Upgrading Marine Oils from Cod (Gadus morhua) On-Board the Deep-Sea Vessels—From Waste to Value
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fishing Vessel, Gear and Study Area
2.2. Raw Material and Sampling Procedures On-Board
2.3. Oil Production by Thermal Treatment On-Board
2.4. Chemicals
2.5. Proximate Composition
2.6. Fatty Acids Composition
2.7. Free Fatty Acids (FFA)
2.8. Lipid Classes
2.9. Peroxide Value (PV)
2.10. p-Anisidine Value (AV) and Total Oxidation Value (TOTOX)
2.11. Thiobarbituric Acid Reactive Substances (TBARS)
2.12. Statistics
3. Results and Discussion
3.1. Raw Material Composition and Yield of Produced Oil
3.2. Fatty Acid Composition of Raw Material and Produced Oil
3.3. Lipid Classes in Produced Oil
3.4. Free Fatty Acids (FFA) in Produced Oil
3.5. Oxidative Status in Produced Oil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2020. Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar]
- Myhre, M.S.; Richardsen, R.; Nystøyl, R.; Strandheim, G. Analyse Marint Restråstoff 2021. Tilgjengelighet og Anvendelse av Marint Restråstoff i Fra Norsk Fiskeri- og Havbruksnæring; SINTEF Ocean AS: Trondheim, Norway, 2022. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef]
- Rustad, T.; Storrø, I.; Slizyte, R. Possibilities for the utilisation of marine by-products. Int. J. Food Sci. Technol. 2011, 46, 2001–2014. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Moreira, M.M.; Delerue-Matos, C.; Gomes, A.M.; Freitas, A.C.; Grosso, C. Chapter 4—Valorization of Lipid by-Products. In Lipids and Edible Oils; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 133–174. [Google Scholar]
- Hjellnes, V.; Rustad, T.; Falch, E. The value chain of the white fish industry in Norway: History, current status and possibilities for improvement—A review. Reg. Stud. Mar. Sci. 2020, 36, 101293. [Google Scholar] [CrossRef]
- Bekkevold, S. Olafsen, T. Marine Biprodukter: Råstoff Med Muligheter; Stiftelsen Rubin: Trondheim, Norway, 2007. [Google Scholar]
- Nærings-og Fiskeridepartementet. Grønn Verdiskaping og økt Bearbeiding i Sjømatindustrien; Nærings-og Fiskeridepartementet: Oslo, Norway, 2022.
- Paluchowski, L.A.; Misimi, E.; Grimsmo, L.; Randeberg, L.L. Towards automated sorting of Atlantic cod (Gadus morhua) roe, milt, and liver–Spectral characterization and classification using visible and near-infrared hyperspectral imaging. Food Control 2016, 62, 337–345. [Google Scholar] [CrossRef]
- Alfio, V.G.; Manzo, C.; Micillo, R. From fish waste to value: An overview of the sustainable recovery of omega-3 for food supplements. Molecules 2021, 26, 1002. [Google Scholar] [CrossRef]
- Carvajal, A.K. Mozuraityte, R. Fish Oils: Production and Properties. In The Encyclopedia of Food and Health Fish Oils: Production and Properties; Caballero, B., Finglas, P., Toldrá, F., Eds.; Oxford Academic Press: Cambridge, MA, USA, 2016; Volume 2, pp. 693–698. [Google Scholar]
- AOCS. Official Methods of Analysis; Association of Official Analytic Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Abel, N.; Rotabakk, B.T.; Rustad, T.; Ahlsen, V.B.; Lerfall, J. Physiochemical and microbiological quality of lightly processed salmon (Salmo salar L.) stored under modified atmosphere. J. Food Sci. 2019, 84, 3364–3372. [Google Scholar] [CrossRef]
- Nordic-Baltic Committee on Food Analysis (NMKL). Nitrogen. Determination in Foods and Feeds According to Kjeldahl, Method No 6, 4th ed.; Nordic-Baltic Committee on Food Analysis (NMKL): Bergen, Norway, 2003. [Google Scholar]
- Daukšas, E.; Falch, E.; Slizyte, R.; Rustad, T. Composition of fatty acids and lipid classes in bulk products generated during enzymic hydrolysis of cod (Gadus morhua) by-products. Process Biochem. 2005, 40, 2659–2670. [Google Scholar] [CrossRef]
- Bernárdez, M.; Pastoriza, L.; Sampedro, G.; Herrera, J.J.; Cabo, M.L. Modified method for the analysis of free fatty acids in fish. J. Agric. Food Chem. 2005, 53, 1903–1906. [Google Scholar] [CrossRef] [PubMed]
- Alexandri, E.; Ahmed, R.; Siddiqui, H.; Choudhary, M.I.; Tsiafoulis, C.G.; Gerothanassis, I.P. High resolution NMR spectroscopy as a structural and analytical tool for unsaturated lipids in solution. Molecules 2017, 22, 1663. [Google Scholar] [CrossRef] [PubMed]
- Pollesello, P.; Toffanin, R.; Murano, E.; Rizzo, R.; Paoletti, S.; Kvam, B.J. 1H-and13C-NMR spectroscopic studies of lipid extracts of the red algaGracilaria longa. J. Appl. Phycol. 1992, 4, 149–155. [Google Scholar] [CrossRef]
- Standal, I.B.; Carvajal, A.K.; Mozuraityte, R.; Storrø, I.; Størseth, T.; Abbasi, E.; Aursand, M. High-Resolution NMR as Tool to Study Enzyme-Catalyzed Production of Fatty Acid Ethyl Esters from Marine Oils. In Modern Magnetic Resonance; Springer: Cham, Switzerland, 2017; pp. 1–14. [Google Scholar]
- AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society; AOCS: Champaign, IL, USA, 1994. [Google Scholar]
- Ke, P.; Woyewoda, A. Microdetermination of thiobarbituric acid values in marine lipids by a direct spectrophotometric method with a monophasic reaction system. Anal. Chim. Acta 1979, 106, 279–284. [Google Scholar] [CrossRef]
- Cropotova, J.; Mozuraityte, R.; Standal, I.B.; Rustad, T. Assessment of lipid oxidation in Atlantic mackerel (Scomber scombrus) subjected to different antioxidant and sous-vide cooking treatments by conventional and fluorescence microscopy methods. Food Control 2019, 104, 1–8. [Google Scholar] [CrossRef]
- Aursand, M.; Mozuraityte, R.; Hamre, K.; Knutsen, H.; Maage, A.; Arukwe, A. Description of the Processes in the Value Chain and Risk Assessment of Decomposition Substances and Oxidation Products in Fish Oils; Scientific Committee for Food Safety (VKM): Oslo, Norway, 2011. [Google Scholar]
- Guil-Guerrero, J.L.; Venegas-Venegas, E.; Rincón-Cervera, M.Á.; Suárez, M.D. Fatty acid profiles of livers from selected marine fish species. J. Food Compos. Anal. 2011, 24, 217–222. [Google Scholar] [CrossRef]
- Jacobsen, C.; Warncke, S.A.; Hansen, S.H.; Sørensen, A.-D.M. Fish Liver Discards as a Source of Long-Chain Omega-3 Polyunsaturated Fatty Acids. Foods 2022, 11, 905. [Google Scholar] [CrossRef]
- Falch, E.; Rustad, T.; Aursand, M. By-products from gadiform species as raw material for production of marine lipids as ingredients in food or feed. Process Biochem. 2006, 41, 666–674. [Google Scholar] [CrossRef]
- dos Santos, J.; Burkow, I.C.; Jobling, M. Patterns of growth and lipid deposition in cod (Gadus morhua L.) fed natural prey and fish-based feeds. Aquaculture 1993, 110, 173–189. [Google Scholar] [CrossRef]
- Falch, E.; Rustad, T.; Jonsdottir, R.; Shaw, N.B.; Dumay, J.; Berge, J.P.; Arason, S.; Kerry, J.P.; Sandbakk, M.; Aursand, M. Geographical and seasonal differences in lipid composition and relative weight of by-products from gadiform species. J. Food Compos. Anal. 2006, 19, 727–736. [Google Scholar] [CrossRef]
- Green, N.W.; Heldal, H.E.; Måge, A.; Aas, W.; Gäfvert, T.; Schrum, C.; Boitsov, S.; Breivik, K.; Yakushev, M.I.O.E. Tilførselsprogrammet 2010. Overvåking av Tilførsler og Miljøtilstand i Nordsjøen; Norsk institutt for vannforskning (NIVA): Oslo, Norway, 2011. [Google Scholar]
- Raa, J.; Gildberg, A.; Olley, J.N. Fish silage: A review. Crit. Rev. Food Sci. Nutr. 1982, 16, 383–419. [Google Scholar] [CrossRef]
- Šližytė, R.; Rustad, T.; Storrø, I. Enzymatic hydrolysis of cod (Gadus morhua) by-products: Optimization of yield and properties of lipid and protein fractions. Process Biochem. 2005, 40, 3680–3692. [Google Scholar] [CrossRef]
- Opheim, M.; Slizyte, R.; Sterten, H.; Provan, F.; Larssen, E.; Kjos, N.P. Hydrolysis of Atlantic salmon (Salmo salar) rest raw materials—Effect of raw material and processing on composition, nutritional value, and potential bioactive peptides in the hydrolysates. Process Biochem. 2015, 50, 1247–1257. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Emma-Okon, B.; Remaley, A.T. Dietary marine-derived long-chain monounsaturated fatty acids and cardiovascular disease risk: A mini review. Lipids Health Dis. 2016, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia. European Pharmacopoeia (7.0th Edn Pluss Supplements); Council of Europe, European Directorate for the Quality of Medicines (EDQM): Strasbourg, France, 2011. [Google Scholar]
- Lie, Ø.; Lied, E.; Lambertsen, G. Liver retention of fat and of fatty acids in cod (Gadus morhua) fed different oils. Aquaculture 1986, 59, 187–196. [Google Scholar] [CrossRef]
- Jangaard, P.; Ackman, R.G.; Sipos, J. Seasonal changes in fatty acid composition of cod liver, flesh, roe, and milt lipids. J. Fish. Board Can. 1967, 24, 613–627. [Google Scholar] [CrossRef]
- Addison, R.; Ackman, R.G.; Hingley, J. Distribution of fatty acids in cod flesh lipids. J. Fish. Board Can. 1968, 25, 2083–2090. [Google Scholar] [CrossRef]
- de Koning, A.J. The free fatty acid content of fish oil: The effect of lime addition on the reduction of the free fatty acid content of fish oil during the fish meal and oil production process. Int. J. Food Prop. 2001, 4, 171–177. [Google Scholar] [CrossRef]
- Meidell, L.S.; Slizyte, R.; Mozuraityte, R.; Carvajal, A.K.; Rustad, T.; Standal, I.B.; Kopczyk, M.; Falch, E. Silage as a Preservation Technology for Residual Raw Materials from Saithe (Pollachius Virens)—Effect of Raw Material Freshness on the Oil Quality. Heliyon 2023. submitted to journal. [Google Scholar]
- Sajib, M.; Undeland, I. Towards valorization of herring filleting by-products to silage 2.0: Effect of temperature and time on lipid oxidation and non-enzymatic browning reactions. LWT 2020, 127, 109441. [Google Scholar] [CrossRef]
- Sidell, B.D.; Hazel, J.R. Triacylglycerol lipase activities in tissues of Antarctic fishes. Polar Biol. 2002, 25, 517–522. [Google Scholar] [CrossRef]
- Sovik, S.L.; Rustad, T. Effect of season and fishing ground on the activity of lipases in byproducts from cod (Gadus morhua). LWT-Food Sci. Technol. 2005, 38, 867–876. [Google Scholar] [CrossRef]
- Falch, E.; Størseth, T.R.; Aursand, M. High resolution NMR for studying lipid hydrolysis and esterification in cod (Gadus morhua) gonads. Chem. Phys. Lipids 2007, 147, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Lovern, J.; Olley, J.; Watson, H.A. Changes in the lipids of cod during storage in ice. J. Sci. Food Agric. 1959, 10, 327–337. [Google Scholar] [CrossRef]
- Falch, E.; Sandbakk, M.; Aursand, M. On-board handling of marine by-products to prevent microbial spoilage, enzymatic reactions and lipid oxidation. In Maximising the Value of Marine by-Products; Elsevier: Amsterdam, The Netherlands, 2007; pp. 47–64. [Google Scholar]
- de Koning, A.J. The free fatty acid content of fish oil, part V. The effect of microbial contamination on the increase in free fatty acid content of fish oils during storage at 25 °C. Lipid/Fett 1999, 101, 184–186. [Google Scholar] [CrossRef]
- Sikorski, Z.E.; Kolakowska, A.; Burt, J.R. Postharvest Biochemical and Microbial Changes. Seafood: Resources, Nutritional Composition and Preservation; CRC Press: Boca Raton, FL, USA, 1990; pp. 55–75. [Google Scholar]
- Bimbo, A.P. Guidelines for characterizing food-grade fish oils. Inform 1998, 9, 473–483. [Google Scholar]
- Global Organization for EPA and DHA Omega-3s. GOED Voluntary Monograph, version 6; GOED: Salt Lake City, USA, 2018.
- Aidos, I.; van der Padt, A.; Boom, R.M.; Luten, J.B. Quality of crude fish oil extracted from herring byproducts of varying states of freshness. J. Food Sci. 2003, 68, 458–465. [Google Scholar] [CrossRef]
- Wu, T.H.; Bechtel, P.J. Quality of crude oil extracted from aging walleye pollock (Theragra chalcogramma) byproducts. J. Am. Oil Chem. Soc. 2009, 86, 903–908. [Google Scholar] [CrossRef]
Raw Material Fraction | Storage Day | Fish Length, cm | Viscera Weight, g | Sex | Raw Material Fraction | Storage Day | Fish Length, cm | Liver Weight, g | Sex | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Viscera | 0 | 65 | 656 | ♀ | Liver | 0 | 72 | 92 | ♂ | ||||
Viscera | 0 | 77 | 534 | ♂ | Liver | 0 | 75 | 120 | ♂ | ||||
Viscera | 0 | 77 | 544 | ♂ | Liver | 0 | 74 | 102 | ♂ | ||||
Viscera | 0 | 75 | 392 | ♂ | Liver | 0 | 68 | 90 | ♂ | ||||
Viscera | 0 | 62 | 244 | ♂ | Liver | 0 | 76 | 104 | ♀ | ||||
Viscera | 1 | 81 | 384 | ♂ | Liver | 1 | 74 | 180 | ♂ | ||||
Viscera | 1 | 66 | 402 | ♂ | Liver | 1 | 71 | 124 | ♂ | ||||
Viscera | 1 | 65 | 230 | ♀ | Liver | 1 | 68 | 100 | ♀ | ||||
Viscera | 1 | 59 | 162 | ♀ | Liver | 1 | 68 | 168 | ♂ | ||||
Viscera | 1 | 68 | 270 | ♀ | Liver | 1 | 68 | 62 | ♂ | ||||
Viscera | 2 | 65 | 378 | ♀ | Liver | 2 | 60 | 52 | ♂ | ||||
Viscera | 2 | 60 | 258 | ♂ | Liver | 2 | 71 | 134 | ♀ | ||||
Viscera | 2 | 75 | 788 | ♂ | Liver | 2 | 67 | 82 | ♂ | ||||
Viscera | 2 | 71 | 558 | ♂ | Liver | 2 | 73 | 122 | ♀ | ||||
Viscera | 2 | 65 | 450 | ♂ | Liver | 2 | 59 | 76 | ♀ | ||||
Viscera | 3 | 73 | 580 | ♂ | Liver | 3 | 67 | 60 | ♂ | ||||
Viscera | 3 | 62 | 178 | ♂ | Liver | 3 | 56 | 128 | ♂ | ||||
Viscera | 3 | 73 | 662 | ♂ | Liver | 3 | 55 | 36 | ♀ | ||||
Viscera | 3 | 61 | 218 | ♀ | Liver | 3 | 56 | 62 | ♀ | ||||
Viscera | 3 | 72 | 594 | ♂ | Liver | 3 | 56 | 46 | ♀ | ||||
Viscera | 4 | 71 | 302 | ♂ | Liver | 4 | 76 | 144 | ♀ | ||||
Viscera | 4 | 55 | 210 | ♀ | Liver | 4 | 68 | 154 | ♀ | ||||
Viscera | 4 | 71 | 294 | ♀ | Liver | 4 | 65 | 90 | ♀ | ||||
Viscera | 4 | 61 | 256 | ♀ | Liver | 4 | 64 | 112 | ♀ | ||||
Viscera | 4 | 61 | 112 | ♀ | Liver | 4 | 72 | 106 | ♂ | ||||
Viscera | 6 | 69 | 342 | ♂ | Liver | 6 | 74 | 124 | ♂ | ||||
Viscera | 6 | 64 | 622 | ♀ | Liver | 6 | 68 | 176 | ♀ | ||||
Viscera | 6 | 68 | 290 | ♂ | Liver | 6 | 69 | 152 | ♀ | ||||
Viscera | 6 | 66 | 408 | ♂ | Liver | 6 | 68 | 270 | ♂ | ||||
Viscera | 6 | 61 | 282 | ♂ | Liver | 6 | 67 | 184 | ♀ | ||||
Viscera | * Average | 67 ± 6 | 383 ± 175 | Liver | * Average | 68 ± 6 | 115 ± 50 |
Viscera | |||||||
Raw Material | Oil Day 0 | Oil Day 1 | Oil Day 2 | Oil Day 3 | Oil Day 4 | Oil Day 6 | |
EPA | 9.2 ± 0.0 Aa | 8.9 ± 0.2 Abc | 8.9 ± 0.0 Ab | 9.0 ± 0.0 Aab | 9.5 ± 0.0 Ad | 7.4 ± 0.0 Ae | 8.6 ± 0.0 Ac |
DHA | 9.1 ± 0.1 Aa | 8.5 ± 0.2 Ab | 8.6 ± 0.0 Ab | 7.7 ± 0.1 Ac | 7.8 ± 0.0 Ac | 10.1 ± 0.0 Ad | 9.2 ± 0.0 Aa |
SFA | 22.4 ± 0.1 Aa | 20.9 ± 0.0 Ab | 20.9 ± 0.1 Ab | 19.1 ± 0.2 Ac | 19.4 ± 0.1 Ac | 22.1 ± 0.1 Aa | 20.1 ± 0.1 Ad |
MUFA | 49.5 ± 0.1 Aa | 52.1 ± 0.4 Ab | 51.8 ± 0.1 Ab | 54.7 ± 0.3 Ac | 53.6 ± 0.0 Ad | 50.6 ± 0.0 Ae | 52.0 ± 0.0 Ab |
PUFA | 28.0 ± 0.0 Aa | 27.0 ± 0.5 Ab | 27.3 ± 0.0 Abc | 26.3 ± 0.0 Ad | 27.0 ± 0.0 Ab | 27.3 ± 0.1 Abc | 27.9 ± 0.1 Aac |
Omega3 | 23.8 ± 0.0 Aa | 23.0 ± 0.4 Abc | 23.1 ± 0.1 Ab | 22.4 ± 0.0 Ac | 23.3 ± 0.1 Aab | 23.2 ± 0.0 Aab | 23.5 ± 0.1 Aab |
Liver | |||||||
Raw material | Oil Day 0 | Oil Day 1 | Oil Day 2 | Oil Day 3 | Oil Day 4 | Oil Day 6 | |
EPA | 8.5 ± 0.1 Ba | 8.3 ± 0.0 Bb | 9.5 ± 0.1 Bc | 7.4 ± 0.0 Bd | 6.8 ± 0.0 Be | 8.5 ± 0.0 Ba | 8.0 ± 0.0 Bf |
DHA | 9.3 ± 0.2 Ba | 8.7 ± 0.1 Ab | 9.1 ± 0.1 Bac | 8.8 ± 0.0 Bbc | 6.4 ± 0.0 Bd | 9.3 ± 0.0 Ba | 8.4 ± 0.1 Bb |
SFA | 21.5 ± 0.3 Bab | 21.5 ± 0.3 Bab | 19.2 ± 0.1 Bc | 22.2 ± 0.3 Ba | 17.0 ± 0.0 Bd | 20.7 ± 0.0 Bb | 21.4 ± 0.2 Bab |
MUFA | 50.8 ± 0.3 Ba | 51.9 ± 0.4 Abc | 52.5 ± 0.1 Bc | 51.4 ± 0.4 Bab | 51.5 ± 0.0 Babc | 51.9 ± 0.0 Bbc | 52.5 ± 0.2 Ac |
PUFA | 27.7 ± 0.0 Ba | 26.7 ± 0.1 Bb | 28.3 ± 0.2 Bc | 26.4 ± 0.1 Abd | 31.5 ± 0.0 Be | 27.4 ± 0.0 Aa | 26.1 ± 0.0 Bd |
Omega3 | 23.8 ± 0.3 Aa | 22.6 ± 0.0 Bb | 24.2 ± 0.2 Ba | 22.1 ± 0.0 Abc | 20.3 ± 0.0 Bd | 23.2 ± 0.0 Ae | 21.9 ± 0.1 Bc |
PV (meq/kg Oil) | AV | |||
Day | Viscera Oil | Liver Oil | Viscera Oil | Liver Oil |
0 | 3.2 ± 0.9 abA | 0.8 ± 0.6 adB | 1.7 ± 0.3 abA | 0.8 ± 0.1 aB |
1 | 4.2 ± 0.4 aA | 2.5 ± 0.5 bB | 1.1 ± 0.2 aA | 1.6 ± 0.0 bB |
2 | 2.1 ± 0.4 bcA | 1.5 ± 0.1 cdA | 1.4 ± 0.1 aA | 2.7 ± 0.2 cB |
3 | 1.5 ± 0.5 cA | 1.9 ± 0.3 bcA | 2.4 ± 0.1 bA | 4.9 ± 0.1 dB |
4 | 12.0 ± 1.0 dA | 1.2 ± 0.2 dB | 4.6 ± 0.2 cA | 5.4 ± 0.1 eB |
6 | 8.6 ± 0.4 eA | 0.1 ± 0.0 aB | 8.5 ± 0.3 dA | 4.5 ± 0.1 dB |
TOTOX | TBARS (μmol/g lipid) | |||
Day | Viscera oil | Liver oil | Viscera oil | Liver oil |
0 | 8.1 | 2.3 | 0.2 ± 0.1 aA | 0.1 ± 0.0 aA |
1 | 9.5 | 6.6 | 0.3 ± 0.0 abA | 0.3 ± 0.0 bA |
2 | 5.6 | 5.8 | 0.2 ± 0.2 abA | 0.2 ± 0.0 bcA |
3 | 5.4 | 8.7 | 0.5 ± 0.5 abA | 0.1 ± 0.0 acB |
4 | 28.6 | 7.8 | 0.8 ± 0.1 bA | 0.2 ± 0.0 bB |
6 | 25.8 | 4.7 | 0.6 ± 0.2 abA | 0.5 ± 0.0 dA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meidell, L.S.; Carvajal, A.K.; Rustad, T.; Falch, E. Upgrading Marine Oils from Cod (Gadus morhua) On-Board the Deep-Sea Vessels—From Waste to Value. Foods 2023, 12, 1659. https://doi.org/10.3390/foods12081659
Meidell LS, Carvajal AK, Rustad T, Falch E. Upgrading Marine Oils from Cod (Gadus morhua) On-Board the Deep-Sea Vessels—From Waste to Value. Foods. 2023; 12(8):1659. https://doi.org/10.3390/foods12081659
Chicago/Turabian StyleMeidell, Line Skontorp, Ana Karina Carvajal, Turid Rustad, and Eva Falch. 2023. "Upgrading Marine Oils from Cod (Gadus morhua) On-Board the Deep-Sea Vessels—From Waste to Value" Foods 12, no. 8: 1659. https://doi.org/10.3390/foods12081659
APA StyleMeidell, L. S., Carvajal, A. K., Rustad, T., & Falch, E. (2023). Upgrading Marine Oils from Cod (Gadus morhua) On-Board the Deep-Sea Vessels—From Waste to Value. Foods, 12(8), 1659. https://doi.org/10.3390/foods12081659