Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Fish Myofibrillar Proteins
2.3. Preparation of Fish Myofibrillar Protein–Tannic Acid (FMP-TA) Complexed Particles
2.3.1. Surface Hydrophobicity (So), Total Sulfhydryl Content (TSC), and Disulfide Bond Content (DSBC)
2.3.2. Protein Structures
2.3.3. Protein Patterns
2.4. Preparation of Emulsion
Emulsifying Properties
2.5. Characterization and Storage Stability of the Emulsion
2.5.1. Confocal Laser Scanning Microscopy (CLSM)
2.5.2. Droplet Size
Flocculation and Coalescence
2.5.3. Rheology
2.6. Statistical Analysis
3. Results
3.1. Surface Hydrophobicity (So), Total Sulfhydryl Content (TSC), and Disulfide Bond Content (DSBC)
3.2. Fluorescence Intensity
3.3. Fourier Transform Infrared (FTIR) Spectra
3.4. Protein Patterns
3.5. Emulsifying Properties
3.6. Characteristics and Storage Stability of Pickering Emulsion (PE) Stabilized by FMP-TA Complex
3.6.1. Confocal Laser Scanning Microscopic (CLSM) Images
3.6.2. Droplet Size
3.6.3. Coalescence Index (Ci) and Flocculation Factor (Ff)
3.6.4. Rheological Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiao, J.; Li, Y.; Huang, Q. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends Food Sci. Technol. 2016, 55, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- López-Pedrouso, M.; Lorenzo, J.M.; Moreira, R.; Franco, D. Potential applications of Pickering emulsions and high internal-phase emulsions (HIPEs) stabilized by starch particles. Curr. Opin. Food Sci. 2022, 46, 100866. [Google Scholar] [CrossRef]
- Song, X.; Gong, H.; Zhu, W.; Wang, J.; Zhai, Y.; Lin, S. Pickering emulsion stabilized by composite-modified waxy corn starch particles. Int. J. Biol. Macromol. 2022, 205, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, X.; Yao, Z.; Chen, F.; Zhu, L.; Liu, H.; Ming, L. Chitosan functionalized cellulose nanocrystals for stabilizing Pickering emulsion: Fabrication, characterization and stability evaluation. Colloids Surf. A 2022, 632, 127769. [Google Scholar] [CrossRef]
- Souza, E.M.; Ferreira, M.R.; Soares, L.A. Pickering emulsions stabilized by zein particles and their complexes and possibilities of use in the food industry: A review. Food Hydrocoll. 2022, 131, 107781. [Google Scholar] [CrossRef]
- Zou, Y.; van Baalen, C.; Yang, X.; Scholten, E. Tuning hydrophobicity of zein nanoparticles to control rheological behavior of Pickering emulsions. Food Hydrocoll. 2018, 80, 130–140. [Google Scholar] [CrossRef]
- Ribeiro, E.; Morell, P.; Nicoletti, V.; Quiles, A.; Hernando, I. Protein-and polysaccharide-based particles used for Pickering emulsion stabilisation. Food Hydrocoll. 2021, 119, 106839. [Google Scholar] [CrossRef]
- Evans, M.; Ratcliffe, I.; Williams, P.A. Emulsion stabilisation using polysaccharide–protein complexes. Curr. Opin. Colloid Interface Sci. 2013, 18, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Reitzer, F.; Allais, M.; Ball, V.; Meyer, F. Polyphenols at interfaces. Adv. Colloid Interface Sci. 2018, 257, 31–41. [Google Scholar] [CrossRef]
- Wang, C.; Pian, R.; Chen, X.; Lv, H.; Zhou, W.; Zhang, Q. Beneficial effects of tannic acid on the quality of bacterial communities present in high-moisture mulberry leaf and stylo silage. Front. Microbiol. 2020, 11, 586412. [Google Scholar] [CrossRef]
- Zhan, F.; Li, J.; Wang, Y.; Shi, M.; Li, B.; Sheng, F. Bulk, foam, and interfacial properties of tannic acid/sodium caseinate nanocomplexes. J. Agric. Food Chem. 2018, 66, 6832–6839. [Google Scholar] [CrossRef]
- Jin, W.; Zhu, J.; Jiang, Y.; Shao, P.; Li, B.; Huang, Q. Gelatin-based nanocomplex-stabilized Pickering emulsions: Regulating droplet size and wettability through assembly with glucomannan. J. Agric. Food Chem. 2017, 65, 1401–1409. [Google Scholar] [CrossRef]
- Robinson, H.W.; Hogden, C.G. The biuret reaction in the determination of serum proteins 1. A study of the conditions necessary for the production of a stable color which bears a quantitative relationship to the protein concentration. J. Biol. Chem. 1940, 135, 707–725. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Ishizaki, S.; Tanaka, M. Differences in gelation characteristics of natural actomyosin from two species of bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus. J. Food Sci. 2001, 66, 1311–1318. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Zhu, X.; Ning, C.; Cai, K.; Zhou, C. Conformational and charge changes induced by L-arginine and L-lysine increase the solubility of chicken myosin. Food Hydrocoll. 2019, 89, 330–336. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Pearce, K.N.; Kinsella, J.E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique. J. Agric. Food Chem. 1978, 26, 716–723. [Google Scholar] [CrossRef]
- Patil, U.; Benjakul, S. Comparative study on extraction of virgin coconut oil with the aid of partially purified protease from seabass pyloric caeca and commercial trypsin. J. Food Biochem. 2019, 43, e13024. [Google Scholar] [CrossRef] [PubMed]
- Patil, U.; Benjakul, S. Characteristics of albumin and globulin from coconut meat and their role in emulsion stability without and with proteolysis. Food Hydrocoll. 2017, 69, 220–228. [Google Scholar] [CrossRef]
- Patil, U.; Benjakul, S.; Prodpran, T.; Senphan, T.; Cheetangdee, N. A comparative study of the physicochemical properties and emulsion stability of coconut milk at different maturity stages. Ital. J. Food Sci. 2016, 29, 145–157. [Google Scholar]
- Patil, U.; Benjakul, S. Physical and textural properties of mayonnaise prepared using virgin coconut oil/fish oil blend. Food Biophys. 2019, 14, 260–268. [Google Scholar] [CrossRef]
- Steel, R.; Torrie, J. Principles and Practices of Statistics; McGraw Book Coy Inc.: New York, NY, USA, 1980. [Google Scholar]
- Li, M.; Ritzoulis, C.; Du, Q.; Liu, Y.; Ding, Y.; Liu, W.; Liu, J. Recent progress on protein-polyphenol complexes: Effect on stability and nutrients delivery of oil-in-water emulsion system. Front. Nutr. 2021, 8, 765589. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, L.; Liu, Y.; Li, J. Migration of gallic acid from the aqueous phase to the oil–water interface using pea protein to improve the physicochemical stability of water-in-oil emulsions. Food Hydrocoll. 2023, 135, 108179. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, S.; Chen, Q.; Liu, Q.; Kong, B. Antioxidant activities and emulsifying properties of porcine plasma protein hydrolysates modified by oxidized tannic acid and oxidized chlorogenic acid. Process Biochem. 2019, 79, 105–113. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, X.; Li, D.; Tang, H.; Yu, D.; Wang, L.; Jiang, L. Effect of anionic polysaccharides on conformational changes and antioxidant properties of protein-polyphenol binary covalently-linked complexes. Process Biochem. 2020, 89, 89–97. [Google Scholar] [CrossRef]
- Balange, A.K.; Benjakul, S. Cross-linking activity of oxidised tannic acid towards mackerel muscle proteins as affected by protein types and setting temperatures. Food Chem. 2010, 120, 268–277. [Google Scholar] [CrossRef]
- Sun, X.; Sarteshnizi, R.A.; Udenigwe, C.C. Recent advances in protein–polyphenol interactions focusing on structural properties related to antioxidant activities. Curr. Opin. Food Sci. 2022, 45, 100840. [Google Scholar] [CrossRef]
- Malik, M.; Sharma, H.; Saini, C. Effect of removal of phenolic compounds on structural and thermal properties of sunflower protein isolate. J. Food Sci. Technol. 2016, 53, 3455–3464. [Google Scholar] [CrossRef]
- Poklar Ulrih, N. Analytical techniques for the study of polyphenol–protein interactions. Crit. Rev. Food Sci. Nutr. 2017, 57, 2144–2161. [Google Scholar] [CrossRef]
- Singh, A.; Benjakul, S.; Prodpran, T.; Nuthong, P. Effect of psyllium (Plantago ovata Forks) husk on characteristics, rheological and textural properties of threadfin bream surimi gel. Foods 2021, 10, 1181. [Google Scholar] [CrossRef]
- Zou, Y.; Guo, J.; Yin, S.-W.; Wang, J.-M.; Yang, X.-Q. Pickering emulsion gels prepared by hydrogen-bonded zein/tannic acid complex colloidal particles. J. Agric. Food Chem. 2015, 63, 7405–7414. [Google Scholar] [CrossRef]
- Chen, X.; Xu, X.; Han, M.; Zhou, G.; Chen, C.; Li, P. Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions. Food Res. Int. 2016, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Condict, L.; Kaur, J.; Hung, A.; Ashton, J.; Kasapis, S. Combined spectroscopic, molecular docking and quantum mechanics study of β-casein and ferulic acid interactions following UHT-like treatment. Food Hydrocoll. 2019, 89, 351–359. [Google Scholar] [CrossRef]
- Hasni, I.; Bourassa, P.; Hamdani, S.; Samson, G.; Carpentier, R.; Tajmir-Riahi, H.-A. Interaction of milk α-and β-caseins with tea polyphenols. Food Chem. 2011, 126, 630–639. [Google Scholar] [CrossRef]
- Prodpran, T.; Benjakul, S.; Phatcharat, S. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein. Int. J. Biol. Macromol. 2012, 51, 774–782. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- Uruakpa, F.O.; Arntfield, S.D. Surface hydrophobicity of commercial canola proteins mixed with κ-carrageenan or guar gum. Food Chem. 2006, 95, 255–263. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.-H. Emulsifying properties of soy protein nanoparticles: Influence of the protein concentration and/or emulsification process. J. Agric. Food Chem. 2014, 62, 2644–2654. [Google Scholar] [CrossRef]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent developments on polyphenol–protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 2012, 3, 592–605. [Google Scholar] [CrossRef] [PubMed]
- Sacanna, S.; Kegel, W.; Philipse, A. Thermodynamically stable pickering emulsions. Phys. Rev. Lett. 2007, 98, 158301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Pei, Y.; Qiao, M.; Ma, F.; Ren, H.; Zhao, Q. Preparation and characterizations of Pickering emulsions stabilized by hydrophobic starch particles. Food Hydrocoll. 2015, 45, 256–263. [Google Scholar] [CrossRef]
- Jin, Q.; Cai, Z.; Li, X.; Yadav, M.P.; Zhang, H. Comparative viscoelasticity studies: Corn fiber gum versus commercial polysaccharide emulsifiers in bulk and at air/liquid interfaces. Food Hydrocoll. 2017, 64, 85–98. [Google Scholar] [CrossRef]
- Wei, Y.; Xie, Y.; Cai, Z.; Guo, Y.; Zhang, H. Interfacial rheology, emulsifying property and emulsion stability of glyceryl monooleate-modified corn fiber gum. Food Chem. 2021, 343, 128416. [Google Scholar] [CrossRef]
Samples (TA, %) | Surface Hydrophobicity (So) (×104) | Total Sulfhydryl Content (TSC) (μmol/g Protein) | Total Disulphide Bond Content (DSBC) (μmol/g Protein) | |||
---|---|---|---|---|---|---|
FD | SD | FD | SD | FD | SD | |
CON | 15.72 ± 0.30 Ab | 19.22 ± 0.23 Aa | 2.00 ± 0.05 Ab | 2.68 ± 0.08 Aa | 6.42 ± 0.29 Ab | 7.72 ± 0.36 Aa |
0.125 | 12.49 ± 0.23 Bb | 18.42 ± 0.24 Ba | 1.57 ± 0.15 Bb | 2.42 ± 0.10 Ba | 7.15 ± 0.29 Bb | 8.38 ± 0.32 Ba |
0.25 | 8.50 ± 0.44 Cb | 12.63 ± 0.32 Ca | 1.35 ± 0.03 Cb | 2.22 ± 0.08 Ca | 7.79 ± 0.19 Cb | 9.26 ± 0.22 Ca |
0.5 | 2.27 ± 0.27 Db | 7.63 ± 0.22 Da | 0.72 ± 0.10 Db | 1.97 ± 0.11 Da | 8.33 ± 0.11 Db | 10.41 ± 0.22 Da |
Samples (TA, %) | β-Sheets (%) | β-Turn (%) | Random Coil (%) | |||
---|---|---|---|---|---|---|
FD | SD | FD | SD | FD | SD | |
CON | 34.87 | 34.33 | 22.78 | 24.67 | 16.62 | 17.96 |
0.125 | 35.15 | 34.16 | 22.61 | 22.71 | 16.25 | 16.25 |
0.25 | 42.30 | 34.48 | 20.96 | 22.90 | 16.56 | 16.56 |
0.5 | 40.18 | 34.21 | 19.88 | 23.20 | 16.63 | 16.63 |
Samples | Storage Time (Days) | d32 (µm) | d43 (µm) | Ff | Ci |
---|---|---|---|---|---|
FD-FMP-0.5TA | 0 | 1.63 ± 0.03 A | 3.46 ± 0.11 A | 0.94 ± 0.02 A | - |
45 | 1.77 ± 0.03 a | 4.50 ± 0.89 a | 0.89 ± 0.03 a | 29.80 ± 2.31 a | |
SD-FMP-0.5TA | 0 | 1.49 ± 0.07 B | 3.25 ± 0.15 B | 0.95 ± 0.01 A | - |
45 | 1.73 ± 0.03 b | 4.05 ± 0.15 b | 0.87 ± 0.00 b | 24.61 ± 1.13 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, U.; Gulzar, S.; Ma, L.; Zhang, B.; Benjakul, S. Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods 2023, 12, 1556. https://doi.org/10.3390/foods12071556
Patil U, Gulzar S, Ma L, Zhang B, Benjakul S. Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods. 2023; 12(7):1556. https://doi.org/10.3390/foods12071556
Chicago/Turabian StylePatil, Umesh, Saqib Gulzar, Lukai Ma, Bin Zhang, and Soottawat Benjakul. 2023. "Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods" Foods 12, no. 7: 1556. https://doi.org/10.3390/foods12071556
APA StylePatil, U., Gulzar, S., Ma, L., Zhang, B., & Benjakul, S. (2023). Pickering Emulsion Stabilized by Fish Myofibrillar Proteins Modified with Tannic Acid, as Influenced by Different Drying Methods. Foods, 12(7), 1556. https://doi.org/10.3390/foods12071556