Microwave Treatment vs. Conventional Pasteurization: The Effect on Phytochemical and Microbiological Quality for Citrus–Maqui Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Ingredients
2.3. Experimental Design
2.3.1. Beverage Preparation
2.3.2. Microwave Processing
2.3.3. Conventional Pasteurization Processing
2.4. Sampling
2.5. Total Soluble Solids, Titratable Acidity, and pH
2.6. Chromatographic Analysis of Phenolic Compounds
2.7. Extraction and Quantification of Vitamin C
2.8. Color Assessment
2.9. Microbiological Analysis
2.10. Statistical Analyses
3. Results and Discussion
3.1. Initial Impact of Processing on the Measured Parameters
3.1.1. Influence on Physicochemical Parameters during Processing
3.1.2. Influence on Flavonoids
3.1.3. Influence on Vitamin C
3.1.4. Influence on Color Parameters
3.1.5. Influence on Microbiological Quality
3.2. Impact of Storage on the Overall Measured Parameters
3.2.1. Impact on Titratable Acidity, pH, and TSS during Storage
3.2.2. Impact on Flavanones during Storage
3.2.3. Impact on Anthocyanins during Storage
3.2.4. Impact of MW and TP on the Stability of Vitamin C during Storage
3.2.5. Color Changes of Beverages during Storage
3.2.6. Alterations in Microbial Characteristics throughout Storage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adulvitayakorn, S.; Hanan, S.A. The effects of conventional thermal, microwave heating, and thermosonication treatments on the quality of sugarcane juice. J. Food Process. Preserv. 2019, 44, e14322. [Google Scholar] [CrossRef]
- Alzate-yepes, T.; Pérez-Palacio, L.; Martínez, E.; Osorio, M. Mechanisms of Action of Fruit and Vegetable Phytochemicals in Colorectal Cancer Prevention. Molecules 2023, 28, 4322. [Google Scholar] [CrossRef] [PubMed]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-rich natural fruit and vegetable products and human health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Chen, B.; Li, J.; Yuan, X.; Li, J.; Wang, W.; Dai, T.; Chen, H.; Wang, Y.; et al. Dietary sugar consumption and health: Umbrella review. BMJ 2023, 381, e071609. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Lanestosa, A.; Moguel-ordoñez, Y.; Segura-Campos, M. Stevia rebaudiana Bertoni: A Natural Alternative for Treating Diseases Associated with Metabolic Syndrome. J. Med. Food 2017, 20, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Salar, F.J.; Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. Stevia vs. Sucrose: Influence on the Phytochemical Content of a Citrus–Maqui Beverage—A Shelf Life Study. Foods 2020, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- Salar, F.J.; Periago, P.M.; Agulló, V.; García-Viguera, C.; Fernández, P.S. High Hydrostatic Pressure vs. Thermal Pasteurization: The Effect on the Bioactive Compound Profile of a Citrus Maqui Beverage. Foods 2021, 10, 2416. [Google Scholar] [CrossRef]
- Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Appl. Sci. 2022, 12, 2202. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. Food Res. Int. 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Henrique, P.; Laura, S.; Isozaki, N.; Jorge, S.; Wilhelms, A. Model food for microwave-assisted pasteurization of fruit juices and nectars at 915 and 2450 MHz. J. Food Process Eng. 2018, 41, e12858. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S. Microwave pasteurization and sterilization of foods. In Handbook of Food Preservation; Rahman, M.S., Ed.; CRC Press: Boca Raton, FL, USA, 2020; p. 172. [Google Scholar]
- Dogan Halkman, H.B.; Yücel, P.K.; Halkman, A.K. NON-THERMAL PROCESSING|Microwave A2. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Academic Press: New York, NY, USA, 2014; pp. 962–965. [Google Scholar]
- Igual, M.; Camacho, M.M. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem. 2010, 118, 291–299. [Google Scholar] [CrossRef]
- Piekarska, A.; Azqueta, A.; Collins, A.R.; Namies, J. The influence of sterilization with EnbioJet 1 Microwave Flow Pasteurizer on composition and bioactivity of aronia and blue-berried honeysuckle juices. J. Food Compos. Anal. 2011, 24, 880–888. [Google Scholar] [CrossRef]
- Salazar-gonzález, C.; San Martín-González, M.; López-Malo, A.; Sosa-Morales, M. Recent Studies Related to Microwave Processing of Fluid Foods. Food Bioprocess Technol. 2012, 5, 31–46. [Google Scholar] [CrossRef]
- González-monroy, A.D.; Rodríguez-hernández, G.; Ozuna, C.; Sosa-morales, M.E. Microwave-assisted pasteurization of beverages (tamarind and green) and their quality during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2018, 49, 51–57. [Google Scholar] [CrossRef]
- Fayos-Fernández, J.; Reverte-Ors, J.D.; Monzó-Cabrera, J. A Low-Cost Robust Configuration for the Temperature Monitoring within the Payload of Any Microwave Oven with a Rotating Turntable. Available online: https://www.ampereeurope.org/issue-101/ (accessed on 19 December 2023).
- Fayos-Fernández, J.; Pérez-Conesa, I.; Monzó-Cabrera, J.; Del Pino de León, S.; Albaladejo-González, J.C. Temperature-dependent complex permittivity of several electromagnetic susceptors at 2.45 GHz. In Proceedings of the 16th International Conference on Microwave and High Frequency Heating, Delft, The Netherlands, 18–21 September 2017; Available online: https://www.researchgate.net/publication/376199651 (accessed on 19 December 2023).
- Conesa, R.; Andreu, S.; Fernández, P.S.; Esnoz, A.; Palop, A. Nonisothermal heat resistance determinations with the thermoresistometer Mastia. J. Appl. Microbiol. 2009, 107, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Baenas, N.; Salar, F.J.; Domínguez-Perles, R.; García-Viguera, C. New UHPLC-QQQ-MS/MS method for the rapid and sensitive analysis of ascorbic and dehydroascorbic acids in plant foods. Molecules 2019, 24, 1632. [Google Scholar] [CrossRef]
- De Souza, S.; Luciedry, C.; Souza, M.; Carlos, C.; Lamarão, V.; Souza, A.; Paiva, J.; Aguiar, L.; Souza, L.; Moreira, J.; et al. Microwave processing of camu - camu juices: Physicochemical and microbiological parameters. J. Food Process. Preserv. 2019, 43, e13989. [Google Scholar] [CrossRef]
- Stratakos, A.C.; Delgado-pando, G.; Linton, M.; Patterson, M.F.; Koidis, A. Industrial scale microwave processing of tomato juice using a novel continuous microwave system. Food Chem. 2016, 190, 622–628. [Google Scholar] [CrossRef]
- Pérez-Grijalva, B.; Herrera-Sotero, M.; Mora-Escobedo, R.; Zebadua-García, J.; Silva-Hernández, E.; Oliart-ros, R.; Pérez-Cruz, C.; Guzmán-Gerónimo, R. Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT—Food Sci. Technol. 2018, 87, 47–53. [Google Scholar] [CrossRef]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of novel technologies on polyphenols during food processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- Alchera, F.; Ginepro, M.; Giacalone, G. Microwave-Assisted Extraction of Polyphenols from Blackcurrant By-Products and Possible Uses of the Extracts in Active Packaging. Foods 2022, 11, 2727. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Tao, Y.; Zeng, M.; Zhang, S.; Tao, G.; Qin, F.; Chen, J. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chem. 2016, 200, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Arjmandi, M.; Aguayo, E. Microwave flow and conventional heating effects on the physicochemical properties, bioactive compounds and enzymatic activity of tomato puree. J. Sci. Food Agric. 2017, 97, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Cinquanta, L.; Albanese, D.; Cuccurullo, G.; Dimateo, M. Effect on Orange Juice of Batch Pasteurization in an Improved Pilot-Scale Microwave Oven. J. Food Sci. 2010, 75, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Ganje, M.; Jafari, S.M.; Farzaneh, V.; Malekjani, N. Kinetics modelling of color deterioration during thermal processing of tomato paste with the use of response surface methodology. Heat Mass Transf. Stoffuebertragung 2018, 54, 3663–3671. [Google Scholar] [CrossRef]
- De Moura, S.C.S.R.; Berling, C.L.; Garcia, A.O.; Queiroz, M.B.; Alvim, I.D.; Hubinger, M.D. Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Res. Int. 2019, 121, 542–552. [Google Scholar] [CrossRef]
- Casas-forero, N.; Trujillo-mayol, I.; Rommy, N.Z.; Petzold, G.; Orellana-palma, P. Effects of Cryoconcentrated Blueberry Juice as Functional Ingredient for Preparation of Commercial Confectionary Hydrogels. Gels 2022, 8, 217. [Google Scholar] [CrossRef]
- Jafarpour, D.; Hashemi, S.M.B.; Asadi-Yousefabad, S.H.; Javdan, G. Conventional thermal and microwave processing of guava juice: Process intensification, microbial inactivation and chemical composition. J. Food Meas. Charact. 2023, 17, 3790–3801. [Google Scholar] [CrossRef]
- Lalou, S.; Ordoudi, S.A.; Mantzouridou, F.T. On the Effect of Microwave Heating on Quality Characteristics and Functional Properties of Persimmon Juice and Its Residue. Foods 2021, 10, 2650. [Google Scholar] [CrossRef]
- Igual, M.; Contreras, C.; Camacho, M.; Martínez-Navarrete, N. Effect of Thermal Treatment and Storage Conditions on the Physical and Sensory Properties of Grapefruit Juice. Food Bioprocess Technol. 2013, 7, 191–203. [Google Scholar] [CrossRef]
- Zia, S.; Khan, M.R.; Zeng, X.; Aadil, R.M.; Shabbir, M.A. Combined effect of microwave and ultrasonication treatments on the quality and stability of sugarcane juice during cold storage. Int. J. Food Sci. Technol. 2019, 54, 2563–2569. [Google Scholar] [CrossRef]
- Zhang, L.; Ling, W.; Yan, Z.; Liang, Y.; Guo, C.; Ouyang, Z.; Wang, X.; Kumaravel, K.; Ye, Q.; Zhong, B.; et al. Effects of storage conditions and heat treatment on the hesperidin concentration in Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) juice. J. Food Compos. Anal. 2020, 85, 103338. [Google Scholar] [CrossRef]
- Nikkhah, E.; Khayamy, M.; Heidari, R.; Jamee, R. Effect of Sugar Treatment on Stability of Anthocyanin Pigments in Berries. J. Biol. Sci. 2007, 7, 1412–1417. [Google Scholar] [CrossRef]
- Scrob, T.; Hosu, A.; Cimpoiu, C. Sweeteners from Different Lingonberry Jams Influence on Bioaccessibility of Vitamin C, Anthocyanins and Antioxidant Capacity under In Vitro Gastrointestinal Digestion. Antioxidants 2022, 11, 442. [Google Scholar] [CrossRef] [PubMed]
- Brenes, C.H.; Del Pozo Insfran, D.; Talcott, S.T. Stability of Copigmented Anthocyanins and Ascorbic Acid in a Grape Juice Model System. Agric. Food Chem. 2005, 53, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Dret, G.; Pop, T.D.; Stǎnilǎ, A. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Marszałek, K.; Mitek, M.; Skąpska, S. Effect of Continuous Flow Microwave and Conventional Heating on the Bioactive Compounds, Colour, Enzymes Activity, Microbial and Sensory Quality of Strawberry Purée. Food Bioprocess Technol. 2015, 8, 1864–1876. [Google Scholar] [CrossRef]
- Mditshwa, A.; Samukelo, L.; Zeray, S.; Linus, U. Postharvest factors affecting vitamin C content of citrus fruits: A review. Sci. Hortic. 2017, 218, 95–104. [Google Scholar] [CrossRef]
- Géczi, G.; Horváth, M.; Kaszab, T.; Garnacho-Alemany, G. No Major Differences Found between the Effects of Microwave-Based and No Major Differences Found between the Effects of Microwave-Based and Conventional Heat Treatment Methods on Two Different Liquid Foods. PLoS ONE 2013, 8, e53720. [Google Scholar] [CrossRef]
- Benlloch-tinoco, M.; Igual, M.; Rodrigo, D.; Martínez-navarrete, N. Superiority of microwaves over conventional heating to preserve shelf-life and quality of kiwifruit puree. Food Control 2015, 50, 620–629. [Google Scholar] [CrossRef]
- Grobelna, A.; Kalisz, S. The Effect of the Addition of Blue Honeysuckle Berry Juice to Apple Juice on the Selected Quality Characteristics, Anthocyanin Stability, and Antioxidant Properties. Biomolecules 2019, 9, 744. [Google Scholar] [CrossRef] [PubMed]
- Chatham, L.A.; Howard, J.E.; Juvik, J.A. A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chem. 2020, 310, 125734. [Google Scholar] [CrossRef] [PubMed]
- Weber, F.; Boch, K.; Schieber, A. Influence of copigmentation on the stability of spray dried anthocyanins from blackberry. LWT—Food Sci. Technol. 2017, 75, 72–77. [Google Scholar] [CrossRef]
- Zheng, X.; Yu, Y.; Xiao, G.; Xu, Y.; Wu, J.; Tang, D.; Zhang, Y. Comparing product stability of probiotic beverages using litchi juice treated by high hydrostatic pressure and heat as substrates. Innov. Food Sci. Emerg. Technol. 2014, 23, 61–67. [Google Scholar] [CrossRef]
- Barba, F.J.; Jäger, H.; Meneses, N.; Esteve, M.J.; Frígola, A.; Knorr, D. Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov. Food Sci. Emerg. Technol. 2012, 14, 18–24. [Google Scholar] [CrossRef]
- Vignali, G.; Gozzi, M.; Pelacci, M.; Stefanini, R. Non-conventional Stabilization for Fruit and Vegetable Juices: Overview, Technological Constraints, and Energy Cost Comparison. Food Bioprocess Technol. 2022, 15, 1729–1747. [Google Scholar] [CrossRef]
Code | Beverage and Storage Conditions |
---|---|
Control | Untreated sample |
M1 SA—800 W | Beverage with added sucrose subjected to microwave pasteurization (800 W) stored at 20 °C |
M2 SA—600 W | Beverage with added sucrose subjected to microwave pasteurization (600 W) stored at 20 °C |
M1 ST—800 W | Beverage with added stevia subjected to microwave pasteurization (800 W) stored at 20 °C |
M2 ST—600 W | Beverage with added stevia subjected to microwave pasteurization (600 W) stored at 20 °C |
TP SA—85 °C | Beverage with added sucrose subjected to conventional pasteurization stored at 20 °C |
TP ST—85 °C | Beverage with added stevia subjected to conventional pasteurization stored at 20 °C |
Condition Z | Physicochemical Parameters | Bioactive Compounds (mg/100 mL) | Color (ΔE) | ||||
---|---|---|---|---|---|---|---|
pH | TA (g CA/100 mL) | TSS (°Brix) | Anthocyanins | Flavanones | Vitamin C | ||
Non-processed-SA | 3.39 a Y | 3.44 ab | 15.80 b | 18.85 b | 16.72 c | 32.46 a | 0.00 d |
M1 SA—800 W | 3.38 ab | 3.47 a | 16.00 a | 19.60 a | 18.75 b | 27.00 b | 5.16 a |
M2 SA—600 W | 3.35 c | 3.42 b | 15.80 b | 19.41 a | 17.99 b | 27.32 b | 1.63 c |
TP SA—85 °C | 3.36 bc | 3.41 b | 15.80 b | 19.57 a | 21.65 a | 29.72 ab | 4.43 b |
LSD (p < 0.05) | <0.01 | 0.01 | <0.01 | <0.01 | <0.01 | 0.01 | <0.01 |
p-value | *** X | ** | *** | *** | *** | ** | *** |
Non-processed-ST | 3.34 | 3.72 | 9.00 b | 18.91 b | 16.53 d | 37.27 a | 0.00 d |
M1 ST—800 W | 3.36 | 3.69 | 9.20 a | 19.76 a | 19.14 b | 31.49 c | 6.33 a |
M2 ST—600 W | 3.35 | 3.74 | 9.00 b | 19.55 a | 17.70 c | 34.87 b | 4.68 c |
TP ST—85 °C | 3.34 | 3.68 | 9.20 a | 19.70 a | 19.73 a | 35.65 ab | 5.32 b |
LSD (p < 0.05) | 0.09 | 0.15 | 0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
p-value | N.s. | N.s. | ** | *** | *** | *** | *** |
Condition Z | pH | TA (g CA/100 mL) | TSS (°Brix) | ||||||
---|---|---|---|---|---|---|---|---|---|
Initial | Final | p-Value | Initial | Final | p-Value | Initial | Final | p-Value | |
M1 SA—800 W | 3.38 a Y | 3.46 a | *** X | 3.47 a | 3.48 | N.s. | 16.00 a | 16.00 a | N.s. |
M2 SA—600 W | 3.35 b | 3.44 b | *** | 3.42 b | 3.46 | N.s. | 15.80 b | 15.80 b | N.s. |
TP SA—85 °C | 3.36 b | 3.45 ab | *** | 3.41 b | 3.49 | ** | 15.80 b | 15.80 b | N.s. |
LSD (p < 0.05) | 0.01 | 0.02 | 0.01 | 0.56 | 0.00 | 0.00 | |||
p-value | ** | * | ** | N.s. | *** | *** | |||
M1 ST—800 W | 3.36 | 3.44 | *** | 3.69 | 3.75 | N.s. | 9.20 a | 9.20 | N.s. |
M2 ST—600 W | 3.35 | 3.44 | *** | 3.74 | 3.78 | N.s. | 9.00 b | 9.20 | * |
TP ST—85 °C | 3.34 | 3.44 | *** | 3.68 | 3.74 | N.s. | 9.20 a | 9.20 | N.s. |
LSD (p < 0.05) | 0.10 | 0.79 | 0.16 | 0.43 | 0.00 | 1.00 | |||
p-value | N.s. | N.s. | N.s. | N.s. | *** | N.s. |
Parameter | Storage (Days) | M1 SA—800 W | M2 SA—600 W | TP SA—85 °C | LSD (p < 0.001) |
---|---|---|---|---|---|
CIEL* | 0 | 31.08 aA Z | 33.43 aB | 31.31 aA | 0.88 |
7 | 32.77 aA | 33.72 aA | 32.38 bA | 1.64 | |
15 | 36.71 bA | 39.12 bB | 36.73 cA | 1.22 | |
30 | 40.02 cA | 40.42 bA | 39.07 dA | 1.15 | |
45 | 42.99 dB | 42.45 cB | 40.20 eA | 1.38 | |
60 | 41.01 cdA | 43.68 cB | 40.81 eA | 0.68 | |
LSD (p < 0.001) | 1.29 | 1.18 | 0.61 | ||
CIEa* | 0 | 57.96 eA | 59.33 eB | 58.09 eA | 0.63 |
7 | 57.00 deA | 56.89 dA | 56.77 dA | 0.98 | |
15 | 56.02 dA | 56.18 dA | 56.20 dA | 0.98 | |
30 | 51.18 cA | 51.36 cA | 51.33 cA | 0.36 | |
45 | 48.09 bB | 46.79 bA | 47.82 bAB | 0.83 | |
60 | 44.55 aA | 45.30 aA | 45.71 aA | 1.23 | |
LSD (p < 0.001) | 0.67 | 0.82 | 0.85 | ||
CIEb* | 0 | 37.18 aB | 34.73 aA | 36.44 aB | 0.63 |
7 | 36.20 aA | 35.98 aA | 36.17 aA | 0.98 | |
15 | 36.90 aB | 34.98 aA | 35.49 aAB | 1.28 | |
30 | 41.07 bA | 40.99 bA | 40.55 bA | 0.72 | |
45 | 42.37 bA | 45.64 cB | 44.20 cAB | 1.46 | |
60 | 47.35 cB | 44.46 cA | 43.91 cA | 1.87 | |
LSD (p < 0.001) | 1.21 | 1.33 | 0.76 | ||
Chroma (C*) | 0 | 68.87 dB | 68.75 dAB | 68.58 eA | 0.79 |
7 | 67.53 cA | 67.32 cA | 67.31 dA | 0.48 | |
15 | 67.08 cB | 66.18 bA | 66.47 cAB | 0.55 | |
30 | 65.62 bA | 65.71 bA | 65.41 bA | 0.32 | |
45 | 64.09 aA | 65.37 bB | 65.11 bAB | 0.97 | |
60 | 65.01 abB | 63.48 aA | 63.39 aA | 0.83 | |
LSD (p < 0.001) | 0.687 | 0.63 | 0.20 | ||
Hue angle (h) | 0 | 32.68 aB | 30.34 aA | 32.10 aB | 0.17 |
7 | 32.42 aA | 32.32 bA | 32.51 aA | 1.18 | |
15 | 33.37 aA | 31.90 abA | 32.27 aA | 1.30 | |
30 | 38.74 bB | 38.60 cA | 38.31 bA | 0.64 | |
45 | 41.38 cA | 44.28 dB | 42.74 cA | 1.21 | |
60 | 46.77 dB | 44.46 dAB | 43.85 cA | 1.86 | |
LSD (p < 0.001) | 1.04 | 1.25 | 0.99 | ||
ΔE | 0 | 0.00 a | 0.00 a | 0.00 a | <0.01 |
7 | 2.18 bAB | 3.08 bB | 1.73 bA | 0.99 | |
15 | 6.03 cA | 6.51 cA | 5.84 cA | 1.24 | |
30 | 11.91 dAB | 12.32 dB | 11.09 dA | 0.90 | |
45 | 16.36 eA | 18.92 eB | 15.65 eA | 1.49 | |
60 | 19.58 fB | 19.94 eB | 17.33 fA | 1.56 | |
LSD (p < 0.001) | 0.94 | 1.25 | 0.86 |
Parameter | Storage (Days) | M1 ST—800 W | M2 ST—600 W | TP ST—85 °C | LSD (p < 0.001) |
---|---|---|---|---|---|
CIEL* | 0 | 31.30 aA Z | 32.43 aC | 31.52 aB | 0.09 |
7 | 34.59 bB | 32.75 aA | 33.26 bA | 0.82 | |
15 | 37.78 cB | 38.15 bB | 36.20 cA | 0.54 | |
30 | 41.94 dC | 40.45 cB | 38.55 dA | 0.65 | |
45 | 42.99 eB | 44.30 dB | 39.62 eA | 1.15 | |
60 | 42.68 eA | 43.05 dA | 42.44 fA | 0.76 | |
LSD (p < 0.001) | 0.37 | 0.96 | 0.51 | ||
CIEa* | 0 | 58.01 eA | 58.68 eC | 58.31 fB | 0.17 |
7 | 57.84 eB | 56.16 dA | 57.21 eA | 0.69 | |
15 | 55.67 dA | 56.02 dA | 55.71 dA | 0.32 | |
30 | 49.28 cA | 52.34 cB | 50.57 cA | 1.23 | |
45 | 45.97 bA | 46.00 bA | 46.28 bA | 0.45 | |
60 | 42.79 aB | 43.70 aC | 42.28 aA | 0.28 | |
LSD (p < 0.001) | 0.35 | 0.71 | 0.57 | ||
CIEb* | 0 | 37.69 bB | 36.72 aA | 36.36 aA | 0.16 |
7 | 36.50 aA | 37.75 aB | 36.51 aA | 0.51 | |
15 | 37.38 abA | 37.07 aA | 37.04 aA | 0.61 | |
30 | 42.97 cB | 40.25 bA | 41.57 bAB | 1.20 | |
45 | 46.12 dA | 45.11 cA | 44.96 cA | 1.12 | |
60 | 48.95 eB | 47.73 dA | 47.80 dA | 0.67 | |
LSD (p < 0.001) | 0.65 | 0.81 | 0.66 | ||
Chroma (C*) | 0 | 69.18 dB | 69.17 dB | 68.87 fA | 0.14 |
7 | 68.39 cB | 67.67 cA | 67.87 eA | 0.33 | |
15 | 67.06 bA | 67.19 cA | 66.90 dA | 0.27 | |
30 | 65.38 aA | 66.04 bB | 65.47 cA | 0.28 | |
45 | 65.13 aA | 64.43 aA | 64.53 bA | 0.68 | |
60 | 65.01 abB | 64.72 aB | 63.81 aA | 0.35 | |
LSD (p < 0.001) | 0.28 | 0.48 | 0.16 | ||
Hue angle (h) | 0 | 33.01 abC | 31.97 aA | 32.16 aB | 0.16 |
7 | 32.26 aA | 33.91 bB | 32.54 abA | 0.67 | |
15 | 33.88 bA | 33.49 bA | 33.61 bA | 0.55 | |
30 | 41.08 cB | 37.56 cA | 39.42 cB | 1.48 | |
45 | 45.09 dA | 44.44 dA | 44.16 dA | 0.89 | |
60 | 48.84 eB | 47.51 eAB | 48.51 eB | 0.56 | |
LSD (p < 0.001) | 0.59 | 0.83 | 0.75 | ||
ΔE | 0 | 0.00 a | 0.00 a | 0.00 a | <0.01 |
7 | 3.51 bB | 2.84 bAB | 2.05 bA | 0.74 | |
15 | 6.91 cC | 6.33 cB | 5.35 cA | 0.46 | |
30 | 14.75 dAB | 10.84 dA | 11.54 dA | 1.56 | |
45 | 18.80 eB | 19.34 eC | 16.69 eA | 0.42 | |
60 | 22.15 fAB | 21.45 fA | 22.35 fB | 0.57 | |
LSD (p < 0.001) | 0.42 | 0.95 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salar, F.J.; Díaz-Morcillo, A.; Fayos-Fernández, J.; Monzó-Cabrera, J.; Sánchez-Bravo, P.; Domínguez-Perles, R.; Fernández, P.S.; García-Viguera, C.; Periago, P.M. Microwave Treatment vs. Conventional Pasteurization: The Effect on Phytochemical and Microbiological Quality for Citrus–Maqui Beverages. Foods 2024, 13, 101. https://doi.org/10.3390/foods13010101
Salar FJ, Díaz-Morcillo A, Fayos-Fernández J, Monzó-Cabrera J, Sánchez-Bravo P, Domínguez-Perles R, Fernández PS, García-Viguera C, Periago PM. Microwave Treatment vs. Conventional Pasteurization: The Effect on Phytochemical and Microbiological Quality for Citrus–Maqui Beverages. Foods. 2024; 13(1):101. https://doi.org/10.3390/foods13010101
Chicago/Turabian StyleSalar, Francisco J., Alejandro Díaz-Morcillo, José Fayos-Fernández, Juan Monzó-Cabrera, Paola Sánchez-Bravo, Raúl Domínguez-Perles, Pablo S. Fernández, Cristina García-Viguera, and Paula M. Periago. 2024. "Microwave Treatment vs. Conventional Pasteurization: The Effect on Phytochemical and Microbiological Quality for Citrus–Maqui Beverages" Foods 13, no. 1: 101. https://doi.org/10.3390/foods13010101
APA StyleSalar, F. J., Díaz-Morcillo, A., Fayos-Fernández, J., Monzó-Cabrera, J., Sánchez-Bravo, P., Domínguez-Perles, R., Fernández, P. S., García-Viguera, C., & Periago, P. M. (2024). Microwave Treatment vs. Conventional Pasteurization: The Effect on Phytochemical and Microbiological Quality for Citrus–Maqui Beverages. Foods, 13(1), 101. https://doi.org/10.3390/foods13010101