The Impact of High-Pressure Homogenization and Thermal Processing on the Functional Properties of De-Fatted Chickpea Flour Dispersion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Sample Preparation
2.2.1. Single Treatment
2.2.2. Combined Treatment
2.3. Visual Appearance
2.4. Particle Size Distribution
2.5. Rheological Properties
2.5.1. Frequency Sweep Tests
2.5.2. Steady Shear Tests
2.5.3. Temperature Sweep Tests
2.6. Thermal Properties
3. Results and Discussion
3.1. Visual Appearance Results
3.2. Particle Size Distribution Results
3.3. Frequency Sweep Tests Results
3.4. Steady Shear Tests Results
3.5. Temperature Sweep Tests Results
3.6. Differential Scanning Calorimetry Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Mesfin, N.; Belay, A.; Amare, E. Effect of Germination, Roasting, and Variety on Physicochemical, Techno-Functional, and Antioxidant Properties of Chickpea (Cicer arietinum L.) Protein Isolate Powder. Heliyon 2021, 7, e08081. [Google Scholar] [CrossRef]
- Yniestra Marure, L.M.; Núñez-Santiago, M.C.; Agama-Acevedo, E.; Bello-Perez, L.A. Starch Characterization of Improved Chickpea Varieties Grown in Mexico. Starch-Stärke 2018, 71, 1800139. [Google Scholar] [CrossRef]
- Sun, C.; Dai, L.; Liu, F.; Gao, Y. Simultaneous Treatment of Heat and High Pressure Homogenization of Zein in Ethanol–Water Solution: Physical, Structural, Thermal and Morphological Characteristics. Innov. Food Sci. Emerg. Technol. 2016, 34, 161–170. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Simpson, B.K.; Prasher, S.O.; Monpetit, D.; Malcolmson, L. Thermal Processing Effects on the Functional Properties and Microstructure of Lentil, Chickpea, and Pea Flours. Food Res. Int. 2011, 44, 2534–2544. [Google Scholar] [CrossRef]
- Jiménez-Munoz, L.; Brodkorb, A.; Gómez-Mascaraque, L.G.; Corredig, M. Effect of Heat Treatment on the Digestion Behavior of Pea and Rice Protein Dispersions and Their Blends, Studied Using the Semi-Dynamic INFOGEST Digestion Method. Food Funct. 2021, 12, 8747–8759. [Google Scholar] [CrossRef] [PubMed]
- O’ Flynn, T.D.; Hogan, S.A.; Daly, D.F.M.; O’Mahony, J.A.; McCarthy, N.A. Rheological and Solubility Properties of Soy Protein Isolate. Molecules 2021, 26, 3015. [Google Scholar] [CrossRef]
- Peyrano, F.; de Lamballerie, M.; Avanza, M.V.; Speroni, F. Rheological Characterization of the Thermal Gelation of Cowpea Protein Isolates: Effect of Pretreatments with High Hydrostatic Pressure or Calcium Addition. LWT 2019, 115, 108472. [Google Scholar] [CrossRef]
- Ingrassia, R.; Palazolo, G.G.; Wagner, J.R.; Risso, P.H. Heat Treatments of Defatted Soy Flour: Impact on Protein Structure, Aggregation, and Cold-Set Gelation Properties. Food Struct. 2019, 22, 100130. [Google Scholar] [CrossRef]
- Hou, D.; Zhao, Q.; Yousaf, L.; Xue, Y.; Shen, Q. In Vitro Starch Digestibility and Estimated Glycemic Index of Mung Bean (Vigna radiata L.) as Affected by Endogenous Proteins and Lipids, and Exogenous Heat-Processing Methods. Plant Foods Hum. Nutr. 2020, 75, 547–552. [Google Scholar] [CrossRef]
- Sui, Z.; Yao, T.; Zhao, Y.; Ye, X.; Kong, X.; Ai, L. Effects of Heat–Moisture Treatment Reaction Conditions on the Physicochemical and Structural Properties of Maize Starch: Moisture and Length of Heating. Food Chem. 2015, 173, 1125–1132. [Google Scholar] [CrossRef]
- Sudheesh, C.; Sunooj, K.V.; Alom, M.; Kumar, S.; Sajeevkumar, V.A.; George, J. Effect of Dual Modification with Annealing, Heat Moisture Treatment and Cross-Linking on the Physico-Chemical, Rheological and in Vitro Digestibility of Underutilised Kithul (Caryota urens) Starch. J. Food Meas. Charact. 2020, 14, 1557–1567. [Google Scholar] [CrossRef]
- Mesa, J.; Hinestroza-Córdoba, L.I.; Barrera, C.; Seguí, L.; Betoret, E.; Betoret, N. High Homogenization Pressures to Improve Food Quality, Functionality and Sustainability. Molecules 2020, 25, 3305. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Structure and Physicochemical Properties of Starch Affected by Dynamic Pressure Treatments: A Review. Trends Food Sci. Technol. 2021, 116, 639–654. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, D.; Li, X.; Dong, H. High-Pressure Homogenization Pretreatment before Enzymolysis of Soy Protein Isolate: The Effect of Pressure Level on Aggregation and Structural Conformations of the Protein. Molecules 2018, 23, 1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Huang, Z.; Guo, Y.; Li, B.; Yu, W.; Zhou, L.; Jiang, L.; Teng, F.; Wang, Z. Effects of High-Pressure Homogenization on Structural and Emulsifying Properties of Thermally Soluble Aggregated Kidney Bean (Phaseolus vulgaris L.) Proteins. Food Hydrocoll. 2021, 119, 106835. [Google Scholar] [CrossRef]
- Hall, A.E.; Moraru, C.I. Structure and Function of Pea, Lentil and Faba Bean Proteins Treated by High Pressure Processing and Heat Treatment. LWT 2021, 152, 112349. [Google Scholar] [CrossRef]
- Levy, R.; Okun, Z.; Shpigelman, A. High-Pressure Homogenization: Principles and Applications beyond Microbial Inactivation. Food Eng. Rev. 2020, 13, 490–508. [Google Scholar] [CrossRef]
- Alvarez, M.D.; Fuentes, R.; Olivares, M.D.; Canet, W. Effects of High Hydrostatic Pressure on Rheological and Thermal Properties of Chickpea (Cicer arietinum L.) Flour Slurry and Heat-Induced Paste. Innov. Food Sci. Emerg. Technol. 2014, 21, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Bi, C.; Wang, P.; Sun, D.; Yan, Z.; Liu, Y.; Huang, Z.; Gao, F. Effect of High-Pressure Homogenization on Gelling and Rheological Properties of Soybean Protein Isolate Emulsion Gel. J. Food Eng. 2020, 277, 109923. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Li, D.; Wang, L. Freeze-Thaw Stability and Rheological Properties of Soy Protein Isolate Emulsion Gels Induced by NaCl. Food Hydrocoll. 2022, 123, 107113. [Google Scholar] [CrossRef]
- Qiu, S.; Li, Y.; Chen, H.; Liu, Y.; Yin, L. Effects of High-Pressure Homogenization on Thermal and Electrical Properties of Wheat Starch. J. Food Eng. 2014, 128, 53–59. [Google Scholar] [CrossRef]
- Cao, J.; Li, Y.; Li, F.; Liao, X.; Hu, X.; Zhang, Y. Effect of High Hydrostatic Pressure on Chlorophyll/Soybean Protein Isolate Interaction and the Mixtures Properties. Food Hydrocoll. 2022, 128, 107555. [Google Scholar] [CrossRef]
- Amiri, A.; Sharifian, P.; Soltanizadeh, N. Application of Ultrasound Treatment for Improving the Physicochemical, Functional and Rheological Properties of Myofibrillar Proteins. Int. J. Biol. Macromol. 2018, 111, 139–147. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, J.; Zhang, Y.; Meng, S.; Wang, Q. Rheological Properties of Pea Protein Isolate-Amylose/Amylopectin Mixtures and the Application in the High-Moisture Extruded Meat Substitutes. Food Hydrocoll. 2021, 117, 106732. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.; Chi, S.; Hua, Z.; Bi, C. Rheological Properties of Peanut Protein Isolate Aggregation Suspension and Acid-Induced Gel. Int. J. Agric. Biol. Eng. 2021, 14, 226–230. [Google Scholar] [CrossRef]
- Anvari, M.; Joyner (Melito), H.S. Effect of Formulation on Structure-Function Relationships of Concentrated Emulsions: Rheological, Tribological, and Microstructural Characterization. Food Hydrocoll. 2017, 72, 11–26. [Google Scholar] [CrossRef]
- Wang, B.; Liu, F.; Luo, S.; Li, P.; Mu, D.; Zhao, Y.; Zhong, X.; Jiang, S.; Zheng, Z. Effects of High Hydrostatic Pressure on the Properties of Heat-Induced Wheat Gluten Gels. Food Bioprocess Technol. 2018, 12, 220–227. [Google Scholar] [CrossRef]
- Song, X.; Zhou, C.; Fu, F.; Chen, Z.; Wu, Q. Effect of High-Pressure Homogenization on Particle Size and Film Properties of Soy Protein Isolate. Ind. Crops Prod. 2013, 43, 538–544. [Google Scholar] [CrossRef]
- Ribotta, P.D.; Colombo, A.; Rosell, C.M. Enzymatic Modifications of Pea Protein and Its Application in Protein–Cassava and Corn Starch Gels. Food Hydrocoll. 2012, 27, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.Y.J.; Moraru, C.I. High-Pressure Processing of Pea Protein–Starch Mixed Systems: Effect of Starch on Structure Formation. J. Food Process Eng. 2020, 43, e13352. [Google Scholar] [CrossRef]
- Wang, W.; Shen, M.; Jiang, L.; Song, Q.; Liu, S.; Xie, J. Influence of Mesona Blumes Polysaccharide on the Gel Properties and Microstructure of Acid-Induced Soy Protein Isolate Gels. Food Chem. 2020, 313, 126125. [Google Scholar] [CrossRef] [PubMed]
- WANG, Q.; LI, L. Effects of Molecular Weight on Thermoreversible Gelation and Gel Elasticity of Methylcellulose in Aqueous Solution. Carbohydr. Polym. 2005, 62, 232–238. [Google Scholar] [CrossRef]
- Onwulata, C.I.; Tunick, M.H.; Thomas-Gahring, A.E. Pasting and Extrusion Properties of Mixed Carbohydrate and Whey Protein Isolate Matrices. J. Food Process. Preserv. 2013, 38, 1577–1591. [Google Scholar] [CrossRef]
- Ding, Y.; Cheng, J.; Lin, Q.; Wang, Q.; Wang, J.; Yu, G. Effects of Endogenous Proteins and Lipids on Structural, Thermal, Rheological, and Pasting Properties and Digestibility of Adlay Seed (Coix lacryma-jobi L.) Starch. Food Hydrocoll. 2021, 111, 106254. [Google Scholar] [CrossRef]
- Li, J.; Yang, N.; Tang, J.; Gui, Y.; Zhu, Y.; Guo, L.; Cui, B. The Characterization of Structural, Thermal, Pasting and Gel Properties of the Blends of Laccase- and Tyrosinase-Treated Potato Protein and Starch. LWT 2022, 153, 112463. [Google Scholar] [CrossRef]
Concentration | 2% | 4% | 8% | 12% | 18% | 24% |
---|---|---|---|---|---|---|
L* | 80.00 ± 2.94 a | 73.33 ± 2.49 b | 66.00 ± 1.63 c | 65.33 ± 1.70 c | 65.33 ± 0.94 c | 63.67 ± 3.09 c |
a* | 10.00 ± 0.82 c | 19.33 ± 0.47 a | 18.00 ± 2.16 ab | 15.00 ± 1.41 b | 15.33 ± 1.25 b | 17.00 ± 1.63 ab |
b* | 55.00 ± 1.63 a | 49.67 ± 2.62 a | 37.67 ± 1.70 bc | 33.67 ± 2.05 c | 39.33 ± 3.40 bc | 40.00 ± 2.16 b |
Sample | Non4% | HPH | HT | HPH-HT |
---|---|---|---|---|
(μm) | 44.897 ± 0.043 c | 28.410 ± 0.063 d | 61.489 ± 0.038 a | 51.634 ± 0.116 b |
PDI | 0.1256 ± 0.0025 a | 0.1140 ± 0.0009 b | 0.0185 ± 0.0002 d | 0.0259 ± 0.0002 c |
Sample | G′ = K′·ωn′ | G″ = K″·ωn″ | ||||
---|---|---|---|---|---|---|
K′ | n′ | R2 | K″ | n″ | R2 | |
Pa·sn | % | Pa·sn | % | |||
Non4% | 0.001 ± 0.000 d | 1.941 ± 0.054 ab | 0.996 | 0.000 ± 0.000 d | 1.812 ± 0.038 d | 0.998 |
Non8% | 0.001 ± 0.000 d | 2.086 ± 0.022 a | 0.999 | 0.002 ± 0.001 d | 1.475 ± 0.071 abc | 0.987 |
Non12% | 0.001 ± 0.000 d | 2.031 ± 0.019 ab | 1.000 | 0.001 ± 0.000 d | 1.665 ± 0.037 a | 0.997 |
HPH4% | 0.001 ± 0.000 d | 1.830 ± 0.052 ab | 0.996 | 0.001 ± 0.000 d | 1.647 ± 0.028 a | 0.999 |
HPH8% | 0.001 ± 0.000 d | 1.939 ± 0.026 ab | 0.999 | 0.002 ± 0.001 d | 1.397 ± 0.060 bcd | 0.990 |
HPH12% | 0.001 ± 0.000 d | 1.957 ± 0.018 ab | 1.000 | 0.002 ± 0.000 d | 1.424 ± 0.040 ab | 0.996 |
HT4% | 0.002 ± 0.000 d | 1.995 ± 0.011 b | 1.000 | 0.004 ± 0.001 d | 1.357 ± 0.041 cd | 0.994 |
HT8% | 33.256 ± 0.509 c | 0.110 ± 0.004 c | 0.984 | 0.745 ± 0.174 cd | 0.690 ± 0.045 e | 0.957 |
HT12% | 272.295 ± 4.587 b | 0.080 ± 0.004 c | 0.962 | 18.680 ± 0.508 b | 0.300 ± 0.006 f | 0.995 |
HPH-HT4% | 0.001 ± 0.000 d | 1.845 ± 0.044 ab | 0.997 | 0.003 ± 0.001 d | 1.385 ± 0.037 cd | 0.996 |
HPH-HT8% | 49.442 ± 2.882 c | 0.190 ± 0.015 c | 0.926 | 3.653 ± 0.207 c | 0.411 ± 0.013 e | 0.989 |
HPH-HT12% | 410.138 ± 1.341 a | 0.110 ± 0.001 c | 0.999 | 37.993 ± 0.815 a | 0.255 ± 0.005 f | 0.995 |
Sample | Low Shear Speed | High Shear Speed | ||||
---|---|---|---|---|---|---|
K | n | R2 | K | n | R2 | |
Pa·sn | % | Pa·sn | % | |||
Non4% | 0.001 ± 0.000 e | −0.062 ± 0.005 a | 0.960 | 2.042 × 10−5 ± 0.000 e | 0.731 ± 0.021 a | 0.996 |
Non8% | 0.006 ± 0.000 e | −0.182 ± 0.006 ab | 0.989 | 0.000 ± 0.000 e | 0.386 ± 0.036 b | 0.967 |
Non12% | 0.007 ± 0.000 e | −0.195 ± 0.014 cd | 0.962 | 0.000 ± 0.000 e | 0.412 ± 0.040 b | 0.963 |
HPH4% | 0.006 ± 0.000 e | −0.175 ± 0.012 bc | 0.960 | 0.000 ± 0.000 e | 0.380 ± 0.029 b | 0.967 |
HPH8% | 0.011 ± 0.000 e | −0.235 ± 0.011 cd | 0.981 | 0.001 ± 0.000 e | 0.302 ± 0.024 b | 0.968 |
HPH12% | 0.017 ± 0.010 e | −0.270 ± 0.010 cd | 0.987 | 0.001 ± 0.000 e | 0.295 ± 0.034 b | 0.950 |
HT4% | 0.052 ± 0.004 e | −0.360 ± 0.018 d | 0.965 | 0.052 ± 0.004 e | −0.360 ± 0.018 c | 0.965 |
HT8% | 4.604 ± 0.278 d | −0.733 ± 0.021 e | 0.992 | 4.604 ± 0.278 d | −0.733 ± 0.021 d | 0.992 |
HT12% | 31.627 ± 1.871 b | 0.844 ± 0.021 e | 0.994 | 31.627 ± 1.871 b | 0.844 ± 0.021 e | 0.994 |
HPH-HT4% | 0.049 ± 0.003 e | −0.348 ± 0.019 d | 0.957 | 0.049 ± 0.003 e | −0.348 ± 0.019 c | 0.957 |
HPH-HT8% | 8.134 ± 0.468 c | −0.776 ± 0.020 e | 0.994 | 8.134 ± 0.468 c | −0.776 ± 0.020 de | 0.994 |
HPH-HT12% | 53.258 ± 3.026 a | −0.776 ± 0.020 e | 0.994 | 53.258 ± 3.026 a | −0.776 ± 0.020 de | 0.994 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Zhang, J.; Zhang, G.; Gao, F.; Bi, C. The Impact of High-Pressure Homogenization and Thermal Processing on the Functional Properties of De-Fatted Chickpea Flour Dispersion. Foods 2023, 12, 1513. https://doi.org/10.3390/foods12071513
Huang Z, Zhang J, Zhang G, Gao F, Bi C. The Impact of High-Pressure Homogenization and Thermal Processing on the Functional Properties of De-Fatted Chickpea Flour Dispersion. Foods. 2023; 12(7):1513. https://doi.org/10.3390/foods12071513
Chicago/Turabian StyleHuang, Zhigang, Jiayi Zhang, Guoliang Zhang, Fei Gao, and Chonghao Bi. 2023. "The Impact of High-Pressure Homogenization and Thermal Processing on the Functional Properties of De-Fatted Chickpea Flour Dispersion" Foods 12, no. 7: 1513. https://doi.org/10.3390/foods12071513
APA StyleHuang, Z., Zhang, J., Zhang, G., Gao, F., & Bi, C. (2023). The Impact of High-Pressure Homogenization and Thermal Processing on the Functional Properties of De-Fatted Chickpea Flour Dispersion. Foods, 12(7), 1513. https://doi.org/10.3390/foods12071513