Effects of Animal Fat Replacement by Emulsified Melon and Pumpkin Seed Oils in Deer Burgers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients and Preparation of Oil Emulsions
2.2. Elaboration of Burgers
2.3. Physical Measurements
2.4. Consumer Preferences
2.5. Proximate Composition
2.6. Fatty Acids
2.7. Statistical Analysis
3. Results
3.1. Physical Parameters
3.2. Consumer Preferences
3.3. Proximate Composition
3.4. Lipid Profile
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritchie, H.; Rosado, P.; Roser, M. Meat and Dairy Production. Published Online at OurWorldInData.org. Available online: https://ourworldindata.org/meat-production (accessed on 8 March 2023).
- Chemnitz, C.; Becheva, S. Meat Atlas: Facts and Figures about the Animals We Eat; Heinrich Böll Stiftung: Berlin, Germany; Friends of the Earth Europe: Brussels, Belgium; Bund für Umwelt und Naturshutz: Berlin, Germany, 2021. [Google Scholar]
- Corradini, A.; Marescotti, M.E.; Demartini, E.; Gaviglio, A. Consumers’ perceptions and attitudes toward hunted wild game meat in the modern world: A literature review. Meat Sci. 2022, 194, 108955. [Google Scholar] [CrossRef] [PubMed]
- Farouk, M.M.; Strydom, P.; Dean, R.; Vather, N.; Gcabo, M.; Amir, M. Industrial Halal hunted-game and feral animals’ meat production. Meat Sci. 2021, 181, 108602. [Google Scholar] [CrossRef]
- Biesalski, H.K. Meat as a component of a healthy diet—are there any risks or benefits if meat is avoided in the diet? Meat Sci. 2005, 70, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Daszkiewciz, T.; Janiszewski, P.; Wajda, S. Quality characteristics of meat from wild red deer (Cervus elaphus L.) hinds and stags. J. Muscle Foods 2009, 20, 428–448. [Google Scholar] [CrossRef]
- Martín, A.J.; Ortuño, S.F. La caza mayor y la economía rural en la provincia de Toledo. Estud. Geográficos 2004, 65, 321–341. [Google Scholar] [CrossRef] [Green Version]
- Bilek, A.E.; Turhan, S. Enhancement of the nutritional status of beef patties by adding flaxseed flour. Meat Sci. 2009, 82, 472–477. [Google Scholar] [CrossRef]
- Wang, B.; Tian, G.; Zhang, Q. Vegetable Oil or Animal Fat Oil, Which is More Conducive to Cardiovascular Health Among the Elderly in China? Curr. Probl. Cardiol. 2023, 48, 101485. [Google Scholar] [CrossRef]
- Jakobsen, M.U.; O’Reilly, E.J.; Heitmann, B.L.; Pereira, M.A.; Bälter, K.; Fraser, G.E.; Goldbourt, U.; Hallmans, G.; Knekt, P.; Liu, S.; et al. Major types of dietary fat and risk of coronary heart disease: A pooled analysis of 11 cohort studies. Am. J. Clin. Nutr. 2009, 89, 1425–1432. [Google Scholar] [CrossRef] [Green Version]
- Essa, R.Y.; Elsebaie, E.M. New fat replacement agent comprised of gelatin and soluble dietary fibers derived from date seed powder in beef burger preparation. LWT 2022, 156, 113051. [Google Scholar] [CrossRef]
- Hyeseung, J.; Jiseon, L.; Yeon-Ji, J.; Mi-Jung, C. Thermo-irreversible emulsion gels based on deacetylated konjac glucomannan and methylcellulose as animal fat analogs. Food Hydrocoll. 2023, 137, 108407. [Google Scholar]
- Hongjuan, L.; Leilei, Z.; Yuanyuan, J.; Yujing, Y.; Hongbo, L.; Wenming, C.; Jinghua, Y. Application of whey protein emulsion gel microparticles as fat replacers in low-fat yogurt: Applicability of vegetable oil as the oil phase. J. Dairy Sci. 2022, 105, 9404–9416. [Google Scholar]
- Jiseon, L.; Gihyun, W.; Mi-Jung, C. The rheological properties and stability of gelled emulsions applying to κ-carrageenan and methyl cellulose as an animal fat replacement. Food Hydrocoll. 2023, 136, 108243. [Google Scholar]
- Manzoor, S.; Masoodi, F.A.; Naqash, F.; Rashid, R. Oleogels: Promising alternatives to solid fats for food applications. Food Hydrocoll. Health 2022, 2, 100058. [Google Scholar] [CrossRef]
- Paglarini, C.D.S.; Vidal, V.A.S.; Martini, S.; Cunha, R.L.; Pollonio, M.A.R. Protein-based hydrogelled emulsions and their pplication as fat replacers in meat products: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 640–655. [Google Scholar] [CrossRef]
- Chin, K.B.; Keeton, J.T.; Miller, R.K.; Longnecker, M.T.; Lamkey, J.W. Evaluation of konjac blends and soy protein isolate as fat replacements in low-fat bologna. J. Food Sci. 2006, 65, 756–763. [Google Scholar] [CrossRef]
- Afshari, R.; Hosseini, H.; Khaneghah, A.M.; Khaksar, R. Physico-chemical properties of functional low-fat beef burgers: Fatty acid profile modification. LWT 2017, 78, 325–331. [Google Scholar] [CrossRef]
- De Oliveira, M.M.; Lago, A.; Dal’Magro, G.P. Food loss and waste in the context of the circular economy: A systematic review. J. Clean Prod. 2021, 294, 126284. [Google Scholar] [CrossRef]
- Lehtokunnas, T.; Mattila, M.; Närvänen, E.; Mesiranta, N. Towards a circular economy in food consumption: Food waste reduction practices as ethical work. J. Consum. Cult. 2022, 22, 227–245. [Google Scholar] [CrossRef]
- Kale, S.; Matthäus, B.; Aljuhaimi, F.; Ahmed, I.M.; Özcan, M.M.; Ghafoor, K.; Babiker, E.; Osman, A.; Gassen, M.; Alqah, H. A comparative study of 10 variety melon seeds and seed oils. J. Food Process. Preserv. 2020, 44, 14463. [Google Scholar]
- Khalid, W.; Ikram, A.; Rehan, M.; Afzal, F.A.; Ambreen, S.; Ahmad, M.; Aziz, A.; Sadiq, A. Chemical Composition and Health Benefits of Melon Seed: A Review. Pak. J. Agric. Res. 2021, 34, 309–317. [Google Scholar] [CrossRef]
- Rabadán, A.; Nunes, M.A.; Bessada, S.M.F.; Pardo, J.E.; Oliveira, M.B.P.P.; Álvarez-Ortí, M. From By-Product to the Food Chain: Melon (Cucumis melo L.) Seeds as Potential Source for Oils. Foods 2020, 9, 1341. [Google Scholar] [CrossRef] [PubMed]
- Shafi, A.; Farooq, U.; Akram, K.; Majeed, H.; Hakim, A.; Jayasinghe, M. Cucumis melo seed oil: Agro-food by-product with natural anti-hyperlipidemic potential. J. Sci. Food Agric. 2023, 103, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Boujemaa, I.; El Bernoussi, S.; Harhar, H.; Tabyaoui, M. The influence of the species on the quality, chemical composition and antioxidant activity of pumpkin seed oil. OCL Oilseed Fats Crops Lipids 2020, 27, 2020031. [Google Scholar] [CrossRef]
- Sing, A.; Kumar, V. Phyto-chemical and bioactive compounds of pumpkin seed oil as affected by different extraction methods. Food Chem. Adv. 2023, 2, 100211. [Google Scholar] [CrossRef]
- Fruhwirth, G.O.; Hermetter, A. Seeds and oil of the Syrian oil pumpkin: Components and biological activities. Eur. J. Lipid. Sci. Technol. 2007, 109, 1128–1140. [Google Scholar] [CrossRef]
- Huang, X.E.; Hirose, K.; Wakai, K.; Matsuo, H.; Ito, J.; Xiang, J. Comparison of lifestyle risk factors by family history for gastric, breast, lung and colorectal cancer. Asian Pac. J. Cancer Prev. 2004, 5, 419–427. [Google Scholar]
- CIE. Colorimetry, 2nd ed.; Central Bureau of the International Commission on Illumination: Wien, Austria, 1986. [Google Scholar]
- Pardo, J.E.; Alvarruiz, A.; Pérez, J.I.; Gómez, R.; Varón, R. Physical-chemical and sensory quality evaluation of potato varieties (Solanum tuberosum L.). J. Food Qual. 2000, 23, 149–160. [Google Scholar] [CrossRef]
- MAPA. Métodos Oficiales de Análisis en la Unión Europea. In Ministerio de Agricultura, Pesca y Alimentación; Tomo, I., Ed.; Secretaría General Técnica: Madrid, Spain, 1998; p. 495. [Google Scholar]
- FAO. Manuals of Food Quality Control, 7: Food Analysis: General Techniques, Additives, Contaminants and Composition; Food and Agriculture Organization of the United Nations: Rome, Italy, 1986; pp. 105–109. [Google Scholar]
- ANKOM. Crude fiber analysis in feeds by filter bag technique. In ANKOM Technology Method 7, AOCS Approved Procedure Ba6a-05; ANKOM Technology: Macedon, NY, USA, 2008; p. 3. [Google Scholar]
- Sullivan, D.M. Proximate and mineral analysis. In Analysis of Nutrition Labeling; Sullivan, D.M., Carpenter, D.E., Eds.; AOAC International: Arlington, VA, USA, 1993; pp. 105–109. [Google Scholar]
- Mansour, E.H.; Khalil, A.H. Characteristics of low-fat beefburger as influenced by various types of wheat fibers. Food Res. Int. 1997, 30, 199–205. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane, S.G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1956, 226, 497–509. [Google Scholar] [CrossRef]
- ISO 12966:2017; Animal and Vegetable Fats and Oils-Gas Chromatography of Fatty Acid Methyl Esters: Part 2: Preparation of Methyl Esters of Fatty Acids. International Organization for Standardization: London, UK, 2017.
- Ibrahim, M.; Salama, M.; Hussein, A. Production of functional low-fat chicken burger. Aust. J. Basic Appl. Sci. 2011, 5, 3149–3154. [Google Scholar]
- Selani, M.M.; Shirado, G.A.; Margiotta, G.B.; Saldaña, E.; Spada, F.P.; Piedade, S.M.; Contreras-Castillo, C.; Canniatti-Brazaca, S.G. Effects of pineapple byproduct and canola oil as fat replacers on physicochemical and sensory qualities of low-fat beef burger. Meat Sci. 2016, 112, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.R.; Milani, T.; Trinca, N.; Nagai, L.; Barretto, A. Textured soy protein, collagen and maltodextrin as extenders to improve the physicochemical and sensory properties of beef burger. Food Sci. Technol. 2017, 37, 10–16. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Carpena, J.G.; Morcuende, D.; Estévez, M. Avocado, sunflower and olive oils as replacers of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and quality traits. Meat Sci. 2012, 90, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Zapata, E.; Muñoz, C.M.; Fuentes, E.; Fernández-López, J.; Sendra, E.; Sayas, E.; Navarro, C.; Pérez-Alvarez, J.A. Effect of tiger nut fiber on quality characteristics of pork burger. Meat Sci. 2010, 85, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Rabadán, A.; Álvarez-Ortí, M.; Martínez, E.; Pardo-Giménez, A.; Zied, D.C.; Pardo, J.E. Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers. LWT 2021, 136, 110307. [Google Scholar] [CrossRef]
- Onopiuk, A.; Kołodziejczak, K.; Szpicer, A.; Marcinkowska-Lesiak, M.; Wojtasik-Kalinowska, I.; Stelmasiak, A.; Poltorak, A. The Effect of Partial Substitution of Beef Tallow on Selected Physicochemical Properties, Fatty Acid Profile and PAH Content of Grilled Beef Burgers. Foods 2022, 11, 1986. [Google Scholar] [CrossRef]
- Szpicer, A.; Onopiuk, A.; Poltorak, A.; Wierzbicka, A. Influence of oat β-glucan and canola oil addition on the physico-chemical properties of low-fat beef burgers. J. Food Process. Preserv. 2018, 42, e13785. [Google Scholar] [CrossRef]
- Heck, R.T.; Saldaña, E.; Lorenzo, J.M.; Correa, L.P.; Fagundes, M.B.; Cichoski, A.J.; de Menezes, C.R.; Wagner, R.; Campagnol, P.C.B. Hydrogelled emulsion from chia and linseed oils: A promising strategy to produce low-fat burgers with a healthier lipid profile. Meat Sci. 2019, 156, 174–182. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Barreto, G.; Carballo, J. Frozen storage of Bologna sausages as a function of fat content and of levels of added starch and egg white. Meat Sci. 1996, 42, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Serdaroglu, M.; Nacak, B.; Karabiyikoglu, M. Effects of beef fat replacement with gelled emulsion prepared with olive oil on quality parameters of chicken patties. Korean J. Food Sci. Anim. Resour. 2017, 37, 376–384. [Google Scholar]
- Younis, K.; Yousuf, O.; Qadri, O.S.; Jahan, K.; Osama, K.; Islam, R.U. Incorporation of soluble dietary fiber in comminuted meat products: Special emphasis on changes in textural properties. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100288. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Pintado, T.; Jiménez-Colmenero, F.; Cofrades, S. Assessment of a healthy oil combination structured in ethyl cellulose and beeswax oleogels as animal fat replacers in low-fat, PUFA-enriched pork burgers. Food Bioprocess Technol. 2019, 12, 1068–1081. [Google Scholar] [CrossRef] [Green Version]
- Longato, E.; Lucas-González, R.; Peiretti, P.G.; Meineri, G.; Pérez-Álvarez, J.A.; Viudas-Martos, M.; Fernández-López, J. The effect of natural ingredients (amaranth and pumpkin seeds) on the quality properties of chicken burgers. Food Bioprocess Technol. 2017, 10, 2060–2068. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Munekata, P.E.S.; Gagagoua, M.; Franco, D.; Campagnol, P.C.B.; Pateiro, M.; Barretto, A.C.D.S.; Domínguez, R.; Lorenzo, J.M. Inclusion of healthy oils for improving the nutritional characteristics of dry-fermented deer sausage. Foods 2020, 9, 1487. [Google Scholar] [CrossRef]
- Foggiaro, D.; Domínguez, R.; Pateiro, M.; Cittadini, A.; Munekata, P.E.S.; Campagnol, P.C.B.; Fraqueza, M.J.; De Palo, P.; Lorenzo, J.M. Use of healthy emulsion hydrogels to improve the quality of pork burgers. Foods 2022, 11, 596. [Google Scholar] [CrossRef]
- Poyato, C.; Astiasarán, I.; Barriuso, B.; Ansorena, D. A new polyunsaturated gelled emulsion as replacer of pork back-fat in burger patties: Effect on lipid composition, oxidative stability and sensory acceptability. Food Sci. Technol. 2015, 62, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Madrigal, L.; Sangronis, E. La inulina y derivados como ingredientes funcionales claves en alimentos funcionales. Arch. Latinoam. De Nutr. 2007, 57, 387–396. [Google Scholar]
- Besbes, S.; Attia, H.; Deroanne, C.; Makni, S.; Blecker, C. Partial replacement of meat by pea fiber and wheat fiber: Effect on the chemical composition, cooking characteristics and sensory properties of beef burgers. J. Food Qual. 2008, 31, 480–489. [Google Scholar] [CrossRef]
- Teixeira, A.; Ferreira, I.; Pereira, E.; Vasconcelos, L.; Leite, A.; Rodrigues, S. Physicochemical Composition and Sensory Quality of Goat Meat Burgers. Effect of Fat Source. Foods 2021, 10, 1824. [Google Scholar] [CrossRef]
- Silva, M.A.; Albuquerque, T.G.; Alves, R.C.; Oliveira, M.B.P.P.; Costa, H.S. Melon (Cucumis melo L.) by-products: Potential food ingredients for novel functional foods? Trends Food Sci. Technol. 2020, 98, 181–189. [Google Scholar] [CrossRef]
- Forell, S.C.P.; Ranalli, N.; Zaritzky, N.E.; Andrés, S.C.; Califano, A.N. Effect of type of emulsifiers and antioxidants on oxidative stability, colour and fatty acid profile of low-fat beef burgers enriched with unsaturated fatty acids and phytosterols. Meat Sci. 2010, 86, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Okan, C.; Celegen, S. Evaluation of quality and emulsion stability of a fat-reduced beef burger prepared with an olive oil oleogel-based emulsion. J. Food Process. Preserv. 2020, 45, 14547. [Google Scholar]
- Habib, A.; Biswas, S.; Siddique, A.H.; Manirujjaman, M.; Uddin, B.; Hassan, S.; Kahn, M.M.H.; Uddin, M.; Islam, M.; Hasan, M.; et al. Nutritional and lipid composition analysis of pumpkin seed (Cucurbita maxima Linn.). J. Nutr. Food Sci. 2015, 5, 1000374. [Google Scholar]
Ingredient | Emulsion with Guar Gum and Inulin (GEL) | Emulsion with Alginate (PAR) | Emulsion with Maltodextrine (MALTO) |
---|---|---|---|
Water | 60% | 63.5% | 0% |
Oil | 35% | 35% | 78.5% |
Additive | Guar gum (2%), Inulin (3%) | Sodium alginate (0.5%) | Maltodextrine (20.41%), Guar gum (0.78%), Xanthan gum (0.31%) |
Sample | Deer Meat | Fat | Thickener (Corn Starch) | Condiments |
---|---|---|---|---|
Control | 78.8% | Pork fat (19%) | 1.4% | 0.8% |
Burger with Gel emulsion (50%) GMB/GPB | 78.8% | Pork fat (9.5%) Gel emulsion (9.5%) | 1.4% | 0.8% |
Burger with Gel emulsion (100%) GMB/GPB | 78.8% | Gel emulsion (19%) | 1.4% | 0.8% |
Burger with Par emulsion (50%) PMB/PPB | 78.8% | Pork fat (9.5%) Par emulsion (9.5%) | 1.4% | 0.8% |
Burger with Par emulsion (100%) PMB/PPB | 78.8% | Par emulsion (19%) | 1.4% | 0.8% |
Burger with Malto emulsion (50%) MMB/MPB | 78.8% | Pork fat (9.5%) Malto emulsion (9.5%) | 1.4% | 0.8% |
Burger with Malto emulsion (100%) MMB/MPB | 78.8% | Malto emulsion (19%) | 1.4% | 0.8% |
Sample | L* | a* | b* |
---|---|---|---|
Control | 15.38 ± 0.90 a | 15.38 ± 1.5 a | 10.39 ± 0.83 b |
Melon GMB 50 GMB 100 PMB 50 PMB100 MMB 50 MMB 100 | 41.74 ± 3.76 b 45.17 ± 2.71 b 45.79 ± 4.12 b 40.70 ± 3.91 b 48.70 ± 2.92 b 47.77 ± 3.34 b | 14.33 ± 0.72 b 12.17 ± 0.85 c 12.49 ± 0.87 c 11.76 ± 0.82 c 13.60 ± 0.68 b 11.39 ± 0.68 c | 9.42 ± 0.66 b 9.22 ± 0.90 b 9.84 ± 0.69 b 9.25 ± 0.46 b 10.19 ± 0.51 b 9.46 ± 0.85 b |
Pumpkin GPB 50 GPB 100 PPB 50 PPB100 MPB 50 MPB 100 | 40.72 ± 3.92 b 42.16 ± 3.79 b 44.77 ± 3.58 b 42.42 ± 3.39 b 42.50 ± 2.55 b 48.11 ± 4.52 b | 14.22 ± 1.13 b 12.59 ± 1.13 c 12.09 ± 0.85 c 11.81 ± 0.59 c 14.20 ± 0.99 b 10.11 ± 0.61 d | 9.42 ± 0.75 b 10.31 ± 0.93 b 10.06 ± 0.80 b 13.10 ± 0.92 a 10.68 ± 0.64 b 11.26 ± 0.56 b |
Sample | Hardness (g) | Cohesiveness | Springiness | Chewiness (g) |
---|---|---|---|---|
Control | 42,858 ± 871 a | 0.611 ± 0.67 a | 0.771 ± 0.89 b | 20,220 ± 525 a |
Melon GMB 50 GMB 100 PMB 50 PMB100 MMB 50 MMB 100 | 32,067 ± 313 c 15,125 ± 308 g 36,517 ± 103 b 35,082 ± 392 b 30,346 ± 375 d 26,960 ± 132 d | 0.525 ± 0.32 b 0.445 ± 0.43 d 0.603 ± 0.60 a 0.616 ± 0.77 a 0.552 ± 0.56 b 0.491 ± 0.31 c | 0.690 ± 0.30 d 0.713 ± 0.76 c 0.755 ± 0.10 b 0.785 ± 2.68 b 0.783 ± 0.91 b 0.743 ± 1.65 c | 11,628 ± 309 d 4808 ± 100 f 16,654 ± 625 b 17,002 ± 811 b 13,133 ± 194 c 9849 ± 727 d |
Pumpkin GPB 50 GPB 100 PPB 50 PPB100 MPB 50 MPB 100 | 34,524 ± 459 b 14,108 ± 511 g 32,153 ± 488 c 25,741 ± 334 e 19,807 ± 639 f 25,941 ± 423 e | 0.550 ± 0.78 b 0.553 ± 0.57 b 0.613 ± 0.53 a 0.637 ± 0.59 a 0.492 ± 0.56 c 0.467 ± 0.61 d | 0.760 ± 0.57 b 0.619 ± 1.08 f 0.701 ± 0.35 d 0.849 ± 1.01 a 0.636 ± 0.48 e 0.617 ± 2.57 f | 14,436 ± 206 c 4665 ± 319 f 13,808 ± 929 c 13,947 ± 203 c 6213 ± 172 e 7493 ± 675 e |
Sample | Moisture (%) | Protein (%) | Ash (%) | Crude Fiber (%) | Crude Fat (%) | Total Carbohydrates (%) | Digestive Carbohydrates (%) | Energy Value (Kcal/100 g ms) |
---|---|---|---|---|---|---|---|---|
Control | 1.77 ± 0.12 d | 59.31 ± 0.05 b | 5.12 ± 0.01 b | 0.51 ± 0.01 b | 28.27 ± 0.02 b | 7.27 ± 0.09 d | 6.77 ± 0.01 e | 522 ± 1.89 b |
Melon GMB 50 GMB 100 PMB 50 PMB100 MMB 50 MMB 100 | 2.12 ± 0.26 b 2.67 ± 0.09 a 2.22 ± 0.18 b 2.55 ± 0.10 a 2.05 ± 0.03 c 2.00 ± 0.14 c | 65.42 ± 0.03 a 63.46 ± 0.02 a 55.76 ± 0.10 c 56.79 ± 0.20 c 56.85 ± 0.04 c 53.47 ± 0.17 d | 5.89 ± 0.06 a 3.19 ± 0.21 c 5.32 ± 0.07 b 5.62 ± 0.11 a 5.22 ± 0.05 b 6.00 ± 0.10 a | 0.85 ± 0.01 a 0.95 ± 0.02 a 0.48 ± 0.02 c 0.65 ± 0.02 b 0.53 ± 0.01 b 0.53 ± 0.01 b | 19.32 ± 0.04 d 29.30 ± 0.07 b 27.10 ± 0.07 b 27.07 ± 0.01 b 23.93 ± 0.01 c 20.62 ± 0.03 d | 9.29 ± 0.04 c 4.26 ± 0.03 e 8.14 ± 0.05 d 10.29 ± 0.04 c 14.06 ± 0.01 b 19.51 ± 0.10 a | 8.28 ± 0.02 d 3.66 ± 0.04 f 7.62 ± 0.02 d 9.66 ± 0.05 c 13.45 ± 0.04 b 18.97 ± 0.03 a | 473 ± 3.77 e 533 ± 1.25 b 531 ± 0.90 b 512 ± 1.73 c 496 ± 3.40 d 476 ± 2.06 e |
Pumpkin GPB 50 GPB 100 PPB 50 PPB100 MPB 50 MPB 100 | 1.13 ± 0.03 f 1.51 ± 0.02 e 1.59 ± 0.03 e 1.52 ± 0.02 e 1.83 ± 0.04 d 1.22 ± 0.10 f | 59.31 ± 0.05 b 61.19 ± 0.51 b 56.23 ± 0.20 c 56.56 ± 0.20 c 52.41 ± 0.20 d 55.69 ± 0.19 c | 5.92 ± 0.05 a 3.10 ± 0.05 c 5.77 ± 0.09 a 5.64 ± 0.11 a 5.07 ± 0.06 b 5.41 ± 0.05 b | 0.81 ± 0.04 a 0.93 ± 0.05 a 0.45 ± 0.05 c 0.59 ± 0.04 b 0.61 ± 0.05 b 0.55 ± 0.04 b | 18.57 ± 0.08 d 32.76 ± 0.22 a 29.49 ± 0.35 b 27.60 ± 0.26 b 18.58 ± 0.12 d 26.94 ± 0.02 b | 7.27 ± 0.09 d 7.94 ± 0.26 d 8.08 ± 0.12 d 9.97 ± 0.31 c 15.04 ± 0.14 b 20.22 ± 0.14 a | 6.77 ± 0.01 e 8.57 ± 0.13 d 7.61 ± 0.22 d 9.41 ± 0.17 c 14.86 ± 0.14 b 19.58 ± 0.27 a | 522 ± 1.89 b 563 ± 6.55 a 525 ± 6.02 b 513 ± 4.08 c 507 ± 2.87 c 470 ± 3.68 e |
Fatty Acid | Control | GMB 50 | GMB 100 | PMB 50 | PMB 100 | MMB 50 | MMB 100 |
---|---|---|---|---|---|---|---|
C12:0 C14:0 C16:0 C16:1 C17:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 | 0.13 ± 0.05 2.01 ± 0.07 23.87 ± 0.17 a 3.17 ± 0.03 0.55 ± 0.06 13.81 ± 0.09 a 41.56 ± 0.17 a 12.56 ± 0.12 e 0.76 ± 0.11 0.04 ± 0.01 0.93 ± 0.05 | 0.08 ± 0.01 1.56 ± 0.05 16.61 ± 0.12 c 2.15 ± 0.06 0.38 ± 0.55 12.71 ± 0.24 b 33.57 ± 0.18 b 26.73 ± 0.36 c 0.70 ± 0.05 0.08 ± 0.01 0.52 ± 0.05 | 0.08 ± 0.01 2.20 ± 0.10 21.17 ± 0.11 b 2.47 ± 0.09 0.21 ± 0.03 12.07 ± 0.24 b 28.38 ± 0.09 d 32.29 ± 0.12 b 0.54 ± 0.06 0.14 ± 0.03 0.19 ± 0.02 | 0.06 ± 0.01 1.34 ± 0.06 20.42 ± 0.48 b 1.67 ± 0.02 2.14 ± 0.06 14.59 ± 0.05 a 33.6 ± 0.12 b 28.40 ± 0.09 c 0.49 ± 0.10 0.01 ± 0.00 0.44 ± 0.06 | 0.03 ± 0.01 0.75 ± 0.11 18.21 ± 0.44 c 1.55 ± 0.05 0.13 ± 0.01 12.00 ± 0.08 b 31.62 ± 0.16 b 37.45 ± 0.09 a 0.35 ± 0.04 0.02 ± 0.00 0.36 ± 0.03 | 0.08 ± 0.01 1.84 ± 0.05 17.63 ± 0.08 c 2.20 ± 0.09 1.64 ± 0.08 8.35 ± 0.09 c 30.65 ± 1.43 c 22.35 ± 0.17 d 0.63 ± 0.08 0.04 ± 0.00 0.33 ± 0.05 | 0.05 ± 0.01 1.09 ± 0.02 13.51 ± 0.30 d 1.55 ± 0.05 0.18 ± 0.02 4.16 ± 0.07 d 29.79 ± 0.06 c 27.25 ± 0.10 c 0.57 ± 0.05 0.03 ± 0.00 0.15 ± 0.03 |
SFA MUFA PUFA | 40.41 ± 0.12 45.66 ± 0.18 13.32 ± 0.04 | 31.42 ± 0.15 36.24 ± 0.07 27.43 ± 0.05 | 35.87 ± 0.18 31.04 ± 0.06 32.83 ± 0.13 | 38.56 ± 0.11 35.71 ± 0.18 28.89 ± 0.06 | 31.14 ± 0.15 33.53± 0.007 37.80 ± 0.18 | 29.58 ± 0.12 33.18 ± 0.09 22.98 ± 0.11 | 19.02 ± 0.04 31.49 ± 0.06 27.82 ± 0.14 |
Fatty Acid | Control | GPB 50 | GPB 100 | PPB 50 | PPB 100 | MPB 50 | MPB 100 |
---|---|---|---|---|---|---|---|
C12:0 C14:0 C16:0 C16:1 C17:0 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1 | 0.13 ± 0.05 2.01 ± 0.07 23.87 ± 0.17 a 3.17 ± 0.03 0.55 ± 0.06 13.81 ± 0.09 a 41.56 ± 0.17 a 12.56 ± 0.12 f 0.76 ± 0.11 0.04 ± 0.01 0.93 ± 0.05 | 0.08 ± 0.01 1.81 ± 0.11 18.67 ± 0.08 b 2.32 ± 0.14 0.43 ± 0.04 11.80 ± 0.24 b 31.05 ± 0.19 c 38.00 ± 0.14 b 0.45 ± 0.17 0.14 ± 0.04 0.25 ± 0.04 | 0.09 ± 0.01 2.04 ± 0.04 16.39 ± 0.08 c 2.07 ± 0.01 0.35 ± 0.06 13.45 ± 0.15 a 33.51 ± 0.10 b 27.40 ± 0.12 d 0.51 ± 0.06 0.01 ± 0.00 0.52 ± 0.06 | 0.10 ± 0.02 2.11 ± 0.03 19.24 ± 0.08 b 2.41 ± 0.18 0.26 ± 0.01 13.81 ± 0.02 a 33.69 ± 0.24 b 27.70 ± 0.14 d 0.60 ± 0.01 0.04 ± 0.00 0.44 ± 0.02 | 0.07 ± 0.00 1.62 ± 0.20 15.03 ± 0.11 c 1.35 ± 0.01 0.26 ± 0.03 12.67 ± 0.09 b 31.45 ± 0.15 c 34.25 ± 0.17 c 0.45 ± 0.04 0.03 ± 0.00 0.23 ± 0.01 | 0.12 ± 0.01 2.11 ± 0.03 19.24 ± 0.04 b 2.46 ± 0.02 0.26 ± 0.01 10.54 ± 0.08 c 40.74 ± 0.09 a 23.91 ± 0.03 e 0.55 ± 0.02 0.04 ± 0.00 0.55 ± 0.01 | 0.04 ± 0.00 0.84 ± 0.04 12.70 ± 0.08 d 0.74 ± 0.03 0.18 ± 0.01 9.83 ± 0.05 c 31.80 ± 0.12 c 43.58 ± 0.03 a 0.36 ± 0.03 0.04 ± 0.01 0.19 ± 0.01 |
SFA MUFA PUFA | 40.41 ± 0.12 45.66 ± 0.18 13.32± 0.04 | 32.93 ± 0.08 33.62 ± 0.10 38.45± 0.13 | 32.33 ± 0.13 36.10 ± 0.07 27.91 ± 0.11 | 35.56 ± 0.14 36.54 ± 0.14 28.3 ± 0.12 | 29.68 ± 0.13 33.03 ± 0.14 34.70 ± 0.12 | 32.31 ± 0.11 43.75 ± 0.09 24.46 ± 0.06 | 23.63 ± 0.09 32.73 ± 0.08 43.94 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, E.; Pardo, J.E.; Rabadán, A.; Álvarez-Ortí, M. Effects of Animal Fat Replacement by Emulsified Melon and Pumpkin Seed Oils in Deer Burgers. Foods 2023, 12, 1279. https://doi.org/10.3390/foods12061279
Martínez E, Pardo JE, Rabadán A, Álvarez-Ortí M. Effects of Animal Fat Replacement by Emulsified Melon and Pumpkin Seed Oils in Deer Burgers. Foods. 2023; 12(6):1279. https://doi.org/10.3390/foods12061279
Chicago/Turabian StyleMartínez, Elena, José E. Pardo, Adrián Rabadán, and Manuel Álvarez-Ortí. 2023. "Effects of Animal Fat Replacement by Emulsified Melon and Pumpkin Seed Oils in Deer Burgers" Foods 12, no. 6: 1279. https://doi.org/10.3390/foods12061279
APA StyleMartínez, E., Pardo, J. E., Rabadán, A., & Álvarez-Ortí, M. (2023). Effects of Animal Fat Replacement by Emulsified Melon and Pumpkin Seed Oils in Deer Burgers. Foods, 12(6), 1279. https://doi.org/10.3390/foods12061279