rattanapanone, N. Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee. Food. Chem. 2017, 283, 579–587. [Google Scholar] [CrossRef]
- Choi, B.; Koh, E. Spent coffee as a rich source of antioxidative compounds. Food Sci. Biotechnol. 2017, 26, 921–927. [Google Scholar] [CrossRef]
- Šojić, B.; Tomović, V.; Kocić-Tanackov, S.; Kovačević, D.B.; Putnik, P.; Mrkonjić, Ž.; Đurović, S.; Jokanović, M.; Ivić, M.; Škaljac, S.; et al. Supercritical extracts of wild thyme (Thymus serpyllum L.) by-product as natural antioxidants in ground pork patties. LWT-Food Sci. Technol. 2020, 130, 109661. [Google Scholar] [CrossRef]
- Mancini, S.; Preziuso, G.; Dal Bosco, A.; Roscini, V.; Szendrő, Z.; Fratini, F.; Paci, G. Effect of turmeric powder (Curcuma longa L.) and ascorbic acid on physical characteristics and oxidative status of fresh and stored rabbit burgers. Meat Sci. 2015, 110, 93–100. [Google Scholar] [CrossRef]
- Lombardi-Boccia, G.; Martinez-Dominguez, B.; Aguzzi, A. Total heme and non-heme iron in raw and cooked meats. J. Food Sci. 2002, 67, 1738–1741. [Google Scholar] [CrossRef]
- Zareian, M.; Tybussek, T.; Silcock, P.; Bremer, P.; Beauchamp, J.; Böhner, N. Interrelationship among myoglobin forms, lipid oxidation and protein carbonyls in minced pork packaged under modified atmosphere. Food Pack. Shelf Life 2019, 20, 100311. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Sobral, M.M.C.; Viegas, O.; Cunha, S.C.; Alarcon-Enos, J.; Pinho, O.; Ferreira, I.M. Incorporation of avocado peel extract to reduce cooking-induced hazards in beef and soy burgers: A clean label ingredient. Food Res. Int. 2021, 147, 110434. [Google Scholar] [CrossRef] [PubMed]
- Carballo, D.E.; Caro, I.; Andrés, S.; Giráldez, F.J.; Mateo, J. Assessment of the antioxidant effect of astaxanthin in fresh, frozen and cooked lamb patties. Food Res. Int. 2018, 111, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Vargas, F.C.; Strozzi, I.; Pateiro, M.; Furtado, M.M.; Sant’Ana, A.S.; Rocchetti, G.; Barba, F.J.; Dominguez, R.; Lucini, L.; et al. Influence of pitanga leaf extracts on lipid and protein oxidation of pork burger during shelf-life. Food Res. Int. 2018, 114, 47–54. [Google Scholar] [CrossRef]
- Jongberg, S.; Terkelsen, L.D.S.; Miklos, R.; Lund, M.N. Green tea extract impairs meat emulsion properties by disturbing protein disulphide cross-linking. Meat Sci. 2015, 100, 2–9. [Google Scholar] [CrossRef]
Parameters | |
---|---|
TPC (g GA eq./kg) | 114.4 ± 1.0 |
Chlorogenic acid (mg/g) | 183.1 ± 19.3 |
Caffeine (mg/g) | 246.4 ± 29.4 |
DPPH (mmol Trolox eq./kg) | 960.3 ± 17.7 |
FRAP (mmol Trolox eq./kg) | 1990.7 ± 63.1 |
Fe2+-chelating activity (mg/mL) | 0.175 ± 0.001 |
Total iron (μg/g) | 16.48 ± 0.84 |
Formulation 1 | Storage Time 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | A | P15 | P30 | P60 | SEM | p-Value | T0 | T7 | T14 | SEM | p-Value | |
TPC | 0.31 a | 0.59 b | 0.44 a.b | 0.59 b | 0.85 c | 0.05 | *** | 0.55 | 0.54 | 0.59 | 0.04 | NS |
DPPH | 13.46 a | 20.15 b | 24.84 b.c | 28.19 c | 34.05 d | 1.27 | *** | 23.09 | 25.18 | 24.14 | 0.99 | NS |
FRAP | 8.50 a | 19.65 b | 21.46 b | 33.38 c | 45.78 d | 1.51 | *** | 24.98 | 27.15 | 25.14 | 1.17 | NS |
HI | 0.55 | 0.57 | 0.55 | 0.55 | 0.56 | 0.02 | NS | 0.57 | 0.56 | 0.54 | 0.02 | NS |
NHI | 0.16 | 0.16 | 0.16 | 0.17 | 0.17 | 0.02 | NS | 0.15 | 0.16 | 0.18 | 0.02 | NS |
TBARS | 0.22 | 0.18 | 0.18 | 0.19 | 0.20 | 0.02 | NS | 0.19 | 0.18 | 0.21 | 0.02 | NS |
Formulation 1 | Storage Time 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | A | P15 | P30 | P60 | SEM | p-Value | T0 | T7 | T14 | SEM | p-Value | |
TPC | 0.24 a | 0.47 b | 0.37 a.b | 0.52 b | 0.75 c | 0.05 | *** | 0.39 a | 0.49 a.b | 0.54 b | 0.04 | * |
DPPH | 14.53 a | 19.75 a.b | 25.84 b.c | 27.57 b.c | 31.91 c | 2.49 | *** | 23.44 | 25.14 | 23.18 | 1.76 | NS |
FRAP | 7.49 a | 16.08 b | 18.64 b | 25.18 c | 36.00 d | 1.40 | *** | 20.66 | 20.81 | 20.56 | 1.08 | NS |
HI | 0.77 | 0.79 | 0.76 | 0.80 | 0.79 | 0.05 | NS | 0.78 | 0.79 | 0.78 | 0.04 | NS |
NHI | 0.23 | 0.22 | 0.22 | 0.24 | 0.26 | 0.03 | NS | 0.23 | 0.23 | 0.25 | 0.02 | NS |
TBARS | 1.28 b | 0.55 a.b | 0.47 a | 0.21 a | 0.20 a | 0.19 | * | 0.47 | 0.53 | 0.63 | 0.14 | NS |
CL% | 17.3 | 18.4 | 18.3 | 16.9 | 17.1 | 2.66 | NS | 13.0 a | 19.7 b | 20.1 b | 2.06 | * |
Formulation 1 | Storage Time 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | A | P15 | P30 | P60 | SEM | p-Value | T0 | T7 | T14 | SEM | p-Value | |
pH | 5.59 | 5.59 | 5.57 | 5.58 | 5.55 | 0.08 | NS | 5.60 | 5.56 | 5.58 | 0.06 | NS |
L* | 52.9 | 53.4 | 52.6 | 52.5 | 52.1 | 0.68 | NS | 51.2 a | 53.0 b | 53.9 b | 0.53 | ** |
a* | 6.62 | 6.82 | 6.80 | 6.86 | 6.66 | 0.50 | NS | 6.97 | 6.84 | 6.45 | 0.39 | NS |
b* | 12.2 | 12.2 | 12.6 | 12.7 | 12.9 | 0.48 | NS | 12.6 | 12.7 | 12.2 | 0.37 | NS |
Chroma | 13.9 | 14.0 | 14.3 | 14.5 | 14.5 | 0.64 | NS | 14.4 | 14.5 | 13.8 | 0.50 | NS |
Hue | 61.7 | 61.0 | 61.8 | 61.7 | 62.9 | 0.98 | NS | 61.3 | 61.9 | 62.2 | 0.76 | NS |
Formulation 1 | Storage Time 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | A | P15 | P30 | P60 | SEM | p-Value | T0 | T7 | T14 | SEM | p-Value | |
pH | 5.96 | 5.93 | 5.94 | 5.93 | 5.91 | 0.06 | NS | 5.99 | 5.90 | 5.91 | 0.04 | NS |
L* | 60.5 | 60.0 | 58.5 | 58.8 | 57.8 | 0.88 | NS | 60.05 | 59.21 | 58.08 | 0.68 | NS |
a* | 4.08 | 4.32 | 3.99 | 3.44 | 3.34 | 0.40 | NS | 3.79 | 3.71 | 3.99 | 0.31 | NS |
b* | 14.2 | 14.5 | 14.4 | 13.9 | 13.9 | 0.04 | NS | 14.74 | 13.69 | 14.09 | 0.31 | NS |
Chroma | 14.8 | 15.1 | 14.9 | 14.4 | 14.3 | 0.48 | NS | 15.24 | 14.20 | 14.66 | 0.37 | NS |
Hue | 74.0 | 73.6 | 74.5 | 76.2 | 76.6 | 1.15 | NS | 75.62 | 74.95 | 74.37 | 0.89 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bergamaschi, M.; Simoncini, N.; Spezzano, V.M.; Ferri, M.; Tassoni, A. Antioxidant and Sensory Properties of Raw and Cooked Pork Meat Burgers Formulated with Extract from Non-Compliant Green Coffee Beans. Foods 2023, 12, 1264. https://doi.org/10.3390/foods12061264
Bergamaschi M, Simoncini N, Spezzano VM, Ferri M, Tassoni A. Antioxidant and Sensory Properties of Raw and Cooked Pork Meat Burgers Formulated with Extract from Non-Compliant Green Coffee Beans. Foods. 2023; 12(6):1264. https://doi.org/10.3390/foods12061264
Chicago/Turabian StyleBergamaschi, Monica, Nicoletta Simoncini, Vincenzo Maria Spezzano, Maura Ferri, and Annalisa Tassoni. 2023. "Antioxidant and Sensory Properties of Raw and Cooked Pork Meat Burgers Formulated with Extract from Non-Compliant Green Coffee Beans" Foods 12, no. 6: 1264. https://doi.org/10.3390/foods12061264
APA StyleBergamaschi, M., Simoncini, N., Spezzano, V. M., Ferri, M., & Tassoni, A. (2023). Antioxidant and Sensory Properties of Raw and Cooked Pork Meat Burgers Formulated with Extract from Non-Compliant Green Coffee Beans. Foods, 12(6), 1264. https://doi.org/10.3390/foods12061264