Analytical and Chemometric Characterization of Sweet Pedro Ximénez Sherry Wine during Its Aging in a Criaderas y Solera System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
- -
- Young Pedro Ximénez fortified wine (YPXFW) (vintage): Each year a combined sample was taken from 5 industrial 20,000 L tanks containing the young fortified wine from that year’s harvest. One liter was taken from each of the tanks and blended to obtain a final five-liter sample. Before proceeding with the sampling, the wine from the tanks was tasted to ensure that it presented no organoleptic flaws.
- -
- Pedro Ximénez sherry wine (PXSW) aged in a Criaderas y Solera system: The system consisted of one Solera and five Criaderas that comprised 25 × 500 L casks per scale and involved the performing of regular removals, known as sacas, and replenishments, known as rocíos. The 5th Criadera was an average of 2 years old (YO); the 4th Criadera, 6 YO; the 3rd Criadera, 12 YO (PX12YO); the 2nd Criadera, 20 YO; the 1st Criadera, 30 YO; and the Solera, 40 YO (PX+30YO). Each year, over the whole 4-year research period, a combined 5 L sample was gathered by extracting 200 mL of wine from each of the 25 casks that made up each of the scales. Before proceeding with the sampling, the wines from each of the casks were tasted in order to verify that no organoleptic flaws were present.
2.2. Reagents
2.3. Parameters of Oenological Control
2.4. Organic Acids
2.5. Higher Alcohols, Aldehydes, Methanol, and Ethyl Esters
2.6. Folin–Ciocalteau Index
2.7. Phenolic Compounds and Furfurals
2.8. Determination of the Brown Color of the Wines
2.9. Tasting Sessions
2.10. Statistical Analysis
3. Results and Discussion
3.1. Parameters of Oenological Control
3.1.1. Alcoholic Strength
3.1.2. Acidic Parameters
3.1.3. Glycerol
3.1.4. Sulfates
3.1.5. Potassium and Calcium
3.1.6. Total Sulfur Dioxide
3.1.7. Density, Total Dry Extract, Reducing Substances, and Sugar-Free Extract
3.2. Organic Acids
3.3. Volatile Substances
3.3.1. Aldehydes, Methanol, and Higher Alcohols
3.3.2. Major Ethyl Esters
3.4. Folin–Ciocalteau Index, Phenolic Composition, and Lignin-Derived Compounds
3.5. Evolution of Brown Color during Aging
3.6. A Study on Predicting the Age of the Wines
3.7. Tasting Sessions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durán-Guerrero, E.; Castro, R.; de Valme García-Moreno, M.; del Carmen Rodríguez-Dodero, M.; Schwarz, M.; Guillén-Sánchez, D. Aroma of Sherry Products: A Review. Foods 2021, 10, 753. [Google Scholar] [CrossRef]
- Sherry Wines. Available online: https://www.sherry.wine/ (accessed on 15 February 2023).
- European Parliament and Council of the European Union. Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001. Off. J. Eur. Communities 2013, 347, 671–854. [Google Scholar]
- Chaves, M.; Zea, L.; Moyano, L.; Medina, M. Changes in Color and Odorant Compounds during Oxidative Aging of Pedro Ximenez Sweet Wines. J. Agric. Food Chem. 2007, 55, 3592–3598. [Google Scholar] [CrossRef]
- Ruiz, M.J.; Moyano, L.; Zea, L. Changes in Aroma Profile of Musts from Grapes Cv. Pedro Ximenez Chamber-Dried at Controlled Conditions Destined to the Production of Sweet Sherry Wine. LWT Food Sci. Technol. 2014, 59, 560–565. [Google Scholar] [CrossRef]
- Herrera, P.; Durán-Guerrero, E.; Sánchez-Guillén, M.M.; García-Moreno, M.V.; Guillén, D.A.; Barroso, C.G.; Castro, R. Effect of the Type of Wood Used for Ageing on the Volatile Composition of Pedro Ximénez Sweet Wine. J. Sci. Food Agric. 2020, 100, 2512–2521. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; Rodríguez-Dodero, C.; García-Moreno, M.D.V.; Guillén-Sánchez, D.A. Analytical, Chemometric and Sensorial Characterization of Oloroso and Palo Cortado Sherries during Their Ageing in the Criaderas y Solera System. Foods 2022, 11, 4062. [Google Scholar] [CrossRef] [PubMed]
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; Rodríguez-Dodero, M.D.C.; García-Moreno, M.d.V.; Guillén-Sánchez, D.A. Analytical and Chemometric Characterization of Fino and Amontillado Sherries during Aging in Criaderas y Solera System. Molecules 2022, 27, 365. [Google Scholar] [CrossRef]
- Consejo Regulador Envinado. (Wine-Seasoning) Technical Specifications. Available online: https://www.sherry.wine/documents/87/especificacion_tecnica_de_envinado_rev_03.pdf (accessed on 15 February 2023).
- Mangas, J.; Rodríguez, R.; Moreno, J.; Blanco, D. Volatiles in Distillates of Cider Aged in American Oak Wood. J. Agric. Food Chem. 1996, 44, 268–273. [Google Scholar] [CrossRef]
- Conner, J.M.; Paterson, A.; Piggott, J.R. Analysis of Lignin from Oak Casks Used for the Maturation of Scotch Whisky. J. Sci. Food Agric. 1992, 60, 349–353. [Google Scholar] [CrossRef]
- Pérez-Coello, M.S.; González-Viñas, M.A.; García-Romero, E.; Cabezudo, M.D.; Sanz, J. Chemical and Sensory Changes in White Wines Fermented in the Presence of Oak Chips. Int. J. Food Sci. Technol. 2000, 35, 23–32. [Google Scholar] [CrossRef]
- Canas, S. Phenolic Composition and Related Properties of Aged Wine Spirits: Influence of Barrel Characteristics. A Review. Beverages 2017, 3, 55. [Google Scholar] [CrossRef]
- Guerrero-Chanivet, M.; Valcárcel-Muñoz, M.J.; García-Moreno, M.V.; Guillén-Sánchez, D.A. Characterization of the Aromatic and Phenolic Profile of Five Different Wood Chips Used for Ageing Spirits and Wines. Foods 2020, 9, 1613. [Google Scholar] [CrossRef]
- OIV Method OIV-MA-F1-03. Determination of the Acquired Alcoholic Strength by Volume (ASV) of Concentrated Musts (CM) and Grape Sugar (or Rectified Concentrated Musts, RCM). In Compendium of International Methods of Wine and Must Analysis; OIV (Ed.) OIV: Paris, France, 2021; Volume 2, pp. 1–6. ISBN 978-2-85038-052-5. [Google Scholar]
- OIV Method OIV-MA-AS313-01. Total Acidity. In Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2021; Volume 1, pp. 1–5. ISBN 978-2-85038-053-2.
- OIV Method OIV-MA-AS313-02. Volatile Acidity. In Compendium of International Methods of Wine and Must Analysis; OIV (Ed.) OIV: Paris, France, 2021; Volume 1, pp. 1–5. ISBN 978-2-85038-053-2. [Google Scholar]
- OIV Method OIV-MA-AS312-05. Glycerol. In Compendium of International Methods of Wine and Must Analysis; OIV (Ed.) OIV: Paris, France, 2021; Volume 1, pp. 1–3. ISBN 978-2-85038-053-2. [Google Scholar]
- OIV Method OIV-MA-AS323-04B. Sulfur Dioxide. In Compendium of International Methods of Wine and Must Analysis; OIV: Paris, France, 2021; Volume 2, pp. 1–3. ISBN 978-2-85038-052-5.
- OIV Method OIV-MA-AS321-05A. Sulfates. In Compendium of International Methods of Wine and Must Analysis; OIV (Ed.) OIV: Paris, France, 2021; Volume 1, pp. 1–2. ISBN 978-2-85038-053-2. [Google Scholar]
- OIV Method OIV-MA-AS2-03A. Total Dry Matter. In Compendium of International Methods of Wine and Must Analysis; OIV (Ed.) OIV: Paris, France, 2021; Volume 1, pp. 1–5. ISBN 978-2-85038-053-2. [Google Scholar]
- OIV Method OIV-MA-AS311-01A. Reducing Substances. In Compendium of International Methods of Wine and Must Analysis; OIV (Ed.) OIV: Paris, France, 2021; Volume 1, pp. 1–5. ISBN 978-2-85038-053-2. [Google Scholar]
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; García-Moreno, M.V.; Rodríguez-Dodero, M.C.; Guillén-Sánchez, D.A. Comparative Evaluation of Brandy de Jerez Aged in American Oak Barrels with Different Times of Use. Foods 2021, 10, 288. [Google Scholar] [CrossRef] [PubMed]
- OIV Method OIV-MA-AS2-10. Folin-Ciocalteau Index. In Compendium of International Methods of Wine and Must Analysis.; OIV (Ed.) OIV: Paris, France, 2021; Volume 1, pp. 1–2. ISBN 978-2-85038-053-2. [Google Scholar]
- Schwarz, M.; Rodríguez, M.C.; Martínez, C.; Bosquet, V.; Guillén, D.; Barroso, C.G. Antioxidant Activity of Brandy de Jerez and Other Aged Distillates, and Correlation with Their Polyphenolic Content. Food Chem. 2009, 116, 29–33. [Google Scholar] [CrossRef]
- Canas, S.; Caldeira, I.; Anjos, O.; Lino, J.; Soares, A.; Belchior, A.P. Physicochemical and Sensory Evaluation of Wine Brandies Aged Using Oak and Chestnut Wood Simultaneously in Wooden Barrels and in Stainless Steel Tanks with Staves. Int. J. Food Sci. Technol. 2016, 51, 2537–2545. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory Analysis. General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- ISO 3591:1977; Sensory Analysis. Apparatus. Wine-Tasting Glass. ISO: Geneva, Switzerland, 1977.
- ISO 4121:2003; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. ISO: Geneva, Switzerland, 2003.
- Martínez de la Ossa, E.; Pérez, L.; Caro, I. Dry Extract in Sherry and Its Evolution in the Aging of Sherry. Am. J. Enol. Vitic. 1987, 38, 321–325. [Google Scholar] [CrossRef]
- Martínez de la Ossa, E.; Pérez, L.; Caro, I. Variations of the Major Volatiles through Aging of Sherry. Am. J. Enol. Vitic. 1987, 38, 293–297. [Google Scholar] [CrossRef]
- Carrascal García, V.V. Estudio de Los Ácidos Orgánicos En Brandy de Jerez y Su Relación Con Las Prácticas Tradicionales de Elaboración. Ph.D. Thesis, Universidad de Cádiz, Cádiz, Spain, 2004. [Google Scholar]
- Consejo Regulador de Vinos y Vinagres de Jerez El Enyesado. Una Práctica Vinícola Genuinamente Jerezana, Con Más de 20 Siglos de Tradición. Available online: https://www.sherry.wine/es/noticias/el-enyesado-una-practica-vinicola-genuinamente-jerezana-con-mas-de-20-siglos-de-tradicion (accessed on 29 October 2022).
- Gómez-Benítez, J.; Grandal-Delgado, M.M.; Diez-Martín, J. Study of the Acidification of Sherry Musts with Gypsum and Tartaric Acid. Am. J. Enol. Vitic. 1993, 44, 400–404. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Thomsen, M.H.; Trajano, H.L. Hydrothermal Processing in Biorefineries: Production of Bioethanol and High Added-Value Compounds of Second and Third Generation Biomass; Springer International Publishing: New York, United States, 2017; ISBN 9783319564579. [Google Scholar]
- Consejería de Agricultura Pesca y Desarrollo rural Orden de 4 de Octubre de 2022, Por La Que Se Aprueban Las Solicitudes de Modificiación Normales de Los Pliegos de Condiciones de Las Denominaciones de Origen Protegidas “Jerez-Xèrés-Sherry” y “Manzanilla-Sanlúcar de Barrameda”. Boletín Of. Junta Andal. 2022, 195, 15774/1–15774/3.
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorious, I.S. Yeast and Bacterial Modulation of Wine Aroma and Flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Flanzy, C.; Andre, P.; Benard, P.; Buret, M.; Chambroy, Y.; Jouret, C. Fermentation Intracellulaire Des Baies de Raisin Au Cours de Leur Métabolisme Anaérobie. Annu. Technol. Agric. 1974, 23, 481–500. [Google Scholar]
- Pozo-Bayón, M.A.; Moreno-Arribas, M.V. Sherry Wines. In Advances in Food and Nutrition Research; Ronald, S.J., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 63, pp. 17–40. ISBN 9780123849274. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: Volume 2, The Chemistry of Wine. Stabilization and Treatments, 2nd ed.; John Wiley & Sons Ltd., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2006; Volume 2, ISBN 9780470010372. [Google Scholar]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate Content of Beverages. J. Food Compos. Anal. 2017, 63, 184–188. [Google Scholar] [CrossRef]
- Constantini, V.; Bellincontro, A.; De Santis, D.; Botondi, R.; Mencarelli, F. Metabolic Changes of Malvasia Grapes for Wine Production during Postharvest Dehydration. J. Agric. Food Chem. 2006, 54, 3334–3340. [Google Scholar] [CrossRef]
- Bellincontro, A.; Nicoletti, I.; Valentini, M.; Tomas, A.; De Santis, D.; Corradini, D.; Mencarelli, F. Integration of Nondestructive Techniques with Destructive Analyses to Study Postharvest Water Stress of Introducción 36 Winegrapes. Am. J. Enol. Vitic. 2009, 60, 57–65. [Google Scholar] [CrossRef]
- Moreno Vigara, J.J.; Peinado Amores, R.A. Química Enológica, 1st ed.; Ediciones, A.M.V., Ed.; Ediciones Mundi-Prensa: Madrid, Spain, 2010; ISBN 978-84-96709-39-3. [Google Scholar]
- Vilela, A. Non-Saccharomyces Yeasts and Organic Wines Fermentation: Implications on Human Health. Fermentation 2020, 6, 54. [Google Scholar] [CrossRef]
- Cacho Palomar, J. El Roble, La Barrica y La Crianza Del Vino Tinto; de Aragón, C., Ed.; Institución Fernando el Católico: Zaragoza, Spain, 2009. [Google Scholar]
- Cordero-Bueso, G.; Ruiz-Muñoz, M.; González-Moreno, M.; Chirino, S.; Bernal-Grande, M.D.C.; Cantoral, J.M. The Microbial Diversity of Sherry Wines. Fermentation 2018, 4, 19. [Google Scholar] [CrossRef]
- Cernîşev, S. Analysis of Lignin-Derived Phenolic Compounds and Their Transformations in Aged Wine Distillates. Food Control 2017, 73, 281–290. [Google Scholar] [CrossRef]
- Ruiz, M.J.; Zea, L.; Moyano, L.; Medina, M. Aroma Active Compounds during the Drying of Grapes Cv. Pedro Ximenez Destined to the Production of Sweet Sherry Wine. Eur. Food Res. Technol. 2010, 230, 429–435. [Google Scholar] [CrossRef]
- Moreno-Vigara, J.J.; García-Mauricio, J.C. Pedro Ximénez and Malaga. Sweet Reinf. Fortif. Wines: Grape Biochem. Technol. Vinif. 2013, 16, 251–267. [Google Scholar] [CrossRef]
- Morales, F.J.; Jiménez-Pérez, S. Free Radical Scavenging Capacity of Maillard Reaction Products as Related to Colour and Fluorescence. Food Chem. 2001, 72, 119–125. [Google Scholar] [CrossRef]
- Ruiz-Bejarano, M.J.; Castro-Mejías, R.; del Carmen Rodríguez-Dodero, M.; García-Barroso, C. Volatile Composition of Pedro Ximénez and Muscat Sweet Sherry Wines from Sun and Chamber Dried Grapes: A Feasible Alternative to the Traditional Sun-Drying. J. Food Sci. Technol. 2016, 53, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Fabios, M.; Lopez-Toledano, A.; Mayen, M.; Merida, J.; Medina, M. Phenolic Compounds and Browning in Sherry Wines Subjected to Oxidative and Biological Aging. J. Agric. Food Chem. 2000, 48, 2155–2159. [Google Scholar] [CrossRef] [PubMed]
Descriptor | Definition |
---|---|
Odor | |
Aromatic intensity | Intensity of all of the positive aromatic notes of the wine. |
Dried fruits | Aromas of ripe and partially dehydrated fruits due to direct exposure to sunlight (raisins, figs, dates, prunes, etc.). |
Oak | Aromas of wood, with hints of vanilla and spices. |
Toasted | Aromas of roasted toffee, honey, coffee, dark chocolate, liquorice, etc. |
Flavor | |
Sweetness | Very sweet sensation but not sickening. |
Equilibrium | Good integration of the alcohol, acidity, and sugar, without astringency, but with the aromatic reminder of the oak, as appropriate for an oak-aged wine. |
Persistence | Time evaluation of the olfactory–gustatory notes remaining after the final sip. |
(a) | YPXFW | 5th Cra. | 4th Cra. | 3rd Cra. | 2nd Cra. | 1st Cra. | Solera |
---|---|---|---|---|---|---|---|
Density | 1139 ± 4 a | 1143 ± 1 b | 1146 ± 1 c | 1150 ± 1 d | 1154 ± 1 e | 1160 ± 2 f | 1167 ± 2 g |
Alcoholic strength | 17.60 ± 0.13 a | 17.07 ± 0.08 b | 17.02 ± 0.10 b | 16.70 ± 0.05 c | 16.50 ± 0.10 d | 16.20 ± 0.10 e | 15.70 ± 0.05 f |
pH | 4.50 ± 0.35 a | 4.45 ± 0.06 a | 4.41 ± 0.02 a,c | 4.25 ± 0.02 c | 4.12 ± 0.04 b,c | 4.07 ± 0.02 b | 4.06 ± 0.01 b |
Total acidity | 2.95 ± 0.54 a | 3.29 ± 0.21 b | 3.58 ± 0.16 c | 4.21 ± 0.09 d | 4.81 ± 0.04 e | 5.03 ± 0.05 e,f | 5.25 ± 0.03 f |
Volatile acidity | 0.52 ± 0.04 a | 0.56 ± 0.02 b | 0.62 ± 0.03 c | 0.68 ± 0.02 d | 0.77 ± 0.03 e | 0.92 ± 0.02 f | 1.06 ± 0.06 g |
Glycerol | 2.13 ± 0.93 a | 3.33 ± 0.06 b | 3.78 ± 0.07 c | 4.46 ± 0.04 d | 6.05 ± 0.04 e | 7.19 ± 0.04 f | 9.99 ± 0.04 g |
(b) | YPXFW | 5th Cra. | 4th Cra. | 3rd Cra. | 2nd Cra. | 1st Cra. | Solera |
Tartaric ac. | 3602 ± 332 a | 2402 ± 89 b | 1571 ± 99 c | 1299 ± 89 d | 961 ± 12 e | 876 ± 16 e,f | 709 ± 14 f |
Malic ac. | 779 ± 159 a | 955 ± 54 b | 1100 ± 25 c | 1330 ± 47 d | 1753 ± 49 e | 1990 ± 39 f | 2274 ± 45 g |
Citric ac. | 210 ± 107 a | 223 ± 18 a,b | 232 ± 7 a,b | 270 ± 7 b,c | 317 ± 11 c | 351 ± 7 c,d | 385 ± 8 d |
Lactic ac. | 191 ± 94 a | 230 ± 52 a | 262 ± 25 b | 353 ± 17 c | 458 ± 11 d | 516 ± 17 e | 653 ± 17 f |
Succinic ac. | 168 ± 114 a | 187 ± 13 a | 210 ± 13 a,b | 248 ± 14 b,c | 286 ± 15 c | 383 ± 17 d | 514 ± 16 e |
Sulfates | 0.80 ± 0.24 a | 0.75 ± 0.04 a | 0.83 ± 0.04 a | 0.94 ± 0.04 b | 1.12 ± 0.03 c | 1.27 ± 0.03 d | 1.38 ± 0.04 d |
Calcium | 80 ± 17 a | 76 ± 3 a,d | 70 ± 4 d | 75 ± 3 a,d | 86 ± 3 a,b | 92 ± 1 b,c | 99 ± 2 c |
Potassium | 3163 ± 449 a | 2309 ± 63 d | 2489 ± 55 c,d | 2547 ± 10 b,c | 2637 ± 18 b,c | 2724 ± 13 b | 2898 ± 8 b |
Total SO2 | 80 ± 13 a | 50 ± 5 b | 30 ± 3 c | 12 ± 2 d | 5 ± 1 e | 3 ± 0 e | 1 ± 0 e |
Total dry ext. | 427.8 ± 11.4 a | 436.7 ± 3.7 b | 446.5 ± 3.3 c | 454.3 ± 1.5 d | 465.6 ± 2.0 e | 482.4 ± 5.5 f | 497.4 ± 5.1 g |
Red. subst. | 407.0 ± 11.00 a | 414.7 ± 3.5 b | 423.3 ± 3.2 c | 429.3 ± 1.5 c | 437.7 ± 2.3 d | 451.3 ± 5.5 e | 462.3 ± 5.1 f |
Sugar-free ext. | 20.83 ± 1.86 a | 22.03 ± 0.31 b | 23.13 ± 0.12 c | 25.00 ± 0.10 d | 27.97 ± 0.29 e | 31.03 ± 0.40 f | 35.07 ± 0.29 g |
YPXFW | 5th Cra. | 4th Cra. | 3rd Cra. | 2nd Cra. | 1st Cra. | Solera | |
---|---|---|---|---|---|---|---|
Acetaldehyde | 42.7 ± 16.8 a | 48.7 ± 6.0 a | 56.0 ± 7.0 b | 68.3 ± 5.5 c,d | 62.3 ± 2.5 b,c,d | 64.0 ± 5.0 b,c,d | 66.7 ± 4.0 d |
Diethyl-acetal | 5.7 ± 1.5 a | 5.7 ± 1.2 a | 6.3 ± 1.5 a,b | 8.3 ± 1.5 c | 8.0 ± 1.0 c | 7.7 ± 0.6 b,c | 8.7 ± 0.6 c |
Methanol | 159.3 ± 15.1 a | 143.7 ± 6.7 c | 138.3 ± 7.4 b,c | 143.3 ± 5.7 c | 138.7 ± 6.5 b,c | 130.0 ± 3.6 b | 135.0 ± 2.6 b,c |
N-Propanol | 18.7 ± 4.0 a,b,c | 16.7 ± 3.5 b | 18.3 ± 1.5 b,c | 20.3 ± 2.5 a,c | 18.3 ± 1.2 b,c | 21.7 ± 3.5 a,c | 19.7 ± 1.5 a,b,c |
Isobutanol | 11.7 ± 3.2 a | 10.7 ± 2.5 a | 7.7 ± 1.5 b | 7.7 ± 0.6 b | 10.3 ± 0.6 a | 11.0 ± 1.0 a | 11.7 ± 0.6 a |
2-methyl-1-butanol | 2.0 ± 1.0 a | 2.7 ± 0.6 a | 2.3 ± 0.6 a | 4.3 ± 0.6 c | 5.7 ± 0.6 b | 6.0 ± 1.0 b | 7.3 ± 0.6 d |
3-methyl-1-butanol | 9.3 ± 3.5 a | 12.3 ± 1.2 c | 10.7 ± 1.5 a,c | 14.3 ± 1.5 c | 22.0 ± 3.6 b | 23.7 ± 1.5 b,d | 25.3 ± 1.5 d |
Hexanol | 0.22 ± 0.06 a | 0.29 ± 0.02 b | 0.26 ± 0.03 c | 0.25 ± 0.01 a,c | 0.28 ± 0.01 b,c | 0.30 ± 0.02 b,d | 0.32 ± 0.01 d |
2-phenylethanol | 1.79 ± 1.20 a | 3.56 ± 0.65 d | 3.75 ± 0.45 d | 4.60 ± 0.11 c | 5.14 ± 0.26 b,c | 5.38 ± 0.48 b | 5.57 ± 0.23 b |
Ethyl acetate | 42.7 ± 10.0 a | 57.0 ± 6.0 b | 56.7 ± 3.1 b | 63.3 ± 4.0 b | 108.7 ± 3.5 c | 121.7 ± 8.0 d | 129.0 ± 2.6 e |
Ethyl lactate | 2.89 ± 1.44 a | 11.45 ± 1.18 b | 14.13 ± 0.68 c | 24.24 ± 0.49 d | 29.73 ± 0.60 e | 40.70 ± 1.07 f | 51.37 ± 1.71 g |
Diethyl succinate | 0.35 ± 0.14 a | 3.02 ± 0.56 b | 4.94 ± 0.12 c | 5.74 ± 0.10 d | 6.78 ± 0.26 e | 8.29 ± 0.13 f | 11.17 ± 0.13 g |
Ethyl hexanoate | 0.04 ± 0.02 a | 0.07 ± 0.02 b | 0.07 ± 0.03 b | 0.11 ± 0.01 c | 0.12 ± 0.03 c,e | 0.15 ± 0.03 d,e | 0.14 ± 0.01 e |
Ethyl octanoate | 0.12 ± 0.01 a | 0.21 ± 0.05 b | 0.36 ± 0.03 c | 0.53 ± 0.04 d | 0.70 ± 0.07 e | 0.99 ± 0.05 f | 1.34 ± 0.07 g |
Ethyl decanoate | 0.72 ± 0.04 a,c | 0.72 ± 0.10 a,c | 0.68 ± 0.04 a,b | 0.75 ± 0.03 c | 0.66 ± 0.02 b | 0.70 ± 0.03 a,c | 0.71 ± 0.02 a,c |
Ethyl dodecanoate | 0.14 ± 0.05 a | 0.19 ± 0.02 b | 0.21 ± 0.02 c | 0.24 ± 0.02 d | 0.23 ± 0.01 c,d | 0.23 ± 0.02 c,d | 0.20 ± 0.01 e |
Ethyl tetradecanoate | 0.03 ± 0.01 a | 0.06 ± 0.03 b | 0.08 ± 0.02 b | 0.16 ± 0.02 c | 0.19 ± 0.02 d | 0.21 ± 0.03 d | 0.21 ± 0.04 d |
YPXFW | 5th Cra. | 4th Cra. | 3rd Cra. | 2nd Cra. | 1st Cra. | Solera | |
---|---|---|---|---|---|---|---|
FCI | 981 ± 48 a | 1248 ± 22 b | 1651 ± 23 c | 2034 ± 16 d | 2532 ± 25 e | 2664 ± 13 f | 2871 ± 8 g |
Caffeic ac. | 8.54 ± 1.44 a,c | 9.63 ± 0.32 b,c | 8.98 ± 0.13 c | 7.79 ± 0.16 d | 5.99 ± 0.17 e | 4.63 ± 0.18 f | 3.07 ± 0.13 g |
p-Coumaric ac. | 1.40 ± 0.39 a | 1.68 ± 0.04 b | 1.93 ± 0.06 c | 2.15 ± 0.08 c | 2.86 ± 0.09 d | 4.16 ± 0.15 e | 4.75 ± 0.19 f |
Ferulic ac. | 0.86 ± 0.23 a | 0.94 ± 0.04 a,b | 1.02 ± 0.03 b | 0.96 ± 0.05 a,b | 0.88 ± 0.02 a | 0.71 ± 0.06 c | 0.52 ± 0.04 d |
Gallic ac. | 7.45 ± 3.33 a | 9.75 ± 0.34 b | 13.01 ± 0.21 c | 15.85 ± 0.13 d | 21.27 ± 0.44 e | 28.09 ± 0.64 f | 34.26 ± 0.47 g |
p-Hydroxybenzoic ac. | 3.70 ± 0.92 a | 4.24 ± 0.08 b | 4.29 ± 0.03 b | 4.49 ± 0.07 b | 6.14 ± 0.08 c | 8.07 ± 0.22 d | 10.29 ± 0.29 e |
Protocatechuic ac. | 4.53 ± 1.25 a | 5.58 ± 0.11 b | 8.18 ± 0.13 c | 10.35 ± 0.44 d | 14.30 ± 0.22 e | 19.18 ± 0.67 f | 25.54 ± 0.27 g |
Syringic ac. | 0.60 ± 0.13 a | 1.42 ± 0.07 b | 2.35 ± 0.07 c | 2.80 ± 0.11 d | 3.61 ± 0.10 e | 4.37 ± 0.06 f | 5.04 ± 0.09 g |
Vanillic ac. | 0.42 ± 0.13 a | 0.79 ± 0.05 b | 1.35 ± 0.04 c | 1.67 ± 0.07 d | 2.80 ± 0.07 e | 3.36 ± 0.10 f | 4.03 ± 0.07 g |
Trans-Caftaric ac. | 4.13 ± 0.69 a | 3.78 ± 0.08 b | 3.13 ± 0.11 c | 2.75 ± 0.13 d | 1.76 ± 0.09 e | 0.86 ± 0.08 f | 0.60 ± 0.07 f |
Cis-p-Coutaric ac. | 2.32 ± 0.61 a | 2.02 ± 0.03 b | 1.90 ± 0.06 b | 1.78 ± 0.10 b | 1.38 ± 0.06 c | 0.84 ± 0.07 d | 0.66 ± 0.06 d |
Trans-p-Coutaric ac. | 3.47 ± 0.69 a | 3.12 ± 0.06 b | 2.54 ± 0.04 c | 2.19 ± 0.15 d | 1.75 ± 0.04 e | 1.01 ± 0.08 f | 0.86 ± 0.07 f |
Fertaric ac. | 2.24 ± 0.61 a | 1.76 ± 0.06 b | 1.43 ± 0.05 c | 1.22 ± 0.09 c | 0.77 ± 0.06 d | 0.32 ± 0.03 e | 0.25 ± 0.03 e |
p-Hydroxybenz- aldehyde | 0.28 ± 0.07 a | 0.58 ± 0.06 b | 1.03 ± 0.07 c | 1.15 ± 0.09 d | 2.07 ± 0.07 e | 3.28 ± 0.10 f | 3.91 ± 0.11 g |
Syringaldehyde | 0.64 ± 0.23 a | 1.12 ± 0.13 b | 1.79 ± 0.05 c | 2.15 ± 0.08 d | 3.65 ± 0.07 e | 4.74 ± 0.11 f | 5.65 ± 0.12 g |
Vanillin | 0.54 ± 0.09 a | 0.77 ± 0.03 b | 1.03 ± 0.05 c | 1.33 ± 0.07 d | 2.04 ± 0.07 e | 2.65 ± 0.09 f | 2.94 ± 0.07 g |
Furfural | 1.63 ± 0.36 a | 3.83 ± 0.14 b | 7.82 ± 0.23 c | 16.92 ± 0.44 d | 26.91 ± 0.60 e | 41.44 ± 0.86 f | 52.38 ± 0.48 g |
5-Hydroxymethyl- furfural | 18.6 ± 1.4 a | 104.1 ± 6.2 b | 293.2 ± 5.1 c | 550.8 ± 6.9 d | 993.5 ± 7.1 e | 1178.8 ± 13.0 f | 1327.1 ± 17.1 g |
Brown color | 1.01 ± 0.17 a | 2.78 ± 0.05 b | 4.21 ± 0.05 c | 10.42 ± 0.40 d | 12.94 ± 0.10 e | 14.38 ± 0.16 f | 16.36 ± 0.24 g |
Model | Regression | R2 (Adjusted for DF) | p-Value Model (95%) |
---|---|---|---|
PX1 | Average age (years) = −21.6212 + 0.018832 × Malic ac. (mg/L) + 0.0346286 × Succinic ac. (mg/L) | 98.5422 | 0.0000 |
PX2 | Average age (years) = −4.95456 + 0.0967299 × Ethyl acetate (mg/L) − 1.50828 × 2-phenylethanol (mg/L) + 0.440142 × Ethyl lactate (mg/L) + 13.7337 × Ethyl octanoate (mg/L) | 99.6965 | 0.0000 |
PX3 | Average age (years) = −12.3699 + 0.618877 × Gallic ac. (mg/L) + 1.33241 × Syringic ac. (mg/L) − 0.810732 × p-coumaric ac. (mg/L) + 3.24606 × Fertaric ac. (mg/L) + 0.521507 × Furfural (mg/L) | 99.9546 | 0.0000 |
PX4 | Average age (years) = −49.1118 + 33.7166 × Volatile acidity (g AcH/L) + 9.59436 × Sulfates (g K2SO4/L) + 1.15126 × Sugar − Free Extract (g/L) | 99.4990 | 0.0000 |
PX5 | Average age (years) = −17.5837 + 0.00476384 × Malic ac. (mg/L) + 0.30168 × 2-phenylethanol (mg/L) + 0.942647 × Gallic ac. (mg/L) + 0.585878 × Syringic ac. (mg/L) − 0.56033 × p-coumaric ac. (mg/L) + 4.80577 × Fertaric ac. (mg/L) + 0.362257 × Furfural (mg/L) − 0.222374 × sugar-free extract (g/L) | 99.9918 | 0.0000 |
PX5 II * | Average age (years) = −19.3515 + 0.755572 × Syringic ac. (mg/L) + 2.05351 × p-coumaric ac. (mg/L) + 0.477118 × sugar-free extract (g/L) + 0.00322686 × Malic ac. (mg/L) + 0.187772 × 2-phenylethanol (mg/L) + 0.292462 × Gallic ac. (mg/L) − 0.0484612 × Fertaric ac. (mg/L) + 0.182686 × Furfural (mg/L) | 97.4728 |
Sample | Average Age (Years) | Forecast Age (Years) | Standard Forecast Error | Absolute Error (Years) |
---|---|---|---|---|
6 | 2 | 2.9852 | 0.1779 | 0.9852 |
10 | 6 | 7.1515 | 0.1885 | 1.1515 |
14 | 12 | 11.7416 | 0.1823 | −0.2584 |
18 | 20 | 20.2913 | 0.1865 | 0.2194 |
22 | 30 | 30.9169 | 0.2323 | 0.9169 |
26 | 40 | 39.0538 | 0.1998 | −0.9462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; del Carmen Rodríguez-Dodero, M.; Butrón-Benítez, D.; de Valme García-Moreno, M.; Guillén-Sánchez, D.A. Analytical and Chemometric Characterization of Sweet Pedro Ximénez Sherry Wine during Its Aging in a Criaderas y Solera System. Foods 2023, 12, 1911. https://doi.org/10.3390/foods12091911
Valcárcel-Muñoz MJ, Guerrero-Chanivet M, del Carmen Rodríguez-Dodero M, Butrón-Benítez D, de Valme García-Moreno M, Guillén-Sánchez DA. Analytical and Chemometric Characterization of Sweet Pedro Ximénez Sherry Wine during Its Aging in a Criaderas y Solera System. Foods. 2023; 12(9):1911. https://doi.org/10.3390/foods12091911
Chicago/Turabian StyleValcárcel-Muñoz, Manuel J., María Guerrero-Chanivet, María del Carmen Rodríguez-Dodero, Daniel Butrón-Benítez, María de Valme García-Moreno, and Dominico A. Guillén-Sánchez. 2023. "Analytical and Chemometric Characterization of Sweet Pedro Ximénez Sherry Wine during Its Aging in a Criaderas y Solera System" Foods 12, no. 9: 1911. https://doi.org/10.3390/foods12091911
APA StyleValcárcel-Muñoz, M. J., Guerrero-Chanivet, M., del Carmen Rodríguez-Dodero, M., Butrón-Benítez, D., de Valme García-Moreno, M., & Guillén-Sánchez, D. A. (2023). Analytical and Chemometric Characterization of Sweet Pedro Ximénez Sherry Wine during Its Aging in a Criaderas y Solera System. Foods, 12(9), 1911. https://doi.org/10.3390/foods12091911