Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects
Abstract
:1. Introduction
2. Meat Tenderization
3. Plant Protease as a Natural Meat Tenderizer
3.1. Papain
3.2. Bromelain
3.3. Ficin
4. Miscellaneous Plant Proteases
4.1. Actinidin
4.2. Zingibain
5. Novel Technological Interventions
5.1. Ultrasound-Assisted Plant Proteases Tenderization of Meat
5.2. High-Pressure Processing Assisted Plant Proteases Meat Tenderization
5.3. Immobilization
5.4. Combinations of Proteases
6. Novel Source of Plant Protease
7. Prospects and Challenges
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roco, T.; Torres, M.J.; Briones-Labarca, V.; Reyes, J.E.; Tabilo-Munizaga, G.; Stucken, K.; Lemus-Mondaca, R.; Pérez-Won, M. Effect of High Hydrostatic Pressure Treatment on Physical Parameters, Ultrastructure and Shelf Life of Pre- and Post-Rigor Mortis Palm Ruff (Seriolella violacea) under Chilled Storage. Food Res. Int. 2018, 108, 192–202. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, Q.; Liu, H.J.; Li, S.Z.; Jiang, Z.Q. Characterization of Actinidin from Chinese Kiwifruit Cultivars and Its Applications in Meat Tenderization and Production of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides. LWT 2017, 78, 1–7. [Google Scholar] [CrossRef]
- Ellies-Oury, M.-P.; Lee, A.; Jacob, H.; Hocquette, J.-F. Meat Consumption—What French Consumers Feel about the Quality of Beef? Ital. J. Anim. Sci. 2019, 18, 646–656. [Google Scholar] [CrossRef]
- O’Quinn, T.G.; Legako, J.F.; Brooks, J.C.; Miller, M.F. Evaluation of the Contribution of Tenderness, Juiciness, and Flavor to the Overall Consumer Beef Eating Experience1. Transl. Anim. Sci. 2018, 2, 26–36. [Google Scholar] [CrossRef]
- Madhusankha, G.D.M.P.; Thilakarathna, R.C.N. Meat Tenderization Mechanism and the Impact of Plant Exogenous Proteases: A Review. Arab. J. Chem. 2021, 14, 102967. [Google Scholar] [CrossRef]
- Arshad, M.S.; Kwon, J.-H.; Imran, M.; Sohaib, M.; Aslam, A.; Nawaz, I.; Amjad, Z.; Khan, U.; Javed, M. Plant and Bacterial Proteases: A Key towards Improving Meat Tenderization, a Mini Review. Cogent Food Agric. 2016, 2, 1261780. [Google Scholar] [CrossRef]
- Gagaoua, M.; Dib, A.L.; Lakhdara, N.; Lamri, M.; Botineştean, C.; Lorenzo, J.M. Artificial Meat Tenderization Using Plant Cysteine Proteases. Curr. Opin. Food Sci. 2021, 38, 177–188. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, D.; Kumar, P.; Mehta, N. Efficacy of Sweet Potato Powder and Added Water as Fat Replacer on the Quality Attributes of Low-Fat Pork Patties. Asian-Australas. J. Anim. Sci. 2014, 28, 252–259. [Google Scholar] [CrossRef]
- López-Pedrouso, M.; Franco, D.; Serrano, M.P.; Maggiolino, A.; Landete-Castillejos, T.; de Palo, P.; Lorenzo, J.M. A Proteomic-Based Approach for the Search of Biomarkers in Iberian Wild Deer (Cervus elaphus) as Indicators of Meat Quality. J. Proteom. 2019, 205, 103422. [Google Scholar] [CrossRef]
- Marquer, P.; Rabade, T.; Forty, R. Meat Production Statistics; Eurostat: Luxembourg, 2015. [Google Scholar]
- Bolumar, T.; Enneking, M.; Toepfl, S.; Heinz, V. New Developments in Shockwave Technology Intended for Meat Tenderization: Opportunities and Challenges. A Review. Meat Sci. 2013, 95, 931–939. [Google Scholar] [CrossRef]
- Fernández-Lucas, J.; Castañeda, D.; Hormigo, D. New Trends for a Classical Enzyme: Papain, a Biotechnological Success Story in the Food Industry. Trends Food Sci. Technol. 2017, 68, 91–101. [Google Scholar] [CrossRef]
- Neetu, J.; Mishra, P.C.; Chaudhary, N. Applications, Challenges and Future Prospects of Proteases: An Overview. J. Agroecol. Nat. Resour. Manag. 2014, 1, 179–183. [Google Scholar]
- Bekhit, A.A.; Hopkins, D.L.; Geesink, G.; Bekhit, A.A.; Franks, P. Exogenous Proteases for Meat Tenderization. Crit. Rev. Food Sci. Nutr. 2014, 54, 1012–1031. [Google Scholar] [CrossRef]
- Morellon-Sterling, R.; El-Siar, H.; Tavano, O.L.; Berenguer-Murcia, Á.; Fernández-Lafuente, R. Ficin: A Protease Extract with Relevance in Biotechnology and Biocatalysis. Int. J. Biol. Macromol. 2020, 162, 394–404. [Google Scholar] [CrossRef]
- Verma, V.; Singhal, G.; Joshi, S.; Choudhary, M.; Srivastava, N. Plant Extracts as Enzymes. In Plant Extracts: Applications in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2022; pp. 209–223. [Google Scholar]
- Singh, R.; Singh, A.; Sachan, S. Enzymes Used in the Food Industry: Friends or Foes? In Enzymes in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 827–843. [Google Scholar]
- Shi, H.; Shahidi, F.; Wang, J.; Huang, Y.; Zou, Y.; Xu, W.; Wang, D. Techniques for Postmortem Tenderisation in Meat Processing: Effectiveness, Application and Possible Mechanisms. Food Prod. Process. Nutr. 2021, 3, 21. [Google Scholar] [CrossRef]
- Shah, M.A.; Mir, S.A. Plant Proteases in Food Processing. In Bioactive Molecules in Food; Springer: Cham, Switzerland, 2019; pp. 443–464. [Google Scholar]
- Veiseth, E.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Factors Regulating Lamb Longissimus Tenderness Are Affected by Age at Slaughter. Meat Sci. 2004, 68, 635–640. [Google Scholar] [CrossRef]
- Rhee, M.S.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M. Variation in Palatability and Biochemical Traits within and among Eleven Beef Muscles1234. J. Anim. Sci. 2004, 82, 534–550. [Google Scholar] [CrossRef]
- Renand, G.; Picard, B.; Touraille, C.; Berge, P.; Lepetit, J. Relationships between Muscle Characteristics and Meat Quality Traits of Young Charolais Bulls. Meat Sci. 2001, 59, 49–60. [Google Scholar] [CrossRef]
- Marino, R.; Albenzio, M.; della Malva, A.; Santillo, A.; Loizzo, P.; Sevi, A. Proteolytic Pattern of Myofibrillar Protein and Meat Tenderness as Affected by Breed and Aging Time. Meat Sci. 2013, 95, 281–287. [Google Scholar] [CrossRef]
- Toldrá, F.; Reig, M. Enzymes in Meat and Fish. In Improving and Tailoring Enzymes for Food Quality and Functionality; Woodhead Publishing: Soston, UK, 2015; pp. 199–212. [Google Scholar] [CrossRef]
- Lana, A.; Zolla, L. Proteolysis in Meat Tenderization from the Point of View of Each Single Protein: A Proteomic Perspective. J. Proteom. 2016, 147, 85–97. [Google Scholar] [CrossRef]
- Verma, A.K.; Umaraw, P.; Singh, V.P.; Kumar, P.; Mehta, N. Tender Meat Attracts Consumers: Beneath Other Mechanical Processes in the Meat Industry Tenderization Is Used Globally. Fleischwirtsch. Int. J. Meat Prod. Meat Process. 2019, 3, 36–43. [Google Scholar]
- Maddock, R. Mechanical Tenderization of Beef. Available online: https://www.beefissuesquarterly.com/CMDocs/BeefResearch/PE_Fact_Sheets/Mechanical_Tenderization_of_Beef.pdf (accessed on 26 February 2023).
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.-D.A. Applied and Emerging Methods for Meat Ten-derization: A Comparative Perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 841–859. [Google Scholar] [CrossRef]
- Warner, R.D.; Wheeler, T.L.; Ha, M.; Li, X.; Bekhit, A.E.D.; Morton, J.; Vaskoska, R.; Dunshea, F.R.; Liu, R.; Purslow, P.; et al. Meat Tenderness: Advances in Biology, Biochemistry, Molecular Mechanisms and New Technologies. Meat Sci. 2022, 185, 108657. [Google Scholar] [CrossRef]
- González-Rábade, N.; Badillo-Corona, J.A.; Aranda-Barradas, J.S.; del Oliver-Salvador, M.C. Production of Plant Proteases in Vivo and in Vitro—A Review. Biotechnol. Adv. 2011, 29, 983–996. [Google Scholar] [CrossRef]
- Wu, W.; Suan, H.; Sun, I.; Lan, J.C. A Polymer/Salt Aqueous Biphasic System. J. Taiwan Inst. Chem. Eng. 2017, 79, 1–5. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Mohamed, H.M.H. Improving the Physico-Chemical and Sensory Characteristics of Camel Meat Burger Patties Using Ginger Extract and Papain. Meat Sci. 2016, 118, 52–60. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Shuhaimen, M.S.; Normaya, E.; Omar, M.N.; Iqbal, A.; Ku Bulat, K.H. The Applicability of Using a Protease Extracted from Cashew Fruits (Anacardium occidentale), as Possible Meat Tenderizer: An Experimental Design Approach. J. Texture Stud. 2020, 51, 810–829. [Google Scholar] [CrossRef]
- Canela, E.I.; Navarro, G.; Beltrán, J.L.; Franco, R. The Meaning of the Michaelis-Menten Constant: Km Describes a Steady-State. bioRxiv 2019, 608232. [Google Scholar] [CrossRef]
- Roskoski, R. Michaelis-Menten Kinetics. In xPharm: The Comprehensive Pharmacology Reference; Elsevier Inc.: Amsterdam, The Netherlands, 2007; pp. 1–10. [Google Scholar] [CrossRef]
- Geeganage, S.; Frey, P.A. Galactose-1-Phosphate Uridylyltransferase: Kinetics of Formation and Reaction of Uridylyl-Enzyme Intermediate in Wild-Type and Specifically Mutated Uridylyltransferases. Methods Enzymol. 2002, 354, 134–148. [Google Scholar] [CrossRef]
- Nurhidayat, I.; Setiasih, S.; Handayani, S.; Hudiyono, S. Kinetic Studies of Bromelain Purified from Palembang Pineapple (Ananas comosus [L.] Merr) Using Gel Filtration Chromatography and Its Activity as Antiplatelet Aggregation; AIP Publishing LLC.: Melville, NY, USA, 2018; p. 020068. [Google Scholar]
- Babalola, B.A.; Akinwande, A.I.; Gboyega, A.E.; Otunba, A.A. Extraction, Purification and Characterization of Papain Cysteine-Proteases from the Leaves of Carica Papaya. Sci. Afr. 2023, 19, e01538. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, D.; Long, Y.; Xie, Z.; Zheng, H. Intrinsic Peroxidase-like Activity of Ficin. Sci. Rep. 2017, 7, 43141. [Google Scholar] [CrossRef]
- Tantamacharik, T.; Carne, A.; Agyei, D.; Birch, J.; Bekhit, A.E.-D.A. Use of Plant Proteolytic Enzymes for Meat Processing. In Biotechnological Applications of Plant Proteolytic Enzymes; Springer International Publishing: Cham, Switzerland, 2018; pp. 43–67. [Google Scholar]
- Hafid, K.; John, J.; Sayah, T.M.; Domínguez, R.; Becila, S.; Lamri, M.; Dib, A.L.; Lorenzo, J.M.; Gagaoua, M. One-Step Recovery of Latex Papain from Carica Papaya Using Three Phase Partitioning and Its Use as Milk-Clotting and Meat-Tenderizing Agent. Int. J. Biol. Macromol. 2020, 146, 798–810. [Google Scholar] [CrossRef]
- Gagaoua, M.; Boucherba, N.; Bouanane-Darenfed, A.; Ziane, F.; Nait-Rabah, S.; Hafid, K.; Boudechicha, H.R. Three-Phase Partitioning as an Efficient Method for the Purification and Recovery of Ficin from Mediterranean Fig (Ficus carica L.) Latex. Sep. Purif. Technol. 2014, 132, 461–467. [Google Scholar] [CrossRef]
- Naveena, B.M.; Mendiratta, S.K.; Anjaneyulu, A.S.R. Tenderization of Buffalo Meat Using Plant Proteases from Cucumis Trigonus Roxb (Kachri) and Zingiber Officinale Roscoe (Ginger rhizome). Meat Sci. 2004, 68, 363–369. [Google Scholar] [CrossRef]
- Clark, A.C. Caspase Allostery and Conformational Selection. Chem. Rev. 2016, 116, 6666–6706. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465. [Google Scholar] [CrossRef]
- Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Overview of Plant Extracts as Natural Preservatives in Meat. J. Food Process. Preserv. 2022, 46, e16796. [Google Scholar] [CrossRef]
- Rathour, M.; Malav, O.P.; Kumar, P.; Chatli, M.K.; Mehta, N. Standardization of Protocols for Extraction of Aloe Vera and Cinnamon Bark Extracts. J. Anim. Res. 2017, 7, 175–182. [Google Scholar]
- Rathour, M.; Malav, O.P.; Kumar, P.; Chatli, M.K.; Mehta, N. Functional Chevon Rolls Fortified with Cinnamon Bark and Aloe-Vera Powder Extracts. Haryana Vet. 2019, 58, 1–5. [Google Scholar]
- Kumar, P.; Mehta, N.; Malav, O.P.; Kumar Chatli, M.; Rathour, M.; Kumar Verma, A. Antioxidant and Antimicrobial Efficacy of Watermelon Rind Extract (WMRE) in Aerobically Packaged Pork Patties Stored under Refrigeration Temperature (4 ± 1 °C). J. Food Process. Preserv. 2018, 42. [Google Scholar] [CrossRef]
- Kumar, P.; Chatli, M.K.; Mehta, N.; Malav, O.P.; Verma, A.K.; Kumar, D.; Rathour, M. Antioxidant and Antimicrobial Efficacy of Sapota Powder in Pork Patties Stored under Different Packaging Conditions. Korean J. Food Sci. Anim. Resour. 2018, 38, 593. [Google Scholar] [CrossRef]
- Rathour, M.; Malav, O.P.; Kumar, P.; Chatli, M.K.; Mehta, N. Storage Stability of Chevon Rolls Incorporated with Ethanolic Extracts of Aloe Vera and Cinnamon Bark at Refrigeration Temperature (4 ±1° C). J. Anim. Res. 2017, 7, 183–190. [Google Scholar]
- Kumar, P.; Kumar, S.; Tripathi, M.K.; Mehta, N.; Ranjan, R.; Bhat, Z.F.; Singh, P.K. Flavonoids in the Development of Functional Meat Products: A Review. Vet. World 2013, 6, 573–578. [Google Scholar] [CrossRef]
- Shang, S.; Wu, B.; Fu, B.; Jiang, P.; Liu, Y.; Qi, L.; Du, M.; Dong, X. Enzyme Treatment-Induced Tenderization of Puffer Fish Meat and Its Relation to Physicochemical Changes of Myofibril Protein. LWT 2022, 155, 112891. [Google Scholar] [CrossRef]
- Ashie, I.N.A.; Sorensen, T.L.; Nielsen, P.M. Effects of Papain and a Microbial Enzyme on Meat Proteins and Beef Tenderness. J. Food Sci. 2002, 67, 2138–2142. [Google Scholar] [CrossRef]
- Arshad, M.S.; Javed, M.; Sohaib, M.; Saeed, F.; Imran, A.; Amjad, Z. Tissue Engineering Approaches to Develop Cultured Meat from Cells: A Mini Review. Cogent Food Agric. 2017, 3, 1320814. [Google Scholar]
- Homaei, A.A.; Sajedi, R.H.; Sariri, R.; Seyfzadeh, S.; Stevanato, R. Cysteine Enhances Activity and Stability of Immobilized Papain. Amino Acids 2010, 38, 937–942. [Google Scholar] [CrossRef]
- Gerelt, B.; Ikeuchi, Y.; Suzuki, A. Meat Tenderization by Proteolytic Enzymes after Osmotic Dehydration. Meat Sci. 2000, 56, 311–318. [Google Scholar] [CrossRef]
- Shouket, H.A.; Ameen, I.; Tursunov, O.; Kholikova, K.; Pirimov, O.; Kurbonov, N.; Ibragimov, I.; Mukimov, B. Study on Industrial Applications of Papain: A Succinct Review. IOP Conf. Ser. Earth Environ. Sci. 2020, 614, 012171. [Google Scholar] [CrossRef]
- Lin, K.-P.; Feng, G.-J.; Pu, F.-L.; Hou, X.-D.; Cao, S.-L. Enhancing the Thermostability of Papain by Immobilizing on Deep Eutectic Solvents-Treated Chitosan with Optimal Microporous Structure and Catalytic Microenvironment. Front. Bioeng. Biotechnol. 2020, 8, 576266. [Google Scholar] [CrossRef]
- Nitsawang, S.; Hatti-Kaul, R.; Kanasawud, P. Purification of Papain from Carica Papaya Latex: Aqueous Two-Phase Extraction versus Two-Step Salt Precipitation. Enzym. Microb. Technol. 2006, 39, 1103–1107. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Hsu, H.-Y.; Chai, H.-E.; Uknalis, J.; Sheen, S. Combination Effect of Papaya Extract and High Pressure Processing on Salmonella Inactivation on Raw Chicken Breast Meat and Meat Quality Assessment. Food Control 2022, 133, 108637. [Google Scholar] [CrossRef]
- Peternakan, F.; Jambi, U. Efek Penggunaan Ekstrak Buah Nanas (Ananas comosus L. Merr) Terhadap Kualitas Fisik Daging Kerbau. J. Ilm. Ilmu-Ilmu Peternak. 2018, 21, 47–54. [Google Scholar]
- Ramli, A.N.M.; Manas, N.H.A.; Hamid, A.A.A.; Hamid, H.A.; Illias, R.M. Comparative Structural Analysis of Fruit and Stem Bromelain from Ananas comosus. Food Chem. 2018, 266, 183–191. [Google Scholar] [CrossRef]
- Ahmad, T.; Ismail, A.; Ahmad, S.A.; Khalil, K.A.; Kee, L.T.; Awad, E.A.; Sazili, A.Q. Extraction, Characterization and Molecular Structure of Bovine Skin Gelatin Extracted with Plant Enzymes Bromelain and Zingibain. J. Food Sci. Technol. 2020, 57, 3772–3781. [Google Scholar] [CrossRef]
- Kamarul Zaman, N. Extraction, Purification and Characterisation of Bromelain from Pineapple Crowns and Its Application/Nadzirah Kamarul Zaman. In The Doctoral Research Abstracts; IGS Biannual Publication, 9 (9); Institute of Graduate Studies, UiTM, Shah Alam: Malaysia, 2019. [Google Scholar]
- Truc, T.T.; Thanh, L.K.; Mười, N. Effect of pH and Temperature on Activity of Bromelain in Pineapple Fruit. 2010. Available online: https://www.semanticscholar.org/paper/EFFECT-OF-pH-AND-TEMPERATURE-ON-ACTIVITY-OF-IN-Truc-Thanh/7b69465e528c059e1a3aa670611fd291f869bf0b (accessed on 26 February 2022).
- Manzoor, Z.; Nawaz, A.; Mukhtar, H.; Haq, I. Bromelain: Methods of Therapeutic Applications Extraction, Purification and Therapeutic Application. Braz. Arch. Biol. Technol. 2016, 59, 1–16. [Google Scholar]
- Feng, X.; Zhu, Y.; Liu, Q.; Lai, S.; Yang, H. Effects of Bromelain Tenderisation on Myofibrillar Proteins, Texture and Flavour of Fish Balls Prepared from Golden Pomfret. Food Bioprocess Technol. 2017, 10, 1918–1930. [Google Scholar] [CrossRef]
- Nam, S.-H.; Walsh, M.K.; Kim, S.-H.; Yang, K.-Y. Identification and Functional Characterization of Cysteine Protease from Nine Pear Cultivars (Pyrus pyrifolia). Int. J. Food Prop. 2016, 19, 1631–1644. [Google Scholar] [CrossRef]
- Nadzirah, K.Z.; Zainal, S.; Noriham, A.; Normah, I. Application of Bromelain Powder Produced from Pineapple Crowns in Tenderising Beef Round Cuts. Int. Food Res. J. 2016, 23, 1590–1599. [Google Scholar]
- Feng, X.; Hang, S.; Zhou, Y.; Liu, Q.; Yang, H. Bromelain Kinetics and Mechanism on Myofibril from Golden Pomfret (Trachinotus blochii). J. Food Sci. 2018, 83, 2148–2158. [Google Scholar] [CrossRef]
- Corzo, C.A.; Waliszewski, K.N.; Welti-Chanes, J. Pineapple Fruit Bromelain Affinity to Different Protein Substrates. Food Chem. 2012, 133, 631–635. [Google Scholar] [CrossRef]
- De Lencastre Novaes, L.C.; De Carvalho Santos Ebinuma, V.; Mazzola, P.G.; Júnior, A.P. Polymer-Based Alternative Method to Extract Bromelain from Pineapple Peel Waste. Biotechnol. Appl. Biochem. 2013, 60, 527–535. [Google Scholar] [CrossRef]
- Chaurasiya, R.S.; Sakhare, P.Z.; Bhaskar, N.; Hebbar, H.U. Efficacy of Reverse Micellar Extracted Fruit Bromelain in Meat Tenderization. J. Food Sci. Technol. 2015, 52, 3870–3880. [Google Scholar] [CrossRef]
- Banerjee, S.; Arora, A.; Vijayaraghavan, R.; Patti, A.F. Extraction and Crosslinking of Bromelain Aggregates for Improved Stability and Reusability from Pineapple Processing Waste. Int. J. Biol. Macromol. 2020, 158, 318–326. [Google Scholar] [CrossRef]
- Liburdi, K.; Boselli, C.; Giangolini, G.; Amatiste, S.; Esti, M. An Evaluation of the Clotting Properties of Three Plant Rennets in the Milks of Different Animal Species. Foods 2019, 8, 600. [Google Scholar] [CrossRef]
- Li, D.; Zhang, H.; Ma, L.; Tao, Y.; Liu, J.; Liu, D. Effects of Ficin, High Pressure and Their Combination on Quality Attributes of Post-Rigor Tan Mutton. LWT 2020, 137, 110407. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, L.; Wang, S.; Zhou, Y. Comparison of Plant-Origin Proteases and Ginger Extract on Quality Properties of Beef Rump Steaks. Food Sci. Technol. Res. 2019, 25, 529–538. [Google Scholar] [CrossRef]
- Sullivan, G.A.; Calkins, C.R. Application of Exogenous Enzymes to Beef Muscle of High and Low-Connective Tissue. Meat Sci. 2010, 85, 730–734. [Google Scholar] [CrossRef]
- Zare, H.; Moosavi-Movahedi, A.A.; Salami, M.; Mirzaei, M.; Saboury, A.A.; Sheibani, N. Purification and Autolysis of the Ficin Isoforms from Fig (Ficus carica Cv. Sabz) Latex. Phytochemistry 2013, 87, 16–22. [Google Scholar] [CrossRef]
- Maqsood, S.; Manheem, K.; Gani, A.; Abushelaibi, A. Degradation of Myofibrillar, Sarcoplasmic and Connective Tissue Proteins by Plant Proteolytic Enzymes and Their Impact on Camel Meat Tenderness. J. Food Sci. Technol. 2018, 55, 3427–3438. [Google Scholar] [CrossRef]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The Nutritional and Health Attributes of Kiwifruit: A Review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar]
- Zhu, X.; Kaur, L.; Staincliffe, M.; Boland, M. Actinidin Pretreatment and Sous Vide Cooking of Beef Brisket: Effects on Meat Microstructure, Texture and in Vitro Protein Digestibility. Meat Sci. 2018, 145, 256–265. [Google Scholar] [CrossRef]
- Palacin, A.; Rodriguez, J.; Blanco, C.; Lopez-Torrejon, G.; Snchez-Monge, R.; Varela, J.; Jimnez, M.A.; Cumplido, J.; Carrillo, T.; Crespo, J.F.; et al. Immunoglobulin E Recognition Patterns to Purified Kiwifruit (Actinidinia Deliciosa) Allergens in Patients Sensitized to Kiwi with Different Clinical Symptoms. Clin. Exp. Allergy 2008, 38, 1220–1228. [Google Scholar] [CrossRef]
- Lucas, J.S.A.; Grimshaw, K.E.C.; Collins, K.; Warner, J.O.; Hourihane, J.O. Kiwi Fruit Is a Significant Allergen and Is Associated with Differing Patterns of Reactivity in Children and Adults. Clin. Exp. Allergy 2004, 34, 1115–1121. [Google Scholar] [CrossRef]
- Kakash, S.B.A.G.H.E.R.I.; Hojjatoleslamy, M.; Babaei, G.; Molavi, H. Kinetic Study of the Effect of Kiwi Fruit Actinidin on Various Proteins of Chicken Meat. Food Sci. Technol. 2019, 39, 980–992. [Google Scholar] [CrossRef]
- Afshar-Mohammadian, M.; Rahimi-Koldeh, J.; Sajedi, R.H. The Comparison of Protease Activity and Total Protein in Three Cultivars of Kiwifruit of Northern Iran during Fruit Development. Acta Physiol. Plant. 2011, 33, 343–348. [Google Scholar] [CrossRef]
- Zhu, X.; Kaur, L.; Boland, M. Thermal Inactivation of Actinidin as Affected by Meat Matrix. Meat Sci. 2018, 145, 238–244. [Google Scholar] [CrossRef]
- Lees, A.; Konarska, M.; Tarr, G.; Polkinghorne, R.; McGilchrist, P. Influence of Kiwifruit Extract Infusion on Consumer Sensory Outcomes of Striploin (M. longissimus lumborum) and Outside Flat (M. biceps femoris) from Beef Carcasses. Foods 2019, 8, 332. [Google Scholar] [CrossRef]
- Biffin, T.E.; Smith, M.A.; Bush, R.D.; Morris, S.; Hopkins, D.L. The Effect of Whole Carcase Medium Voltage Electrical Stimulation, Tenderstretching and Longissimus Infusion with Actinidin on Alpaca Meat Quality. Meat Sci. 2020, 164, 108107. [Google Scholar] [CrossRef]
- Ha, M.; Bekhit, A.E.-D.; Carne, A.; Hopkins, D.L. Characterisation of Kiwifruit and Asparagus Enzyme Extracts, and Their Activities toward Meat Proteins. Food Chem. 2013, 136, 989–998. [Google Scholar] [CrossRef]
- Nam, S.-H.; Kim, Y.-M.; Walsh, M.K.; Yim, S.-H.; Eun, J.-B. Functional Characterization of Purified Pear Protease and Its Proteolytic Activities with Casein and Myofibrillar Proteins. Food Sci. Biotechnol. 2016, 25, 31–39. [Google Scholar] [CrossRef]
- Koak, J.-H.; Kim, H.-S.; Choi, Y.J.; Baik, M.-Y.; Kim, B.-Y. Characterization of a Protease from Over-Matured Fruits and Development of a Tenderizer Using an Optimization Technique. Food Sci. Biotechnol. 2011, 20, 485–490. [Google Scholar] [CrossRef]
- Cruz, P.L.; Panno, P.H.C.; Giannotti, J.D.G.; de Carvalho, R.V.; Roberto, C.D. Effect of Proteases from Ginger rhizome on the Fragmentation of Myofibrils and Tenderness of Chicken Breast. LWT 2020, 120, 108921. [Google Scholar] [CrossRef]
- Gagaoua, M.; Hoggas, N.; Hafid, K. Three Phase Partitioning of Zingibain, a Milk-Clotting Enzyme from Zingiber Officinale Roscoe Rhizomes. Int. J. Biol. Macromol. 2015, 73, 245–252. [Google Scholar] [CrossRef]
- Moon, S.S. Effect of Proteolytic Enzymes and Ginger Extract on Tenderization of M. Pectoralis Profundus from Holstein Steer. Korean J. Food Sci. Anim. Resour. 2018, 38, 2234–2246. [Google Scholar] [CrossRef]
- Singh, P.K.; Kumar, S.; Kumar, P.; Bhat, Z.F. Pulsed Light and Pulsed Electric Field-Emerging Non Thermal Decontamination of Meat. Am. J. Food Technol. 2012, 7, 506–516. [Google Scholar] [CrossRef]
- Fan, Y.; Mehta, D.V.; Basheer, I.M.; MacIntosh, A.J. A review on underwater shockwave processing and its application in food technology. Crit. Rev. Food Sci. Nutr. 2020, 62, 980–988. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Yang, C. Application of Ultrasound Technology in Processing of Ready-to-Eat Fresh Food: A Review. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar] [CrossRef]
- Mehta, N.; Jeyapriya, S.; Kumar, P.; Verma, A.K.; Umaraw, P.; Khatkar, S.K.; Khatkar, A.B.; Pathak, D.; Kaka, U.; Sazili, A.Q. Ultrasound-Assisted Extraction and the Encapsulation of Bioactive Components for Food Applications. Foods 2022, 11, 2973. [Google Scholar] [CrossRef]
- Mehta, N.; Kumar, P.; Verma, A.K.; Umaraw, P.; Kumar, Y.; Malav, O.P.; Sazili, A.Q.; Domínguez, R.; Lorenzo, J.M. Microencapsulation as a Noble Technique for the Application of Bioactive Compounds in the Food Industry: A Comprehensive Review. Appl. Sci. 2022, 12, 1424. [Google Scholar] [CrossRef]
- Barekat, S.; Soltanizadeh, N. Effects of Ultrasound on Microstructure and Enzyme Penetration in Beef Longissimus Lumborum Muscle. Food Bioprocess Technol. 2018, 11, 680–693. [Google Scholar] [CrossRef]
- Barekat, S.; Soltanizadeh, N. Improvement of Meat Tenderness by Simultaneous Application of High-Intensity Ultrasonic Radiation and Papain Treatment. Innov. Food Sci. Emerg. Technol. 2017, 39, 223–229. [Google Scholar] [CrossRef]
- Cao, C.; Xiao, Z.; Tong, H.; Tao, X.; Gu, D.; Wu, Y.; Xu, Z.; Ge, C. Effect of Ultrasound-Assisted Enzyme Treatment on the Quality of Chicken Breast Meat. Food Bioprod. Process. 2021, 125, 193–203. [Google Scholar] [CrossRef]
- Dong, W.; Stomackin, G.; Lin, X.; Martin, G.K.; Jung, T.T. Distortion Product Otoacoustic Emissions: Sensitive Measures of Tympanic-Membrane Perforation and Healing Processes in a Gerbil Model. Hear. Res. 2019, 378, 3–12. [Google Scholar] [CrossRef]
- Kang, D.; Zhang, W.; Lorenzo, J.M.; Chen, X. Structural and Functional Modification of Food Proteins by High Power Ultrasound and Its Application in Meat Processing. Crit. Rev. Food Sci. Nutr. 2021, 61, 1914–1933. [Google Scholar] [CrossRef]
- Wang, X.; Majzoobi, M.; Farahnaky, A. Ultrasound-Assisted Modification of Functional Properties and Biological Activity of Biopolymers: A Review. Ultrason. Sonochem. 2020, 65, 105057. [Google Scholar] [CrossRef]
- Chai, H.-E.; Sheen, S. Effect of High Pressure Processing, Allyl Isothiocyanate, and Acetic Acid Stresses on Salmonella Survivals, Storage, and Appearance Color in Raw Ground Chicken Meat. Food Control 2021, 123, 107784. [Google Scholar] [CrossRef]
- Schenková, N.; Šikulová, M.; Jeleníková, J.; Pipek, P.; Houška, M.; Marek, M. Influence of High Isostatic Pressure and Papain Treatment on the Quality of Beef Meat. High Press. Res. 2007, 27, 163–168. [Google Scholar] [CrossRef]
- Ma, Y.; Yuan, Y.; Bi, X.; Zhang, L.; Xing, Y.; Che, Z. Tenderization of Yak Meat by the Combination of Papain and High-Pressure Processing Treatments. Food Bioprocess Technol. 2019, 12, 681–693. [Google Scholar] [CrossRef]
- McDonnell, C.K.; Fitzgerald, A.G.; Burt, P.; Hughes, J.; Mellor, G.E.; Barlow, R.S.; Sikes, A.L.; Li, Y.; Tobin, A.B. The Effect of Electro-Hydrodynamic Shockwaves on the Quality of Striploin and Brisket Beef Muscles during Long-Term Storage. Innov. Food Sci. Emerg. Technol. 2021, 68, 102627. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Fernández-Lafuente, R. Modifying Enzyme Activity and Selectivity by Immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307. [Google Scholar] [CrossRef]
- Wongphan, P.; Khowthong, M.; Supatrawiporn, T.; Harnkarnsujarit, N. Novel Edible Starch Films Incorporating Papain for Meat Tenderization. Food Packag. Shelf Life 2022, 31, 100787. [Google Scholar] [CrossRef]
- Holyavka, M.; Faizullin, D.; Koroleva, V.; Olshannikova, S.; Zakhartchenko, N.; Zuev, Y.; Kondratyev, M.; Zakharova, E.; Artyukhov, V. Novel Biotechnological Formulations of Cysteine Proteases, Immobilized on Chitosan. Structure, Stability and Activity. Int. J. Biol. Macromol. 2021, 180, 161–176. [Google Scholar] [CrossRef]
- Homaei, A.; Etemadipour, R. Improving the Activity and Stability of Actinidin by Immobilization on Gold Nanorods. Int. J. Biol. Macromol. 2015, 72, 1176–1181. [Google Scholar] [CrossRef]
- Shin, H.; Kim, H.T.; Choi, M.-J.; Ko, E.-Y. Effects of Bromelain and Double Emulsion on the Physicochemical Properties of Pork Loin. Food Sci. Anim. Resour. 2019, 39, 888–902. [Google Scholar] [CrossRef]
- Saengsuk, N.; Laohakunjit, N.; Sanporkha, P.; Kaisangsri, N.; Selamassakul, O.; Ratanakhanokchai, K.; Uthairatanakij, A. Physicochemical Characteristics and Textural Parameters of Restructured Pork Steaks Hydrolysed with Bromelain. Food Chem. 2021, 361, 130079. [Google Scholar] [CrossRef]
- Pietrasik, Z.; Aalhus, J.L.; Gibson, L.L.; Shand, P.J. Influence of Blade Tenderization, Moisture Enhancement and Pancreatin Enzyme Treatment on the Processing Characteristics and Tenderness of Beef Semitendinosus Muscle. Meat Sci. 2010, 84, 512–517. [Google Scholar] [CrossRef]
- Jun-hui, X.; Hui-juan, C.; Bin, Z.; Hui, Y. The Mechanistic Effect of Bromelain and Papain on Tenderization in Jumbo Squid (Dosidicus gigas) Muscle. Food Res. Int. 2020, 131, 108991. [Google Scholar] [CrossRef]
- Kim, D.-S.; Joo, N. Texture Characteristics of Horse Meat for the Elderly Based on the Enzyme Treatment. Food Sci. Anim. Resour. 2020, 40, 74–86. [Google Scholar] [CrossRef]
- Chang, J.-H.; Han, J.-A. Synergistic Effect of Sous-Vide and Fruit-Extracted Enzymes on Pork Tenderization. Food Sci. Biotechnol. 2020, 29, 1213–1222. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Hamid, H.A.; Zulkifli, F.H.; Zamri, N.; Bhuyar, P.; Manas, N.H.A. Physicochemical Properties and Tenderness Analysis of Bovine Meat Using Proteolytic Enzymes Extracted from Pineapple (Ananas comosus) and Jackfruit (Artocarpus heterophyllus) by-products. J. Food Process. Preserv. 2021, 45, e15939. [Google Scholar] [CrossRef]
- Kantale, R.A.; Kumar, P.; Mehta, N.; Chatli, M.K.; Malav, O.P.; Kaur, A.; Wagh, R.V. Comparative Efficacy of Synthetic and Natural Tenderizers on Quality Characteristics of Restructured Spent Hen Meat Slices (RSHS). Food Sci. Anim. Resour. 2019, 39, 121–138. [Google Scholar] [CrossRef]
- Khanna, N.; Panda, P.C. Effect of Papain on Tenderization and Functional Properties of Spent Hen Meat Cuts. Indian J. Anim. Res. 2007, 41, 55–58. [Google Scholar]
- Narayan, R.; Mendiratta, S.K.; Mane, B.G. Effects of Citric Acid, Cucumis Powder and Pressure Cooking on Quality Attributes of Goat Meat Curry. J. Food Sci. Technol. 2015, 52, 1772–1777. [Google Scholar] [CrossRef]
- Ahmad, M.N.; Hilmi, N.H.N.; Normaya, E.; Yarmo, M.A.; Bulat, K.H.K. Optimization of a Protease Extraction Using a Statistical Approach for the Production of an Alternative Meat Tenderizer from Manihot Esculenta Roots. J. Food Sci. Technol. 2020, 57, 2852–2862. [Google Scholar] [CrossRef]
- Zahir, H.G.; Saleh, H.H.; Mahmud, A.B. Using Plant Protease from Wild Cantaloupe Fruit (Cucumis Trigonus Rox-B) as Tenderizing Agent of Aged Bullmeat. Plant Arch. 2020, 20, 399–407. [Google Scholar]
- Ahmad, M.N.; Mat Noh, N.A.; Abdullah, E.N.; Yarmo, M.A.; Mat Piah, M.B.; Ku Bulat, K.H. Optimization of a Protease Extraction Using a Statistical Approach for the Production of an Alternative Meat Tenderizer from Spondias Cytherea Roots. J. Food Process. Preserv. 2019, 43, e14192. [Google Scholar] [CrossRef]
- Lee, K.-H.; Kim, H.-K.; Kim, S.-H.; Kim, K.-H.; Choi, Y.-M.; Jin, H.-H.; Lee, S.-J.; Ryu, Y.-C. Effects of Mushroom Extract on Textural Properties and Muscle Protein Degradation of Bovine Longissimus Dorsi Muscle. Biosci. Biotechnol. Biochem. 2017, 81, 558–564. [Google Scholar] [CrossRef]
- Rawdkuen, S.; Jaimakreu, M.; Benjakul, S. Physicochemical Properties and Tenderness of Meat Samples Using Proteolytic Extract from Calotropis Procera Latex. Food Chem. 2013, 136, 909–916. [Google Scholar] [CrossRef]
- Dhital, S.; Vangnai, K. Meat Tenderisation Effect of Protease from Mango Peel Crude Extract. Int. Food Res. J 2019, 26, 991–998. [Google Scholar]
- Sairuji, M.; Bohari, M.F.M.; Zakaria, F.N.; Yusof, S.; Basri, T.S.A.T.A.; Hashim, N.K.; Dasiman, R. An Ingenius Innovation of Soup Spices from Jackfruit (Artocarpus heterophyllus) Leaf for Meat Tenderization. J. Inov. Malays. 2017, 1, 97–108. [Google Scholar]
- Botinestean, C.; Hossain, M.; Mullen, A.M.; Auty, M.A.E.; Kerry, J.P.; Hamill, R.M. Optimization of Textural and Technological Parameters Using Response Surface Methodology for the Development of Beef Products for Older Consumers. J. Texture Stud. 2020, 51, 263–275. [Google Scholar] [CrossRef]
- Borrajo, P.; Pateiro, M.; Gagaoua, M.; Franco, D.; Zhang, W.; Lorenzo, J.M. Evaluation of the Antioxidant and Antimicrobial Activities of Porcine Liver Protein Hydrolysates Obtained Using Alcalase, Bromelain, and Papain. Appl. Sci. 2020, 10, 2290. [Google Scholar] [CrossRef]
- Verma, A.K.; Chatli, M.K.; Kumar, P.; Mehta, N. Antioxidant and Antimicrobial Efficacy of Peptidic Hydrolysate Obtained from Porcine Blood. Agric. Res. 2019, 8, 116–124. [Google Scholar] [CrossRef]
- Bechaux, J.; Ferraro, V.; Sayd, T.; Chambon, C.; le Page, J.F.; Drillet, Y.; Gatellier, P.; Santé-Lhoutellier, V. Workflow towards the Generation of Bioactive Hydrolysates from Porcine Products by Combining in Silico and in Vitro Approaches. Food Res. Int. 2020, 132, 109123. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, Y.; Gu, T.; Wang, H.; Yin, Y.; Sheng, B.; Li, Y.; Nian, Y.; Wang, C.; Li, C.; et al. Peptidomic Investigation of the Interplay between Enzymatic Tenderization and the Digestibility of Beef Semimembranosus Proteins. J. Agric. Food Chem. 2020, 68, 1136–1146. [Google Scholar] [CrossRef]
- Gong, X.; Morton, J.D.; Bhat, Z.F.; Mason, S.L.; Bekhit, A.E.A. Comparative Efficacy of Actinidin from Green and Gold Kiwi Fruit Extract on in Vitro Simulated Protein Digestion of Beef Semitendinosus and Its Myofibrillar Protein Fraction. Int. J. Food Sci. Technol. 2020, 55, 742–750. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hur, S.J. Purification of Novel Angiotensin Converting Enzyme Inhibitory Peptides from Beef Myofibrillar Proteins and Analysis of Their Effect in Spontaneously Hypertensive Rat Model. Biomed. Pharmacother. 2019, 116, 109046. [Google Scholar] [CrossRef]
Name of Enzymes | Enzyme Commission Source | Source | pH Range (Optimal Range) | Temperature (°C, Optimal Range) | Principal Action Site |
---|---|---|---|---|---|
Papain | EC 3.4.22.2 | Papaya latex | 4.0–9.0 (6.0–7.0) | 40–80 (60–75) | Myofibrillar protein, collagen |
Bromelain | EC 3.4.22.32 | Stem of pineapple | 5.0–8.5 (6.0–8.5) | 50–80 (50–65) | Collagen, myofibrillar protein |
Ficin | EC 3.4.22.3 | Fig latex | 4.0–9.0 (5.5–7.5) | 40–70 (45–60) | Collagen, myofibrillar protein |
Actinidin | EC 3.4.22.14 | Kiwi fruit | 5.0–8.0 (7.0–8.5) | 40–60 | Myofibrillar proteins |
Zingibain | EC 3.4.22.67 | Ginger rhizome | 5.0–8.5 (6.0–7.0) | 40–70 (60–70) | Collagen, myofibrillar protein |
Cucumin | - | Cucumis trigonus Roxb | 5.0 | 40–70 | Collagen, myofibrillar protein |
Enzyme | Sample | Treatment | Positive Effect | Negative Effect | Reference |
---|---|---|---|---|---|
Papain | Spent hen leg cuts |
|
| N/A | [124] |
Papain | Yak meat |
|
|
| [110] |
|
| N/A | |||
Papain | Jumbo squid (Dosidicus gigas) |
|
|
| [119] |
Bromelain | Brahman cattle round cuts |
|
|
| [65] |
Bromelain | Buffalo meat |
|
| N/A | [62] |
Bromelain | Beef round cuts |
|
|
| [70] |
Ficin | Camel round cuts |
|
| N/A | [79] |
Ficin | Mutton |
|
|
| [77] |
|
| N/A | |||
Actinidin | Pork muscle and |
|
| N/A | [2] |
rabbit muscle | |||||
Actinidin | Brisket steaks |
|
| N/A | [83] |
Zingibain | Chicken breast |
|
| N/A | [94] |
Cucumin | Buffalo meat | Cucumis extract (5% w/v) and ginger extract (0.2% w/w) |
|
| [43] |
Cucumin | Goat meat curry | Cucumis powder (2.0%) spray, citric acid (1.0%) |
| - | [125] |
Source | Meat Sample | Extraction Method | Treatment | Result | Reference |
---|---|---|---|---|---|
Cashew fruit (Anacardium occidentale) | Beef (Tenderloin) | Centrifugation of crude cashew flesh extracts for 20 min at 4 °C |
|
| [33] |
Manihot esculenta | Beef | Centrifugation of crude flesh Manihot esculenta extract at 9910 rpm for 30 min |
|
| [126] |
Wild cantaloupe fruit (Cucumis trigonus Rox-b) | Fresh, aged bull meat (Aged for more than 5 years) | The cantaloupe peel was dried, ground, and transformed into a solution |
|
| [127] |
Nam Dok Mai Mango (Magnifera indica L. var. Nam Dokmai) | Beef (Top round cuts) | Centrifugation of crude mango peel extract for 15 min at 4 °C |
|
| [131] |
Ambarella (Spondias cytherea) | Beef | Centrifugation of crude Ambarella pulp extract for 15,000× g for 20 min at 4 °C |
|
| [128] |
Jackfruit (Artocarpus heterophyllus) | Beef (Bottom round cuts) | The jackfruit leaf was dried, ground and mixed with other spices to produce soup spice powder |
|
| [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Azmi, S.I.; Kumar, P.; Sharma, N.; Sazili, A.Q.; Lee, S.-J.; Ismail-Fitry, M.R. Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods 2023, 12, 1336. https://doi.org/10.3390/foods12061336
Mohd Azmi SI, Kumar P, Sharma N, Sazili AQ, Lee S-J, Ismail-Fitry MR. Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods. 2023; 12(6):1336. https://doi.org/10.3390/foods12061336
Chicago/Turabian StyleMohd Azmi, Syahira Izyana, Pavan Kumar, Neelesh Sharma, Awis Qurni Sazili, Sung-Jin Lee, and Mohammad Rashedi Ismail-Fitry. 2023. "Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects" Foods 12, no. 6: 1336. https://doi.org/10.3390/foods12061336
APA StyleMohd Azmi, S. I., Kumar, P., Sharma, N., Sazili, A. Q., Lee, S. -J., & Ismail-Fitry, M. R. (2023). Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods, 12(6), 1336. https://doi.org/10.3390/foods12061336