Simple Purification and Antimicrobial Properties of Bacteriocin-like Inhibitory Substance from Bacillus Species for the Biopreservation of Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation and Identification of Bacillus Species
2.3. Screening of Isolates for Antimicrobial Activity
2.4. Determination of Optimum Conditions for Growth and BLIS Production
2.5. Determination of Total Protein Concentration
2.6. Optimal Conditions for Partial Purification of BLIS via the Aqueous Two-Phase System
2.6.1. Effect of Different Constructions of the Aqueous Two-Phase System
2.6.2. Effect of PEG Molecular Weight and Concentration
2.6.3. Effect of Salt Type and Concentration
2.6.4. Effect of NaCl Concentration
2.7. Thermal and pH Stability
2.8. Determination of Minimum Inhibitory and Bactericidal Concentrations
2.9. Cytotoxicity Assessment
2.10. Application of BLIS on Cheese Surfaces and Ripening Room Walls
2.11. Statistical Analysis
3. Results
3.1. Isolation and Identification of BLIS-Producing Bacillus Species
3.2. Bacillus Species Growth, BLIS Production, and Influence of Growth Temperature
3.3. Optimal Aqueous Two-Phase System Conditions for Purification of BLIS
3.4. Effect of Temperature and pH on BLIS Activity
3.5. In Vitro Cytotoxicity Evaluation of BLIS
3.6. Application of BLIS to Cheese Surfaces and Ripening Room Walls
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milioni, C.; Martínez, B.; Degl’Innocenti, S.; Turchi, B.; Fratini, F.; Cerri, D.; Fischetti, R. A novel bacteriocin produced by Lactobacillus plantarum LpU4 as a valuable candidate for biopreservation in artisanal raw milk cheese. Dairy Sci. Technol. 2015, 95, 479–494. [Google Scholar] [CrossRef]
- Beresford, T.; Williams, A. The Microbiology of Cheese Ripening. In Cheese: Chemistry, Physics and Microbiology, 3rd ed.; Fox, P.F., McSweeney, P.L., Cogan, T.M., Guinee, T.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 1, pp. 287–318. [Google Scholar]
- Allerberger, F.; Wagner, M. Listeriosis: A resurgent foodborne infection. Clin. Microbiol. Infect. 2010, 16, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Moro, A.; Libran, C.M.; Berruga, M.I.; Zalacain, A.; Carmona, M. Mycotoxicogenic fungal inhibition by innovative cheese cover with aromatic plants. J. Sci. Food Agric. 2013, 93, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Ledenbach, L.H.; Marshall, R.T. Microbiological Spoilage of Dairy Products. In Compendium of the Microbiological Spoilage of Foods and Beverages; Springer: Berlin/Heidelberg, Germany, 2009; pp. 41–67. [Google Scholar]
- Jeršek, B.; Ulrih, N.P.; Skrt, M.; Gavarić, N.; Božin, B.; Možina, S.S. Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum. Arch. Ind. Hyg. Toxicol. 2014, 65, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Resa, C.P.O.; Gerschenson, L.N.; Jagus, R.J. Natamycin and nisin supported on starch edible films for controlling mixed culture growth on model systems and Port Salut cheese. Food Control 2014, 44, 146–151. [Google Scholar] [CrossRef]
- Rai, M.; Pandit, R.; Gaikwad, S.; Kövics, G. Antimicrobial peptides as natural bio-preservative to enhance the shelf-life of food. J. Food Sci. Technol. 2016, 53, 3381–3394. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, J.; Montville, T.J.; Nes, I.F.; Chikindas, M.L. Bacteriocins: Safe, natural antimicrobials for food preservation. Int. J. Food Microbiol. 2001, 71, 1–20. [Google Scholar] [CrossRef]
- Nadar, S.S.; Pawar, R.G.; Rathod, V.K. Recent advances in enzyme extraction strategies: A comprehensive review. Int. J. Biol. Macromol. 2017, 101, 931–957. [Google Scholar] [CrossRef]
- Jozala, A.F.; de Lencastre Novaes, L.C.; Mazzola, P.G.; Oliveira-Nascimento, L.; Penna, T.C.V.; Teixeira, J.A.; Júnior, A.P. Low-cost purification of nisin from milk whey to a highly active product. Food Bioprod. Process. 2015, 93, 115–121. [Google Scholar] [CrossRef]
- Lappe, R.; Sant’Anna, V.; Brandelli, A. Extraction of the antimicrobial peptide cerein 8A by aqueous two-phase systems and aqueous two-phase micellar systems. Nat. Prod. Res. 2012, 26, 2259–2265. [Google Scholar] [CrossRef]
- Jamaluddin, N.; Stuckey, D.C.; Ariff, A.B.; Faizal Wong, F.W. Novel approaches to purifying bacteriocin: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2453–2465. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.; Tao, Y.; Xie, S.; Zhu, Y.; Chen, D.; Wang, X.; Yuan, Z. Aqueous two-phase system (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, E.S.; Song, K.J.; Kim, B.M.; Ham, J.S.; Oh, M.H. Development of desiccation-tolerant probiotic biofilms inhibitory for growth of foodborne pathogens on stainless steel surfaces. Foods 2022, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.B.; Balolong, M.P.; Kim, S.H.; Oh, J.K.; Lee, J.Y.; Kang, D.K. Isolation and characterization of a broad spectrum bacteriocin from Bacillus amyloliquefaciens RX7. BioMed. Res. Int. 2016, 2016, 8521476. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.S.; Lopes, A.M.; de Carvalho, S.-E.V.; de Oliveira, R.-Y.C.; de Souza, O.R.P. Bacteriocin partitioning from a clarified fermentation broth of Lactobacillus plantarum ST16Pa in aqueous two-phase systems with sodium sulfate and choline-based salts as additives. Process Biochem. 2018, 66, 212–221. [Google Scholar]
- Park, H.J.; Khang, Y.H. Simple and rapid extraction of a bacteriocin produced by Streptococcus parauberis Z49 from fermented cultures. Korean J. Microbiol. 2010, 46, 291–295. [Google Scholar]
- An, Y.; Wang, Y.; Liang, X.; Yi, H.; Zuo, Z.; Xu, X.; Han, X. Purification and partial characterization of M1-UVs300, a novel bacteriocin produced by Lactobacillus plantarum isolated from fermented sausage. Food Control 2017, 81, 211–217. [Google Scholar] [CrossRef]
- Xiang, Y.Z.; Li, X.Y.; Zheng, H.L.; Chen, J.Y.; Lin, L.B.; Zhang, Q.L. Purification and antibacterial properties of a novel bacteriocin against Escherichia coli from Bacillus subtilis isolated from blueberry ferments. LWT—Food Sci. Technol. 2021, 146, 111456. [Google Scholar] [CrossRef]
- Ayed, H.B.; Maalej, H.; Hmidet, N.; Nasri, M. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J. Glob. Antimicrob. Resist. 2015, 3, 255–261. [Google Scholar] [CrossRef]
- Park, W.; Yoo, J.; Oh, S.; Ham, J.S.; Jeong, S.G.; Kim, Y. Microbiological characteristics of Gouda cheese manufactured with pasteurized and raw milk during ripening using next generation sequencing. Food Sci. Anim. Resour. 2019, 39, 585. [Google Scholar] [CrossRef]
- Mercado, V.; Olmos, J. Bacteriocin production by Bacillus species: Isolation, characterization, and application. Probiotics Antimicrob. 2022, 14, 1151–1169. [Google Scholar] [CrossRef] [PubMed]
- Salazar, F.; Ortiz, A.; Sansinenea, E. Characterisation of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad-spectrum antimicrobial activity. J. Glob. Antimicrob. Resist. 2017, 11, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Vaca, J.; Ortiz, A.; Sansinenea, E. Bacillus sp. bacteriocins: Natural weapons against bacterial enemies. Curr. Med. Chem. 2022, 29, 2093–2108. [Google Scholar] [CrossRef] [PubMed]
- Basi-Chipalu, S.; Sthapit, P.; Dhital, S. A review on characterization, applications and structure-activity relationships of Bacillus species-produced bacteriocins. Drug Discov. Ther. 2022, 16, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Butkhot, N.; Soodsawaeng, P.; Vuthiphandchai, V.; Nimrat, S. Characterisation and biosafety evaluation of a novel bacteriocin produced by Bacillus velezensis BUU004. Int. Food Res. J. 2019, 26, 1617–1625. [Google Scholar]
- Abanoz, H.S.; Kunduhoglu, B. Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria. Korean J. Food Sci. Anim. Resour. 2018, 38, 1064–1079. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Bai, J.; Li, W.; Cai, Z.; Ouyang, F. Optimization of conditions for bacteriocin extraction in PEG/salt aqueous two-phase systems using statistical experimental designs. Biotechnol. Prog. 2001, 17, 366–368. [Google Scholar] [CrossRef]
- Raja, S.; Murty, V.R.; Thivaharan, V.; Rajasekar, V.; Ramesh, V. Aqueous two phase systems for the recovery of biomolecules–a review. Sci. Technol. 2011, 1, 7–16. [Google Scholar] [CrossRef]
- Jawan, R.; Abbasiliasi, S.; Tan, J.S.; Halim, M.; Mustafa, S.; Lee, B.H.; Ariff, A.B. Extractive fermentation for recovery of bacteriocin-like inhibitory substances derived from Lactococcus lactis Gh1 using PEG2000/Dextran T500 aqueous two-phase system. Fermentation 2021, 7, 257. [Google Scholar] [CrossRef]
- Sidek, N.L.M.; Tan, J.S.; Abbasiliasi, S.; Wong, F.W.F.; Mustafa, S.; Ariff, A.B. Aqueous two-phase flotation for primary recovery of bacteriocin-like inhibitory substance (BLIS) from Pediococcus acidilactici Kp10. J. Chromatogr. B 2016, 1027, 81–87. [Google Scholar] [CrossRef]
- Andrews, B.A.; Asenjo, J.A. Theoretical and experimental evaluation of hydrophobicity of proteins to predict their partitioning behavior in aqueous two phase systems: A review. Sep. Sci. Technol. 2010, 45, 2165–2170. [Google Scholar] [CrossRef]
- Cascone, O.; Andrews, B.A.; Asenjo, J.A. Partitioning and purification of thaumatin in aqueous two-phase systems. Enzyme Microb. 1991, 13, 629–635. [Google Scholar] [CrossRef]
- Organji, S.R.; Abulreesh, H.H.; Elbanna, K.; Osman, G.E.; Almalki, M.H. Diversity and characterization of Staphylococcus spp. in food and dairy products: A foodstuff safety assessment. J. Microbiol. Biotechnol. Food Sci. 2018, 7, 586. [Google Scholar] [CrossRef]
- Lianou, D.T.; Michael, C.K.; Solomakos, N.; Vasileiou, N.G.; Petinaki, E.; Mavrogianni, V.S.; Fthenakis, G.C. Isolation of biofilm-forming staphylococci from the bulk-tank milk of small ruminant farms in Greece. Foods 2023, 12, 2836. [Google Scholar] [CrossRef]
- Radmehr, B.; Zaferanloo, B.; Tran, T.; Beale, D.J.; Palombo, E.A. Prevalence and characteristics of Bacillus cereus group isolated from raw and pasteurised milk. Curr. Microbiol. 2020, 77, 3065–3075. [Google Scholar] [CrossRef]
- Serra, R.; Abrunhosa, L.; Kozakiewicz, Z.; Venâncio, A.; Lima, N. Use of ozone to reduce molds in a cheese ripening room. J. Food Prot. 2003, 66, 2355–2358. [Google Scholar] [CrossRef] [PubMed]
Indicator Strains | Isolates | ||
---|---|---|---|
Bacillus velezensis Y120-8 | Bacillus amyloliquefaciens Y138-6 | Bacillus subtilis Y167-2 | |
Staphylococcus aureus | 19.97 ± 0.5 | 24.03 ± 0.4 | 22.24 ± 0.5 |
Listeria monocytogenes | 18.31 ± 0.2 | 18.88 ± 0.7 | 18.65 ± 0.3 |
Bacillus cereus | 20.58 ± 0.3 | 22.89 ± 0.5 | 20.03 ± 0.1 |
Penicillium sp. | 19.58 ± 0.6 | 21.13 ± 0.5 | 21.32 ± 0.5 |
Salmonella enteritidis | - | - | - |
Escherichia coli | - | 21.78 ± 0.37 | - |
Time (h) | Bacillus velezensis Y120-8 | Bacillus amyloliquefaciens Y138-6 | Bacillus subtilis Y167-2 | |||
---|---|---|---|---|---|---|
OD600 | Diameter of Inhibition Zone (mm) | OD600 | Diameter of Inhibition Zone (mm) | OD600 | Diameter of Inhibition Zone (mm) | |
6 | 0.1 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.0 ± 0.0 |
12 | 0.2 ± 0.0 | 16.1 ± 0.8 | 0.4 ± 0.0 | 14.4 ± 0.1 | 0.2 ± 0.0 | 0.0 ± 0.0 |
18 | 0.2 ± 0.0 | 17.4 ± 0.3 | 0.4 ± 0.0 | 17.9 ± 0.1 | 0.3 ± 0.0 | 17.9 ± 0.2 |
24 | 0.4 ± 0.1 | 20.4 ± 0.6 | 0.5 ± 0.1 | 20.1 ± 0.8 | 0.4 ± 0.0 | 19.0 ± 0.5 |
30 | 0.7 ± 0.1 | 20.6 ± 0.7 | 0.6 ± 0.0 | 20.7 ± 0.1 | 0.7 ± 0.1 | 21.2 ± 0.1 |
36 | 0.8 ± 0.1 | 21.6 ± 0.3 | 0.6 ± 0.1 | 20.7 ± 0.4 | 0.7 ± 0.0 | 21.7 ± 0.4 |
42 | 0.8 ± 0.1 | 21.5 ± 0.1 | 0.5 ± 0.1 | 21.1 ± 0.1 | 0.8 ± 0.0 | 21.8 ± 0.3 |
48 | 0.9 ± 0.0 | 22.0 ± 0.1 | 0.7 ± 0.0 | 21.3 ± 0.4 | 0.8 ± 0.0 | 23.0 ± 0.0 |
72 | 0.8 ± 0.1 | 22.3 ± 0.2 | 0.9 ± 0.0 | 21.4 ± 0.1 | 0.8 ± 0.0 | 22.7 ± 0.4 |
Parameters | Bacillus velezensis Y120-8 | Bacillus amyloliquefaciens Y138-6 | Bacillus subtilis Y167-2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Specific Activity (AU/mg) | Purification Factor | Yield (%) | Specific Activity (AU/mg) | Purification Factor | Yield (%) | Specific Activity (AU/mg) | Purification Factor | Yield (%) | |
Supernatant (Control) | 189.4 ± 22.3 | 1 | 100 | 256.9 ± 31.4 | 1 | 100 | 243.1 ± 19.5 | 1 | 100 |
PEG MW (g/mol) | |||||||||
1000 | 401.2 ± 46.8 | 2.1 | 93.5 | 732.3 ± 51.1 | 2.9 | 93.2 | 702.8 ± 54.5 | 2.9 | 89.1 |
3000 | 386.1 ± 26.1 | 2 | 81.3 | 694.8 ± 61.0 | 2.7 | 86.5 | 549.4 ± 51.2 | 2.3 | 78.6 |
4000 | 392.4 ± 31.8 | 2.1 | 81.7 | 655.4 ± 55.5 | 2.6 | 70.7 | 573.5 ± 35.1 | 2.4 | 73.1 |
10,000 | 336.0 ± 36.2 | 1.8 | 63.6 | 588.9 ± 47.8 | 2.3 | 46.5 | 445.3 ± 50.2 | 1.8 | 53.7 |
PEG concentration (%) | |||||||||
10 | 101.6 ± 8.1 | 0.5 | 78.7 | 570.9 ± 43.5 | 2.2 | 60.7 | 495.1 ± 35.1 | 2 | 82.8 |
15 | 410.6 ± 17.4 | 2.2 | 88.3 | 817.2 ± 53.6 | 3.2 | 91.6 | 681.0 ± 41.4 | 2.8 | 82 |
20 | 337.0 ± 24.6 | 1.8 | 93.6 | 811.1 ± 44.1 | 3.2 | 93.4 | 613.1 ± 85.1 | 2.5 | 91.8 |
25 | 211.3 ± 15.3 | 1.1 | 82.5 | 700.6 ± 50.3 | 2.7 | 82.4 | 540.7 ± 33.8 | 2.2 | 84.6 |
Inorganic salt | |||||||||
Na3C6H5O7 | 317.1 ± 31.3 | 1.7 | 88.6 | 659.4 ± 39.5 | 2.6 | 89.7 | 511.7 ± 50.2 | 2.1 | 80.1 |
(NH4)2SO4 | 383.6 ± 40.7 | 2 | 92.8 | 803.8 ± 45.1 | 3.1 | 92.6 | 680.9 ± 41.3 | 2.8 | 91.3 |
KH2PO4 | 165.3 ± 22.5 | 0.9 | 82.1 | 299.3 ± 34.9 | 1.2 | 84.7 | 383.6 ± 35.4 | 1.6 | 80.7 |
(NH4)2SO4 concentration (%) | |||||||||
15 | - | - | - | - | - | - | - | - | - |
20 | 363.8 ± 42.1 | 1.9 | 93.8 | 810.5 ± 28.2 | 3 | 94.9 | 651.8 ± 33.3 | 2.6 | 93.7 |
25 | 313.3 ± 16.4 | 1.7 | 87.5 | 686.5 ± 21.5 | 1.1 | 76 | 611.6 ± 29.4 | 2.5 | 86.7 |
NaCl concentration (%) | |||||||||
0% | 393.9 ± 37.5 | 2.1 | 92.6 | 706.8 ± 40.9 | 2.9 | 95.5 | 622.9 ± 42.5 | 2.8 | 92.4 |
2% | 588.1 ± 34.1 | 3.1 | 99.8 | 832.5 ± 27.5 | 3.2 | 100.1 | 756.7 ± 51.8 | 3.1 | 105.2 |
4% | 121.8 ± 19.5 | 0.6 | 112 | 614.3 ± 31.6 | 2.4 | 116.3 | 556.0 ± 44.9 | 2.3 | 121.3 |
6% | 84.9 ± 8.7 | 0.4 | 131.4 | 279.4 ± 26.9 | 1.1 | 122.7 | 267.2 ± 26.4 | 1.1 | 151.7 |
Treatment | Remaining Activity (%) | |||
---|---|---|---|---|
Bacillus velezensis Y120-8 | Bacillus amyloliquefaciens Y138-6 | Bacillus subtilis Y167-2 | ||
Control (pH7, 37 °C, 15 min) | 100 (432 AU/mg) | 100 (825 AU/mg) | 100 (730 AU/mg) | |
Temperature | ||||
50 °C, 15 min | 100.80 ± 2.44 | 100.50 ± 3.64 | 99.69 ± 1.32 | |
60 °C, 15 min | 92.59 ± 2.91 | 100.15 ± 1.80 | 96.44 ± 2.50 | |
70 °C, 15 min | 81.48 ± 4.55 | 100.04 ± 2.31 | 87.44 ± 5.97 | |
80 °C, 15 min | 68.98 ± 6.38 | 100.31 ± 1.79 | 55.24 ± 2.05 | |
90 °C, 15 min | 46.53 ± 3.47 | 95.24 ± 2.38 | 40.40 ± 3.51 | |
100 °C, 15 min | 26.62 ± 5.11 | 80.54 ± 4.51 | 13.34 ± 4.80 | |
121 °C, 15 min | 0 | 0 | 0 | |
pH | ||||
2 | 73.44 ± 2.55 | 81.25 ± 5.13 | 77.74 ± 4.15 | |
3 | 87.40 ± 4.03 | 99.44 ± 4.38 | 88.14 ± 3.32 | |
4 | 92.54 ± 3.78 | 100.29 ± 3.16 | 95.64 ± 1.55 | |
5 | 99.85 ± 1.16 | 100.45 ± 1.72 | 102.34 ± 2.95 | |
6 | 100.51 ± 1.62 | 102.08 ± 2.37 | 101.30 ± 1.44 | |
7 | 100.43 ± 1.35 | 100.71 ± 1.95 | 98.45 ± 2.04 | |
8 | 96.44 ± 2.21 | 97.37 ± 1.64 | 97.34 ± 4.33 | |
9 | 90.74 ± 3.44 | 92.81 ± 2.45 | 89.40 ± 2.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Lee, E.-S.; Kim, B.-M.; Ham, J.-S.; Oh, M.-H. Simple Purification and Antimicrobial Properties of Bacteriocin-like Inhibitory Substance from Bacillus Species for the Biopreservation of Cheese. Foods 2024, 13, 10. https://doi.org/10.3390/foods13010010
Kim J-H, Lee E-S, Kim B-M, Ham J-S, Oh M-H. Simple Purification and Antimicrobial Properties of Bacteriocin-like Inhibitory Substance from Bacillus Species for the Biopreservation of Cheese. Foods. 2024; 13(1):10. https://doi.org/10.3390/foods13010010
Chicago/Turabian StyleKim, Jong-Hui, Eun-Seon Lee, Bu-Min Kim, Jun-Sang Ham, and Mi-Hwa Oh. 2024. "Simple Purification and Antimicrobial Properties of Bacteriocin-like Inhibitory Substance from Bacillus Species for the Biopreservation of Cheese" Foods 13, no. 1: 10. https://doi.org/10.3390/foods13010010
APA StyleKim, J. -H., Lee, E. -S., Kim, B. -M., Ham, J. -S., & Oh, M. -H. (2024). Simple Purification and Antimicrobial Properties of Bacteriocin-like Inhibitory Substance from Bacillus Species for the Biopreservation of Cheese. Foods, 13(1), 10. https://doi.org/10.3390/foods13010010