Combined Effects of Cold and Hot Air Drying on Physicochemical Properties of Semi-Dried Takifugu obscurus Fillets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Drying Conditions
2.3. Determination of pH
2.4. Determination of Texture
2.5. LF-NMR Analysis
2.6. Determination of Thiobarbituric Acid Value
2.7. Determination of Microstructure
2.8. Protein Component Analysis
2.9. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis Analysis
2.10. Determination of Denaturation Temperature
2.11. Statistical Analysis
3. Results and Discussion
3.1. Fillet pH
3.2. Fillet Texture
3.3. LF-NMR of Fillets
3.4. Oxidation of Fillet Lipids
3.5. Fillet Microstructure
3.6. Fillet Protein Composition
3.7. Degradation of Fillet Proteins
3.8. Thermal Stability of Fillet Proteins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.; Yang, N.; Fisk, I.D.; Li, J.; Liu, Y.; Wang, W. Impact of cooking on the sensory perception and volatile compounds of Takifugu rubripes. Food Chem. 2022, 371, 131165. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Cai, D.; Zhang, R.; Zhu, Y.; Zhang, D.; Qiao, L.; Liu, Y. Mass spectrometry-based metabolomics approach to reveal differential compounds in pufferfish soups: Flavor, nutrition, and safety. Food Chem. 2019, 301, 125261. [Google Scholar] [CrossRef] [PubMed]
- China Fishery Bureau. China Fishery Statistical Yearbook; Chinese Agriculture Express: Beijing, China, 2022; pp. 22–25. (In Chinese) [Google Scholar]
- Yang, F.; Jing, D.; Yu, D.; Xia, W.; Jiang, Q.; Xu, Y.; Yu, P. Differential roles of ice crystal, endogenous proteolytic activities and oxidation in softening of obscure pufferfish (Takifugu obscurus) fillets during frozen storage. Food Chem. 2019, 278, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhao, Y.; Shi, Q.; Wu, X.; Fang, Z. Water distribution, physicochemical and microstructural properties of scallop adductors as affected by different drying methods. J. Food Compos. Anal. 2023, 115, 104966. [Google Scholar] [CrossRef]
- Rasul, M.G.; Majumdar, B.C.; Afrin, F.; Bapary, M.A.J.; Shah, A.K.M.A. Biochemical, Microbiological, and Sensory Properties of Dried Silver Carp (Hypophthalmichthys molitrix) Influenced by Various Drying Methods. Fishes 2018, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Cheng, X.; Zang, M.; Wang, L.; Li, X.; Yue, Y.; Liu, B. Insights into the characteristics and molecular transformation of lipids in Litopenaeus vannamei during drying from combined lipidomics. J. Food Compos. Anal. 2022, 114, 104809. [Google Scholar] [CrossRef]
- Aykın-Dinçer, E.; Erbaş, M. Cold dryer as novel process for producing a minimally processed and dried meat. Innov. Food Sci. Emerg. Technol. 2019, 57, 102113. [Google Scholar] [CrossRef]
- Rasul, M.; Kabir, I.E.; Yuan, C.; Shah, A.K.M.A. Effects of drying methods on physicochemical, microbiological and sensory properties of torpedo scad (Megalaspis cordyla). J. Microbiol. Biotechnol. Food Sci. 2021, 10, e2796. [Google Scholar] [CrossRef]
- Zhao, B.; Zhou, H.; Zhang, S.; Pan, X.; Li, S.; Zhu, N.; Wu, Q.; Wang, S.; Qiao, X.; Chen, W. Changes of protein oxidation, lipid oxidation and lipolysis in Chinese dry sausage with different sodium chloride curing salt content. Food Sci. Hum. Wellness 2020, 9, 328–337. [Google Scholar] [CrossRef]
- Rasul, M.G.; Yuan, C.; Shah, A.K.M.A. Chemical and Microbiological Hazards of Dried Fishes in Bangladesh: A Food Safety Concern. Food Nutr. Sci. 2020, 11, 523–539. [Google Scholar] [CrossRef]
- Kalem, I.K.; Bhat, Z.F.; Kumar, S.; Desai, A. Terminalia arjuna: A novel natural preservative for improved lipid oxidative stability and storage quality of muscle foods. Food Sci. Hum. Wellness 2017, 6, 167–175. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, M.; Li, Y.; Kong, B.; Liu, Q.; Sun, F.; Yu, W.; Xia, X. Effect of hot air gradient drying on quality and appearance of beef jerky. LWT 2021, 150, 111974. [Google Scholar] [CrossRef]
- Fu, X.; Lin, Q.; Xu, S.; Wang, Z. Effect of drying methods and antioxidants on the flavor and lipid oxidation of silver carp slices. LWT 2015, 61, 251–257. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Pan, N.; Liu, S.; Su, Y.; Xiao, M.; Shi, W.; Liu, Z. The Effects of Five Different Drying Methods on the Quality of Semi-dried Takifugu obscurus Fillets. LWT 2022, 161, 113340. [Google Scholar] [CrossRef]
- Fan, H.; Luo, Y.; Yin, X.; Bao, Y.; Feng, L. Biogenic amine and quality changes in lightly salt- and sugar-salted black carp (Mylopharyngodon piceus) fillets stored at 4 °C. Food Chem. 2014, 159, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, Y.; Lu, S.; Wang, J.; Fu, H.; Gu, B.; Lyu, B.; Wang, Q. Changes in proteolysis, protein oxidation, flavor, color and texture of dry-cured mutton ham during storage. LWT 2021, 149, 111860. [Google Scholar] [CrossRef]
- Wang, X.; Xie, X.; Zhang, T.; Zheng, Y.; Guo, Q. Effect of edible coating on the whole large yellow croaker (Pseudosciaena crocea) after a 3-day storage at −18 °C: With emphasis on the correlation between water status and classical quality indices. LWT 2022, 163, 113514. [Google Scholar] [CrossRef]
- Ying, W.; Ya-Ting, J.; Jin-Xuan, C.; Yin-Ji, C.; Yang-Ying, S.; Xiao-Qun, Z.; Dao-Dong, P.; Chang-Rong, O.; Ning, G. Study on lipolysis-oxidation and volatile flavour compounds of dry-cured goose with different curing salt content during production. Food Chem. 2016, 190, 33–40. [Google Scholar] [CrossRef]
- Sigurgisladottir, S.; Sigurdardottir, M.S.; Torrissen, O.; Vallet, J.L.; Hafsteinsson, H. Effects of different salting and smoking processes on the microstructure, the texture and yield of Atlantic salmon (Salmo salar) fillets. Food Res. Int. 2000, 33, 847–855. [Google Scholar] [CrossRef]
- Yu, D.; Feng, T.; Jiang, Q.; Yang, F.; Gao, P.; Xu, Y.; Xia, W. The change characteristics in moisture distribution, physical properties and protein denaturation of slightly salted silver carp (Hypophthalmichthys molitrix) fillets during cold/hot air drying processing. LWT 2021, 137, 110466. [Google Scholar] [CrossRef]
- Setyabrata, D.; Kim, Y.H.B. Impacts of aging/freezing sequence on microstructure, protein degradation and physico-chemical properties of beef muscles. Meat Sci. 2019, 151, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Wu, B.; Fu, B.; Jiang, P.; Liu, Y.; Qi, L.; Du, M.; Dong, X. Enzyme treatment-induced tenderization of puffer fish meat and its relation to physicochemical changes of myofibril protein. LWT 2022, 155, 112891. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Limbu, S.M.; Zhao, S.H.; Chen, L.Q.; Luo, Y.; Zhang, M.L.; Qiao, F.; Du, Z.Y. Dietary l-carnitine supplementation recovers the increased pH and hardness in fillets caused by high-fat diet in Nile tilapia (Oreochromis niloticus). Food Chem. 2022, 382, 132367. [Google Scholar] [CrossRef] [PubMed]
- Delbarre-Ladrat, C.; Chéret, R.; Taylor, R.; Verrez-Bagnis, V. Trends in Postmortem Aging in Fish: Understanding of Proteolysis and Disorganization of the Myofibrillar Structure. Crit. Rev. Food Sci. Nutr. 2006, 46, 409–421. [Google Scholar] [CrossRef]
- Yu, D.; Jiang, Q.; Xu, Y.; Xia, W. The shelf life extension of refrigerated grass carp (Ctenopharyngodon idellus) fillets by chitosan coating combined with glycerol monolaurate. Int. J. Biol. Macromol. 2017, 101, 448–454. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Y.; Wang, Y.; Yue, J.; Liu, Z.; Zhong, Y.; Zhao, Y.; Yang, H. Drying-induced protein and microstructure damages of squid fillets affected moisture distribution and rehydration ability during rehydration. J. Food Eng. 2014, 123, 23–31. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Miranda, M.; Clavería, R.; Quispe, I.; Vergara, J.; Uribe, E.; Paez, H.; Di Scala, K. Effect of air temperature on drying kinetics and quality characteristics of osmo-treated jumbo squid (Dosidicus gigas). LWT 2011, 44, 16–23. [Google Scholar] [CrossRef]
- Ortiz, J.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Ah-Hen, K.; Puente-Diaz, L.; Zura-Bravo, L.; Aubourg, S. Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chem. 2013, 139, 162–169. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, Y.; Li, D.; Luo, Y.; Hong, H. Dynamics of water mobility, salt diffusion and hardness changes in bighead carp fillets during low-salting. LWT 2021, 135, 110033. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, J.; Zheng, J.; Li, X.; Shao, J.H. The study of protein conformation and hydration characteristics of meat batters at various phase transition temperatures combined with Low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy. Food Chem. 2019, 280, 263–269. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, Y.; Xu, J.; Li, Z.; Xue, C. Effects of high-temperature treatment (≥100 °C) on Alaska Pollock (Theragra chalcogramma) surimi gels. J. Food Eng. 2013, 115, 115–120. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, T.; Yao, L.; Wang, X.; Song, Y.; Wang, H.; Wang, H.; Tan, M. Use of low-field-NMR and MRI to characterize water mobility and distribution in pacific oyster (Crassostrea gigas) during drying process. Dry Technol. 2018, 36, 630–636. [Google Scholar] [CrossRef]
- Barbosa, V.; Camacho, C.; Oliveira, H.; Anacleto, P.; Maulvault, A.L.; Delgado, I.; Ventura, M.; Dias, J.; Ribeiro, L.; Pousão-Ferreira, P.; et al. Physicochemical properties of iodine and selenium biofortified Sparus aurata and Cyprinus carpio during frozen storage. Food Chem. 2022, 397, 133780. [Google Scholar] [CrossRef] [PubMed]
- Díaz, P.; Linares, M.B.; Egea, M.; Auqui, S.M.; Garrido, M.D. TBARs distillation method: Revision to minimize the interference from yellow pigments in meat products. Meat Sci. 2014, 98, 569–573. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Ding, Y.; Ke, Z.; Zhou, X.; Zhang, J. Diversity and succession of the microbial community and its correlation with lipid oxidation in dry-cured black carp (Mylopharyngodon piceus) during storage. Food Microbiol. 2021, 98, 103686. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, B.; Cao, J.; Li, C.; Duan, Z. The impacts of vacuum microwave drying on osmosis dehydration of tilapia fillets. J. Food Process Eng. 2019, 42, e12956. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Zhang, M.; Bhandari, B.; Zhang, W. Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology. Ultrason. Sonochem. 2018, 44, 368–379. [Google Scholar] [CrossRef]
- Zhao, C.C.; Benjakul, S.; Eun, J.B. Changes in protein compositions and textural properties of the muscle of skate fermented at 10 °C. Int. J. Food Prop. 2019, 22, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Zhang, Z.; Tang, X.; Yu, D.; Jiang, Q.; Gao, P.; Yang, F. Effects of acidification and sterilisation on the quality of channel catfish (Ietalurus punctatus) fillets. Int. J. Food Sci. Technol. 2022, 57, 7296–7306. [Google Scholar] [CrossRef]
- Han, M.; Wang, P.; Xu, X.; Zhou, G. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Int. Food Res. J. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
- Wei, H.; Rasul, M.G.; Sun, Z.; Yang, W.; Huang, T.; Yamashita, T.; Takaki, K.; Yuan, C. Study on nucleotide, myofibrillar protein, biochemical properties and microstructure of freeze-dried Scallop striated muscle during storage and rehydration. Food Res. Int. 2022, 158, 111461. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Han, J.; Gao, P.; Yu, L.; Xu, Y.; Xia, W. Effect of heating temperature and duration on the texture and protein composition of Bighead Carp (Aristichthys nobilis) muscle. Int. J. Food Prop. 2018, 21, 2110–2120. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Han, M.; Bai, Y.; Xu, X.; Zhou, G. Combination of high pressure and heat on the gelation of chicken myofibrillar proteins. Innov. Food Sci. Emerg. Technol. 2019, 52, 122–130. [Google Scholar] [CrossRef]
- Wang, L.; Shi, L.; Jiao, C.; Wu, W.; Li, X.; Wang, J.; Qiao, Y.; Liao, L.; Ding, A.; Xiong, G.; et al. Effects of different sugars on the thermal properties and microstructures of Mandarin fish (Siniperca chuats). LWT 2019, 99, 84–88. [Google Scholar] [CrossRef]
- Bendall, J.R.; Restall, D.J. The cooking of single myofibres, small myofibre bundles and muscle strips from beef M. psoas and M. sternomandibularis muscles at varying heating rates and temperatures. Meat Sci. 1983, 8, 93–117. [Google Scholar] [CrossRef]
- Cao, M.; Cao, A.; Wang, J.; Cai, L.; Regenstein, J.; Ruan, Y.; Li, X. Effect of magnetic nanoparticles plus microwave or far-infrared thawing on protein conformation changes and moisture migration of red seabream (Pagrus major) fillets. Food Chem. 2018, 266, 498–507. [Google Scholar] [CrossRef]
Drying Methods | Hardness (g) | Springiness | Chewiness (g) | Resilience |
---|---|---|---|---|
F | 133.60 ± 23.55 b | 0.91 ± 0.02 ab | 53.57 ± 8.05 b | 0.28 ± 0.03 a |
HAD | 218.14 ± 28.28 a | 0.60 ± 0.04 c | 70.42 ± 11.95 a | 0.16 ± 0.01 c |
CAD | 93.96 ± 10.35 b | 0.88 ± 0.07 b | 56.62 ± 6.74 ab | 0.20 ± 0.03 b |
CAD-30 | 101.04 ± 22.89 b | 0.87 ± 0.06 b | 55.68 ± 10.53 ab | 0.21 ± 0.02 b |
CAD-60 | 105.54 ± 23.72 b | 0.88 ± 0.05 b | 59.57 ± 14.48 ab | 0.19 ± 0.01 b |
CAD-90 | 102.27 ± 11.70 b | 0.97 ± 0.02 a | 59.79 ± 6.26 ab | 0.19 ± 0.02 b |
CAD-120 | 90.48 ± 19.07 b | 0.88 ± 0.10 b | 49.88 ± 14.53 b | 0.18 ± 0.01 bc |
Drying Methods | NPN | WSP | SSP | ISP |
---|---|---|---|---|
F | 0.20 ± 0.01 c | 27.33 ± 0.71 a | 6.93 ± 0.40 b | 12.59 ± 0.86 c |
HAD | 0.26 ± 0.01 a | 19.37 ± 0.43 b | 3.56 ± 0.32 e | 15.57 ± 1.50 b |
CAD | 0.23 ± 0.01 b | 26.80 ± 1.73 a | 8.15 ± 0.14 a | 15.53 ± 0.69 b |
CAD-30 | 0.27 ± 0.01 a | 18.63 ± 0.32 b | 3.55 ± 0.04 e | 19.32 ± 0.94 a |
CAD-60 | 0.27 ± 0.01 a | 19.60 ± 1.77 b | 3.78 ± 0.11 de | 18.69 ± 0.98 a |
CAD-90 | 0.27 ± 0.01 a | 20.30 ± 1.46 b | 4.33 ± 0.33 d | 17.60 ± 0.53 ab |
CAD-120 | 0.26 ± 0.01 a | 20.51 ± 0.39 b | 5.39 ± 0.35 c | 15.93 ± 0.39 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Chen, X.; Qiao, K.; Chen, B.; Xu, M.; Cai, S.; Shi, W.; Liu, Z. Combined Effects of Cold and Hot Air Drying on Physicochemical Properties of Semi-Dried Takifugu obscurus Fillets. Foods 2023, 12, 1649. https://doi.org/10.3390/foods12081649
Zhu Y, Chen X, Qiao K, Chen B, Xu M, Cai S, Shi W, Liu Z. Combined Effects of Cold and Hot Air Drying on Physicochemical Properties of Semi-Dried Takifugu obscurus Fillets. Foods. 2023; 12(8):1649. https://doi.org/10.3390/foods12081649
Chicago/Turabian StyleZhu, Ye, Xiaoting Chen, Kun Qiao, Bei Chen, Min Xu, Shuilin Cai, Wenzheng Shi, and Zhiyu Liu. 2023. "Combined Effects of Cold and Hot Air Drying on Physicochemical Properties of Semi-Dried Takifugu obscurus Fillets" Foods 12, no. 8: 1649. https://doi.org/10.3390/foods12081649
APA StyleZhu, Y., Chen, X., Qiao, K., Chen, B., Xu, M., Cai, S., Shi, W., & Liu, Z. (2023). Combined Effects of Cold and Hot Air Drying on Physicochemical Properties of Semi-Dried Takifugu obscurus Fillets. Foods, 12(8), 1649. https://doi.org/10.3390/foods12081649