Hot Air Impingement Drying Enhanced Drying Characteristics and Quality Attributes of Ophiopogonis Radix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Drying Characteristics
2.3.1. Moisture Ratio
2.3.2. Drying Rate
2.3.3. Effective Moisture Diffusivity
2.3.4. Activation Energy
2.4. Color Measurements
2.5. Total Polysaccharides Content
2.6. Total Flavonoids Content
2.7. Rehydration Ratio
2.8. Microstructure
2.9. ANN Modeling
2.10. Data Analysis
3. Results and Discussion
3.1. Drying Kinetics
3.2. Drying Rate
3.3. Effective Moisture Diffusivity and Activation Energy
3.4. Color Determination
3.5. Total Polysaccharides Content
3.6. Total Flavonoids Content
3.7. Rehydration Ratio
3.8. ANN Modeling Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hung, T.M.; Thu, C.V.; Dat, N.T.; Ryoo, S.W.; Lee, J.H.; Kim, J.C.; Na, M.; Jung, H.J.; Bae, K.; Min, B.S. Homoisoflavonoid derivatives from the roots of Ophiopogon japonicus and their in vitro anti-inflammation activity. Bioorg. Med. Chem. Lett. 2010, 20, 2412–2416. [Google Scholar] [CrossRef]
- Olaleye, O.E.; Niu, W.; Du, F.F.; Wang, F.Q.; Xu, F.; Pintusophon, S.; Lu, J.L.; Yang, J.L.; Li, C. Multiple circulating saponins from intravenous ShenMai inhibit OATP1Bs in vitro: Potential joint precipitants of drug interactions. Acta Pharmacol. Sin. 2019, 40, 833–849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.W.; Chen, D.S.; Deng, C.S.; Wang, Q.; Zhu, W.; Lin, L. Evaluation of anti-inflammatory activity of compounds isolated from the rhizome of Ophiopogon japonicas. BMC Complement. Altern. Med. 2017, 17, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielinska, S.; Staniszewska, I.; Cybulska, J.; Zdunek, A.; Szymanska-Chargot, M.; Zielinska, D.; Liu, Z.L.; Pan, Z.; Xiao, H.W.; Zielinska, M. Modification of the cell wall polysaccharides and phytochemicals of okra pods by cold plasma treatment. Food Hydrocoll. 2022, 131, 107763. [Google Scholar] [CrossRef]
- Sadeghi, M.; Mirzabeigi Kesbi, O.; Mireei, S.A. Mass transfer characteristics during convective, microwave and combined microwave-convective drying of lemon slices. J. Sci. Food Agric. 2013, 93, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Zielinska, M.; Sadowski, P.; Blaszczak, W. Combined hot air convective drying and microwave vacuum drying of blueberries (Vaccinium corymbosum L.): Drying kinetics and quality characteristics. Dry. Technol. 2016, 34, 665–684. [Google Scholar] [CrossRef]
- Xiao, Y.; Huang, D.; Wang, H.; Cui, J.; Li, L.; Wan, H. Effects of drying methods on the quality of fresh Liriope spicata. Asia-Pac. Tradit. Med. 2021, 17, 54–57. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=YTCT202109015&DbName=CJFQ2021 (accessed on 3 January 2023).
- Wang, F.; Shang, Z.P.; Ma, Z.G.; Liu, S.Y.; Wang, Z.J.; Zhang, J.Y.; Lu, J.Q. Influence of different drying methods on steroidal saponins and homoisoflavonoids in Ophiopogon japonicus. China J. Chin. Mater. Med. 2016, 41, 4393–4399. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=ZGZY201623017&DbName=CJFQ2016 (accessed on 5 January 2023).
- Sharma, G.P.; Prasad, S. Optimization of process parameters for microwave drying of garlic cloves. J. Food Eng. 2006, 75, 441–446. [Google Scholar] [CrossRef]
- Liu, Z.L.; Xie, L.; Zielinska, M.; Pan, Z.; Deng, L.Z.; Zhang, J.S.; Gao, L.; Wang, S.Y.; Zheng, Z.A.; Xiao, H.W. Improvement of drying efficiency and quality attributes of blueberries using innovative far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD). Innov. Food Sci. Emerg. Technol. 2022, 77, 102948. [Google Scholar] [CrossRef]
- Kim, H.A.; Kim, S.J. Moisture and thermal permeability of the hollow textured PET imbedded woven fabrics for high emotional garments. Fiber. Polym. 2016, 17, 427–438. [Google Scholar] [CrossRef]
- Xiao, H.W.; Pang, C.L.; Wang, L.H.; Bai, J.W.; Yang, W.X.; Gao, Z.J. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosyst. Eng. 2010, 105, 233–240. [Google Scholar] [CrossRef]
- Xiao, H.W.; Bai, J.W.; Xie, L.; Sun, S.W.; Gao, Z.J. Thin-layer air impingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered. Food Bioprod. Process. 2015, 94, 581–591. [Google Scholar] [CrossRef]
- Ai, Z.; Mowafy, S.; Liu, Y. Comparative analyses of five drying techniques on drying attributes, physicochemical aspects, and flavor components of Amomum villosum fruits. LWT-Food Sci. Technol. 2022, 154, 112879. [Google Scholar] [CrossRef]
- Wang, J.; Fang, X.M.; Mujumdar, A.S.; Qian, J.Y.; Zhang, Q.; Yang, X.H.; Liu, Y.H.; Gao, Z.J.; Xiao, H.W. Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chem. 2017, 220, 145–152. [Google Scholar] [CrossRef]
- Deng, L.Z.; Pan, Z.L.; Mujumdar, A.S.; Zhao, J.H.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. High-humidity hot air impingement blanching (HHAIB) enhances drying quality of apricots by inactivating the enzymes, reducing drying time and altering cellular structure. Food Control 2019, 96, 104–111. [Google Scholar] [CrossRef]
- Liu, Z.L.; Bai, J.W.; Yang, W.X.; Wang, J.; Deng, L.Z.; Yu, X.L.; Zheng, Z.A.; Gao, Z.J.; Xiao, H.W. Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets. Dry. Technol. 2019, 37, 1251–1264. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Yang, W.X.; Zhang, Q.; Zheng, Z.A.; Wu, M.; Xiao, H.W. Hot air impingement drying kinetics and quality attributes of orange peel. J. Food Process Preserv. 2020, 44, e14294. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.L.; Vidyarthi, S.K.; Wang, Q.H.; Gao, L.; Li, B.R.; Wei, Q.; Liu, Y.H.; Xiao, H.W. Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes. Dry. Technol. 2021, 39, 418–431. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Szumny, A.; Kaveh, M.; Sharabiani, V.R.; Kumar, A.; Shimizu, S. Parboiled paddy drying with different dryers: Thermodynamic and quality properties, mathematical modeling using ANNs assessment. Foods 2020, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, G.; Yıldız, C. The prediction of seedy grape drying rate using a neural network method. Comput. Electron. Agric. 2011, 75, 132–138. [Google Scholar] [CrossRef]
- Murthy, T.P.K.; Manohar, B. Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network. J. Food Sci. Technol.-Mysore 2014, 51, 3712–3721. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, M.B.; Aktaş, M.; Şevik, S.; Khanlari, A. Modeling of a convective-infrared kiwifruit drying process. Int. J. Hydrogen Energy 2017, 42, 18005–18013. [Google Scholar] [CrossRef]
- Joardder, M.U.H.; Kumar, C.; Karim, M.A. Food structure: Its formation and relationships with other properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1190–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association of Official Analytical Chemists (No. 934.06). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China; Part 1; China Medical Science Press: Beijing, China, 2020. [Google Scholar]
- Liu, Z.L.; Wei, Z.Y.; Vidyarthi, S.K.; Pan, Z.; Zielinska, M.; Deng, L.Z.; Wang, Q.H.; Wei, Q.; Xiao, H.W. Pulsed vacuum drying of kiwifruit slices and drying process optimization based on artificial neural network. Dry. Technol. 2020, 39, 405–417. [Google Scholar] [CrossRef]
- Hossain, M.A.; Gottschalk, K. Effect of moisture content, storage temperature and storage period on colour, ascorbic acid, lycopene and total flavonoids of dried tomato halves. Int. J. Food Sci. Technol. 2009, 44, 1245–1253. [Google Scholar] [CrossRef]
- Aral, S.; Beşe, A.V. Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 2016, 210, 577–584. [Google Scholar] [CrossRef]
- Ju, H.Y.; Zhao, S.H.; Mujumdar, A.S.; Fang, X.M.; Gao, Z.J.; Zheng, Z.A.; Xiao, H.W. Energy efficient improvements in hot air drying by controlling relative humidity based on Weibull and Bi-Di models. Food Bioprod. Process. 2018, 111, 20–29. [Google Scholar] [CrossRef]
- Ai, Z.; Xiao, H.; Zhang, Y.; Lei, D.; Peng, Z.; Li, M.; Liu, Y. Effect of hot air impingement drying on drying behavior, volatile components profile, shell burst ratio, flavonoid contents, microstructure of Amomum villosum fruits. Dry. Technol. 2023, 41, 107–121. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Rhim, J.W.; Hong, S.I. Effect of water activity and temperature on the color change of red pepper (Capsicum annuum, L.) powder. Food Sci. Biotechnol. 2011, 20, 215–222. [Google Scholar] [CrossRef]
- Wang, J.; Law, C.L.; Nema, P.K.; Zhao, J.H.; Liu, Z.L.; Deng, L.Z.; Gao, Z.J.; Xiao, H.W. Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. J. Food Eng. 2018, 224, 129–138. [Google Scholar] [CrossRef]
- Chin, S.; Law, C. Maximizing the retention of ganoderic acids and water-soluble polysaccharides content of using two-stage dehydration method. Dry. Technol. 2016, 32, 644–656. [Google Scholar] [CrossRef]
- Xie, L.; Zheng, Z.A.; Mujumdar, A.S.; Fang, X.M.; Wang, J.; Zhang, Q.; Ma, Q.; Xiao, H.W.; Liu, Y.H.; Gao, Z.J. Pulsed vacuum drying (PVD) of wolfberry: Drying kinetics and quality attributes. Dry. Technol. 2018, 36, 1501–1514. [Google Scholar] [CrossRef]
- Liu, X.M.; Li, P.X.; Gan, L.X.; Jin, Y.; Huang, Y.; Jiang, H.B.; Jin, H. Optimization on extraction and enrichment technology of total flavonoids and total saponins from fibrous roots of Ophiopogon japonicas. Nat. Prod. Res. Dev. 2020, 32, 1285–1294. [Google Scholar] [CrossRef]
- Durović, S.; Micić, D.; Pezo, L.; Radić, D.; Bazarnova, J.G.; Smyataksya, Y.A.; Blagojević, S. Influence of the mowing and drying on the quality of the peppermint (Mentha x piperita L.) essential oil: Chemical profile, thermal properties, and biological activity. Ind. Crops Prod. 2022, 177, 114492. [Google Scholar] [CrossRef]
Parameter | Condition | Linear Regression Equation | R2 | Deff (10−10 m2/s) | Ea (kJ/Mol) |
---|---|---|---|---|---|
Temperature (°C) | 50 | lnMR = −6.4 × 10−5t + 0.0695 | 0.9600 | 1.62 | 48.11 |
60 | lnMR = −1.36 × 10−4t + 0.1572 | 0.9165 | 3.44 | ||
70 | lnMR = −1.81 × 10−4t + 0.1303 | 0.9463 | 4.58 | ||
Air velocity (m/s) | 6 | lnMR = −9.8 × 10−3t + 0.1172 | 0.9489 | 2.48 | |
9 | lnMR = −1.24 × 10−4t + 0.1347 | 0.9377 | 3.14 | ||
12 | lnMR = −1.36 × 10−4t + 0.1572 | 0.9165 | 3.44 | ||
15 | lnMR = −1.12 × 10−4t + 0.1174 | 0.9555 | 2.84 |
Parameter | Condition | L* | a* | b* | ΔE |
---|---|---|---|---|---|
Fresh | - | 87.60 ± 0.08 a | −0.46 ± 0.03 d | 7.60 ± 0.03 e | - |
Temperature (°C) | 50 | 84.77 ± 0.08 b | 0.44 ± 0.03 c | 8.71 ± 0.10 d | 3.17 ± 0.10 f |
60 | 80.37 ± 0.16 e | 0.89 ± 0.03 a | 12.00 ± 0.21 b | 8.57 ± 0.24 c | |
70 | 78.28 ± 0.04 f | 0.71 ± 0.09 b | 14.13 ± 0.18 a | 11.44 ± 0.14 b | |
Air velocity (m/s) | 6 | 77.12 ± 0.31 g | 1.00 ± 0.13 a | 14.44 ± 0.29 a | 12.59 ± 0.43 a |
9 | 83.24 ± 0.18 c | 0.47 ± 0.04 c | 10.45 ± 0.23 c | 5.29 ± 0.28 e | |
12 | 80.37 ± 0.16 e | 0.89 ± 0.03 a | 12.00 ± 0.21 b | 8.57 ± 0.24 c | |
15 | 82.38 ± 0.10 d | 0.72 ± 0.04 b | 10.66 ± 0.12 c | 6.16 ± 0.15 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Wang, S.; Zhang, C.; Wu, M.; Cui, D.; Fu, X.; Gao, L.; Li, A.; Wei, Q.; Liu, Z. Hot Air Impingement Drying Enhanced Drying Characteristics and Quality Attributes of Ophiopogonis Radix. Foods 2023, 12, 1441. https://doi.org/10.3390/foods12071441
Zheng Z, Wang S, Zhang C, Wu M, Cui D, Fu X, Gao L, Li A, Wei Q, Liu Z. Hot Air Impingement Drying Enhanced Drying Characteristics and Quality Attributes of Ophiopogonis Radix. Foods. 2023; 12(7):1441. https://doi.org/10.3390/foods12071441
Chicago/Turabian StyleZheng, Zhian, Shanyu Wang, Chujie Zhang, Min Wu, Dezhou Cui, Xiaosong Fu, Lei Gao, Aichao Li, Qing Wei, and Ziliang Liu. 2023. "Hot Air Impingement Drying Enhanced Drying Characteristics and Quality Attributes of Ophiopogonis Radix" Foods 12, no. 7: 1441. https://doi.org/10.3390/foods12071441
APA StyleZheng, Z., Wang, S., Zhang, C., Wu, M., Cui, D., Fu, X., Gao, L., Li, A., Wei, Q., & Liu, Z. (2023). Hot Air Impingement Drying Enhanced Drying Characteristics and Quality Attributes of Ophiopogonis Radix. Foods, 12(7), 1441. https://doi.org/10.3390/foods12071441