Enhancing Hot Air Drying Efficiency through Electrostatic Field–Ultrasonic Coupling Pretreatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Effect of Ultrasound Power on the Moisture Content of Ginkgo Fruits
3.2. Effect of Pretreatment Time on the Moisture Content of Ginkgo Fruits
3.3. Effect of Hot Air Drying Temperature on the Moisture Content of Ginkgo Fruits
3.4. Effect of Electric Field Voltage on the Moisture Content of Ginkgo Fruits
3.5. Optimization of Process Parameters Using Response Surface Methodology
3.5.1. Variable Values and Experimental Design
3.5.2. Equation Fitting and Variance Analysis
3.5.3. Response Surface Analysis
3.6. Ginkgo Fruits’ Moisture Content Drying Model
4. Conclusions
- (1)
- An electric field significantly improves the efficiency of the hot air drying of ginkgo fruits compared to ultrasonic and electrostatic–ultrasound pretreatment. Single-factor experiments showed that factors such as ultrasonic power, ultrasonic electric field pretreatment time, hot air drying temperature, and electrostatic field voltage influence the drying rate.
- (2)
- Using the Box–Behnken design in response surface methodology, the optimal parameters for drying ginkgo fruits to the desired MR were obtained. These parameters were an electrostatic field voltage of 11.252 kV, an ultrasonic power of 590.074 W, a pretreatment time of 32.799 min, and a hot air drying temperature of 85 °C. The predicted MR after 2 h of hot air drying was 74.0502%, which was experimentally verified with a relative error of only 0.187%. The experimentally obtained values were also in good agreement with the predicted values.
- (3)
- The MR of ginkgo fruits under optimal conditions was plotted against time to create an MR-t chart, and the fitting degree of seven models describing the drying process of ginkgo fruits was analyzed. Among these models, the Page model, logarithmic model, Midilli model, two-term model, cubic model, and experimentally obtained values had a determination coefficient above 0.9. The two-term model was the most suitable model for this drying experiment with a high degree of fitting and a determination coefficient of 0.99965.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Wu, Y.; Jiang, M.; Wu, C.; Wang, G. An LC–MS-Based Metabolomic Approach Provides Insights into the Metabolite Profiles of Ginkgo Biloba L. at Different Developmental Stages and in Various Organs. Food Res. Int. 2022, 159, 111644. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, L.; Wei, F.; Xie, B.; Huang, F.; Huang, W.; Shi, J.; Huang, Q.; Tian, B.; Xue, S. Functional Properties of Protein Isolates, Globulin and Albumin Extracted from Ginkgo Biloba Seeds. Food Chem. 2011, 124, 1458–1465. [Google Scholar] [CrossRef]
- Baek, S.H.; Ko, J.-H.; Lee, J.H.; Kim, C.; Lee, H.; Nam, D.; Lee, J.; Lee, S.-G.; Yang, W.M.; Um, J.-Y.; et al. Ginkgolic Acid Inhibits Invasion and Migration and TGF-β-Induced EMT of Lung Cancer Cells Through PI3K/Akt/MTOR Inactivation. J. Cell. Physiol. 2017, 232, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Ye, C.; Huang, Y.; Zhang, N.; Zhang, X.; Xiao, M. Ginkgo Biloba Sarcotesta Polysaccharide Inhibits Inflammatory Responses through Suppressing Both NF-ΚB and MAPK Signaling Pathway: Ginkgo Biloba Sarcotesta Polysaccharide Inhibits Inflammatory Responses. J. Sci. Food Agric. 2019, 99, 2329–2339. [Google Scholar] [CrossRef]
- Gong, H.; Wang, W.; Wang, T.; Yu, N. Colors, Bioactive Compounds, and Antioxidant Capacity of Ginkgo Biloba Seeds Affected by Drying Conditions. Food Meas. 2021, 15, 3953–3961. [Google Scholar] [CrossRef]
- Barzegar, M.; Zare, D.; Stroshine, R.L. An Integrated Energy and Quality Approach to Optimization of Green Peas Drying in a Hot Air Infrared-Assisted Vibratory Bed Dryer. J. Food Eng. 2015, 166, 302–315. [Google Scholar] [CrossRef]
- Ezeanaka, M.C.; Nsor-Atindana, J.; Zhang, M. Online Low-Field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) for Food Quality Optimization in Food Processing. Food Bioprocess Technol. 2019, 12, 1435–1451. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Wang, R.; Rahaman, A.; Zeng, X.-A.; Brennan, C.S. Combined Effects of Pulsed Electric Field and Ultrasound Pretreatments on Mass Transfer and Quality of Mushrooms. LWT 2021, 150, 112008. [Google Scholar] [CrossRef]
- de Freitas, L.D.C.; Brandão, S.C.R.; da Silva, J.H.F.; da Rocha, O.R.S.; Azoubel, P.M. Effect of Ethanol and Ultrasound Pretreatments on Pineapple Convective Drying. Food Technol. Biotechnol. 2021, 59, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Çakmak, R.Ş.; Tekeoğlu, O.; Bozkır, H.; Ergün, A.R.; Baysal, T. Effects of Electrical and Sonication Pretreatments on the Drying Rate and Quality of Mushrooms. LWT-Food Sci. Technol. 2016, 69, 197–202. [Google Scholar] [CrossRef]
- Sobotka, J. Longitudinal Ultrasonic Waves in DC Electric Field. Acta Geophys. 2009, 57, 247–256. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, W.; Zhang, L.; Tian, S.; Chen, F. Molecular and Emulsifying Properties of Arachin and Conarachin of Peanut Protein Isolate from Ultrasound-Assisted Extraction. LWT 2020, 132, 109790. [Google Scholar] [CrossRef]
- Lu, K.; Guo, X.; Li, Y.; Ming, J. Characterization of Moisture Transformation and Distribution in Mushroom (Lentinus edodes) During Hot-Air Drying: Moisture Transformation and Distribution in Mushroom. J. Food Process. Preserv. 2017, 41, e12812. [Google Scholar] [CrossRef]
- Jaiswal, A.K. (Ed.) Food Processing Technologies: Impact on Product Attributes; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-5754-0. [Google Scholar]
- Kumar, S.; Narayan, R.; Ahammed, V.; Nayak, Y.; Naha, A.; Nayak, U.Y. Development of Ritonavir Solid Lipid Nanoparticles by Box Behnken Design for Intestinal Lymphatic Targeting. J. Drug Deliv. Sci. Technol. 2018, 44, 181–189. [Google Scholar] [CrossRef]
- Tulej, W.; Głowacki, S. Modeling of the Drying Process of Apple Pomace. Appl. Sci. 2022, 12, 1434. [Google Scholar] [CrossRef]
- Feki, F.; Klisurova, D.; Masmoudi, M.A.; Choura, S.; Denev, P.; Trendafilova, A.; Chamkha, M.; Sayadi, S. Optimization of Microwave Assisted Extraction of Simmondsins and Polyphenols from Jojoba (Simmondsia chinensis) Seed Cake Using Box-Behnken Statistical Design. Food Chem. 2021, 356, 129670. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Zuo, L. Mathematical Modeling on Vacuum Drying of Zizyphus Jujuba Miller Slices. J. Food Sci. Technol. 2013, 50, 115–121. [Google Scholar] [CrossRef]
- Salehi, F.; Kashaninejad, M.; Jafarianlari, A. Drying Kinetics and Characteristics of Combined Infrared-Vacuum Drying of Button Mushroom Slices. Heat Mass Transf. 2017, 53, 1751–1759. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.B.; Nawi, N.M.; Abdan, K. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review: Thin-Layer Models of Fruits and Vegetable. Compr. Rev. Food Sci. Food Saf. 2016, 15, 599–618. [Google Scholar] [CrossRef]
- Darvishi, H.; Zarein, M.; Farhudi, Z. Energetic and Exergetic Performance Analysis and Modeling of Drying Kinetics of Kiwi Slices. J. Food Sci. Technol. 2016, 53, 2317–2333. [Google Scholar] [CrossRef]
- Sadeghi, E.; Haghighi Asl, A.; Movagharnejad, K. Mathematical Modelling of Infrared-dried Kiwifruit Slices under Natural and Forced Convection. Food Sci. Nutr. 2019, 7, 3589–3606. [Google Scholar] [CrossRef] [PubMed]
- Kutlu Kantar, N.; Isci, A. Effect of Different Drying Methods on Drying Characteristics of Eggplant Slices and Mathematical Modeling of Drying Processes. Acad. Food J. 2016, 14, 21–46. [Google Scholar]
- Chutani, D.; Huppertz, T.; Murphy, E. Application of Electric Field Technologies in the Manufacture of Food Powders and the Retention of Bioactive Compounds. Powders 2023, 2, 135–150. [Google Scholar] [CrossRef]
Factor | Coding | Unit | Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
Drying temperature | X1 | °C | 65 | 75 | 85 |
Electrostatic field voltage | X2 | kV | 7 | 10 | 13 |
Ultrasonic power | X3 | W | 500 | 600 | 700 |
Pretreatment time | X4 | min | 25 | 30 | 35 |
Runs | Drying Temperature (°C) | Electrostatic Field Voltage (kV) | Ultrasonic Power (W) | Pretreatment Time (min) | MR (%) |
---|---|---|---|---|---|
1 | 65 | 10 | 600 | 25 | 87.28 |
2 | 85 | 10 | 700 | 30 | 76.4 |
3 | 85 | 10 | 600 | 25 | 75.98 |
4 | 75 | 7 | 700 | 30 | 81.18 |
5 | 85 | 10 | 600 | 35 | 74.89 |
6 | 75 | 7 | 600 | 35 | 78.93 |
7 | 75 | 10 | 600 | 30 | 81.53 |
8 | 65 | 13 | 600 | 30 | 85.44 |
9 | 75 | 13 | 500 | 30 | 80.08 |
10 | 75 | 7 | 500 | 30 | 83.99 |
11 | 75 | 10 | 500 | 35 | 80.38 |
12 | 75 | 10 | 700 | 25 | 80.47 |
13 | 65 | 10 | 500 | 30 | 86.37 |
14 | 75 | 10 | 600 | 30 | 78.08 |
15 | 85 | 7 | 600 | 30 | 76.54 |
16 | 75 | 10 | 600 | 30 | 79.71 |
17 | 75 | 10 | 600 | 30 | 78.36 |
18 | 75 | 10 | 600 | 30 | 77.61 |
19 | 85 | 10 | 500 | 30 | 74.05 |
20 | 65 | 7 | 600 | 30 | 89.03 |
21 | 75 | 13 | 600 | 35 | 78 |
22 | 75 | 7 | 600 | 25 | 81.15 |
23 | 85 | 13 | 600 | 30 | 74.1 |
24 | 65 | 10 | 700 | 30 | 88.31 |
25 | 75 | 13 | 700 | 30 | 79.58 |
26 | 75 | 10 | 500 | 25 | 79.62 |
27 | 75 | 10 | 700 | 35 | 80.09 |
28 | 65 | 10 | 600 | 35 | 89.38 |
29 | 75 | 13 | 600 | 25 | 79.45 |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Significance |
---|---|---|---|---|---|---|
Model | 0.050 | 14 | 3.565 × 10−3 | 39.34 | <0.0001 | significant |
X1 | 0.050 | 1 | 0.045 | 495.19 | <0.0001 | ** |
X2 | 0.045 | 1 | 1.115 × 10−3 | 12.31 | 0.0035 | ** |
X3 | 1.115 × 10−3 | 1 | 1.318 × 10−4 | 1.45 | 0.2478 | |
X4 | 1.318 × 10−4 | 1 | 7.081× 10−5 | 0.78 | 0.3916 | |
X1X2 | 7.081 × 10−5 | 1 | 3.267× 10−5 | 0.36 | 0.5578 | |
X1X3 | 3.267 × 10−5 | 1 | 1.622 × 10−6 | 0.018 | 0.8955 | |
X1X4 | 1.622 × 10−6 | 1 | 1.633 × 10−4 | 1.80 | 0.2008 | |
X2X3 | 1.633 × 10−4 | 1 | 2.183 × 10−6 | 0.024 | 0.8789 | |
X2X4 | 2.183 × 10−6 | 1 | 1.475 × 10−5 | 0.16 | 0.6927 | |
X3X4 | 1.475 × 10−5 | 1 | 3.249 × 10−5 | 0.36 | 0.5589 | |
X12 | 3.249 × 10−5 | 1 | 3.158× 10−3 | 34.85 | <0.0001 | ** |
X22 | 3.158 × 10−3 | 1 | 3.079 × 10−4 | 3.40 | 0.0866 | |
X32 | 3.079 × 10−4 | 1 | 7.179 × 10−4 | 7.92 | 0.0138 | * |
X42 | 7.179 × 10−4 | 1 | 3.232 × 10−4 | 3.57 | 0.0799 | |
Residual | 3.232 × 10−4 | 14 | 9.062 × 10−5 | |||
Lack of Fit | 1.269× 10−3 | 10 | 1.062 × 10−4 | 2.05 | 0.2546 | not significant |
Pure Error | 1.062× 10−3 | 4 | 5.173 × 10−5 | |||
Cor Total | 2.069 × 10−4 | 28 | ||||
Total: R2 = 97.52% Adj-R2 = 95.04% CV = 1.9% |
No. | Drying Model | Model Equation | R2 | χ2 | RMSE |
---|---|---|---|---|---|
1 | Page [18] | 0.9584 | 5.9379 × 10−5 | 0.043891578 | |
2 | Henderson and Pabic [19] | 0.84707 | 0.00218 | 0.03275 | |
3 | Logarithmic [20] | 0.9893 | 1.63696 × 10−4 | 0.011606286 | |
4 | Midilli [21] | 0.99769 | 3.8042 × 10−4 | 0.005393596 | |
5 | Two-term [22] | 0.99965 | 5.78947 × 10−6 | 0.002104101 | |
6 | Cubic [23] | 0.97426 | 0.00293 | 0.050880483 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.-F.; Peng, Y.-Y.; Wang, Y.-R. Enhancing Hot Air Drying Efficiency through Electrostatic Field–Ultrasonic Coupling Pretreatment. Foods 2023, 12, 1727. https://doi.org/10.3390/foods12081727
Yang R-F, Peng Y-Y, Wang Y-R. Enhancing Hot Air Drying Efficiency through Electrostatic Field–Ultrasonic Coupling Pretreatment. Foods. 2023; 12(8):1727. https://doi.org/10.3390/foods12081727
Chicago/Turabian StyleYang, Ri-Fu, Ying-Ying Peng, and Yu-Rong Wang. 2023. "Enhancing Hot Air Drying Efficiency through Electrostatic Field–Ultrasonic Coupling Pretreatment" Foods 12, no. 8: 1727. https://doi.org/10.3390/foods12081727
APA StyleYang, R.-F., Peng, Y.-Y., & Wang, Y.-R. (2023). Enhancing Hot Air Drying Efficiency through Electrostatic Field–Ultrasonic Coupling Pretreatment. Foods, 12(8), 1727. https://doi.org/10.3390/foods12081727