Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Determination of the Total Polyphenol Content (TPC)
2.3. The Determination of the Total Flavonoid Content (TFC)
2.4. The Determination of the Ferric Ion Reducing Antioxidant Power (FRAP) Method
2.5. Antioxidant Activity using the DPPH Method
2.6. Antioxidant Activity using the ABTS Method
2.7. Determination of the pH
2.8. Determination of the Vitamin C Content
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results
3.1. Analysis of the Antioxidant Properties of Fermented Beetroot Juices
3.2. The Analysis of the pH
3.3. Sensory Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janiszewska-Turak, E.; Walczak, M.; Rybak, K.; Pobiega, K.; Gniewosz, M.; Woźniak, Ł.; Witrowa-Rajchert, D. Influence of Fermentation Beetroot Juice Process on the Physico-Chemical Properties of Spray Dried Powder. Molecules 2022, 27, 1008. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak-Tomczak, D.; Zielinska, A. Porownanie tradycyjnej metody przygotowania zakwasu buraczanego z metoda z uzyciem kultury starterowej. Żywność Nauka Technol. Jakość Supl. 2003, 10, 50–62. [Google Scholar]
- Casciano, F.; Mayr, H.; Nissen, L.; Putti, A.; Zoli, F.; Gianotti, A.; Conterno, L. Red Beetroot Fermentation with Different Microbial Consortia to Develop Foods with Improved Aromatic Features. Foods 2022, 11, 3055. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Guldiken, B.; Toydemir, G.; Nur Memis, K.; Okur, S.; Boyacioglu, D.; Capanoglu, E. Home-Processed Red Beetroot (Beta vulgaris L.) Products: Changes in Antioxidant Properties and Bioaccessibility. Int. J. Mol. Sci. 2016, 17, 858. [Google Scholar] [CrossRef] [PubMed]
- Choińska, R.; Piasecka-Jóźwiak, K.; Woźniak, Ł.; Świder, O.; Bartosiak, E.; Bujak, M.; Roszko, M.Ł. Starter culture-related changes in free amino acids, biogenic amines profile, and antioxidant properties of fermented red beetroot grown in Poland. Sci. Rep. 2022, 12, 20063. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak-Tomczak, D.; Zielińska, A. Effect of fermentation conditions on red-beet leaven quality. Pol. J. Food Nutr. Sci. 2006, 15, 437. [Google Scholar]
- Ceclu, L.; Nistor, O.-V. Red Beetroot: Composition and Health Effects—A Review. J. Nutr. Med. Diet Care 2020, 6, 043. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Lipowski, J.; Drela, N.; Kowalik, A.; Püssa, T.; Matt, D.; Luik, A.; Gozdowski, D.; Rembiałkowska, E. Beetroot (Beta vulgaris L.) and naturally fermented beetroot juices from organic and conventional production: Metabolomics, antioxidant levels and anticancer activity: Properties of organic and conventional beetroot and naturally fermented beetroot juices. J. Sci. Food Agric. 2014, 94, 2618–2629. [Google Scholar] [CrossRef]
- de Oliveira, S.P.A.; do Nascimento, H.M.A.; Sampaio, K.B.; de Souza, E.L. A review on bioactive compounds of beet (Beta vulgaris L. subsp. vulgaris) with special emphasis on their beneficial effects on gut microbiota and gastrointestinal health. Crit. Rev. Food Sci. Nutr. 2021, 61, 2022–2033. [Google Scholar] [CrossRef]
- Kim, S.-L.; Choi, H.S.; Ko, Y.-C.; Yun, B.-S.; Lee, D.-S. 5-Hydroxymaltol Derived from Beetroot Juice through Lactobacillus Fermentation Suppresses Inflammatory Effect and Oxidant Stress via Regulating NF-kB, MAPKs Pathway and NRF2/HO-1 Expression. Antioxidants 2021, 10, 1324. [Google Scholar] [CrossRef] [PubMed]
- Klewicka, E.; Zduńczyk, Z.; Juśkiewicz, J.; Klewicki, R. Effects of Lactofermented Beetroot Juice Alone or with N-nitroso-N-methylurea on Selected Metabolic Parameters, Composition of the Microbiota Adhering to the Gut Epithelium and Antioxidant Status of Rats. Nutrients 2015, 7, 5905–5915. [Google Scholar] [CrossRef] [PubMed]
- Lechner, J.F.; Stoner, G.D. Red Beetroot and Betalains as Cancer Chemopreventative Agents. Molecules 2019, 24, 1602. [Google Scholar] [CrossRef] [PubMed]
- Kumari, V.B.C.; Huligere, S.S.; Ramu, R.; Naik Bajpe, S.; Sreenivasa, M.Y.; Silina, E.; Stupin, V.; Achar, R.R. Evaluation of Probiotic and Antidiabetic Attributes of Lactobacillus Strains Isolated From Fermented Beetroot. Front. Microbiol. 2022, 13, 911243. [Google Scholar] [CrossRef] [PubMed]
- Rakin, M.; Josip, K.B.; Vukasinovic Sekulic, M.; Maksimovic, M. The examination of parameters for lactic acid fermentation and nutritive value of fermented juice of beetroot, carrot and brewer’s yeast autolysate. J. Serbian Chem. Soc. 2004, 69, 625–634. [Google Scholar] [CrossRef]
- Carrillo, C.; Rey, R.; Hendrickx, M.; del Mar Cavia, M.; Alonso-Torre, S. Antioxidant Capacity of Beetroot: Traditional vs Novel Approaches. Plant Foods Hum. Nutr. 2017, 72, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Kanner, J.; Harel, S.; Granit, R. BetalainsA New Class of Dietary Cationized Antioxidants. J. Agric. Food Chem. 2001, 49, 5178–5185. [Google Scholar] [CrossRef]
- Babarykin, D.; Smirnova, G.; Pundinsh, I.; Vasiljeva, S.; Krumina, G.; Agejchenko, V. Red Beet (Beta vulgaris) Impact on Human Health. J. Biosci. Med. 2019, 7, 61–79. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Pobiega, K.; Rybak, K.; Synowiec, A.; Woźniak, Ł.; Trych, U.; Gniewosz, M.; Witrowa-Rajchert, D. Changes in Physical and Chemical Parameters of Beetroot and Carrot Juices Obtained by Lactic Fermentation. Appl. Sci. 2023, 13, 6113. [Google Scholar] [CrossRef]
- Klewicka, E.; Czyżowska, A. Biological Stability of Lacto-Fermented Beetroot Juice During Refrigerated Storage. Pol. J. Food Nutr. Sci. 2011, 61, 251–256. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, C.; Zhang, C.; Wang, P.; Li, Q.; Wan, J.; Chang, H.; Ye, J.; Guo, X. Comparative Study of Total Flavonoid Contents from the Different Tissues and Varieties of Abelmoschus Esculentus. Int. J. Med. Sci. Biotechnol. 2013, 1, 26–30. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT -Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pekkarinen, S.S.; Stöckmann, H.; Schwarz, K.; Heinonen, I.M.; Hopia, A.I. Antioxidant activity and partitioning of phenolic acids in bulk and emulsified methyl linoleate. J. Agric. Food Chem. 1999, 47, 3036–3043. [Google Scholar] [CrossRef] [PubMed]
- ISO 6557-2:1984; Fruits, Vegetables and Derived Products—Determination of Ascorbic Acid Content—Part 2: Routine Methods. Available online: https://standards.iteh.ai/catalog/standards/iso/7d01f2b4-7cd7-445b-a411-5e10ba70b3ce/iso-6557-2-1984 (accessed on 5 December 2023).
- Non Communicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 27 June 2023).
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Aune, D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv. Nutr. Bethesda Md 2019, 10 (Suppl. S4), S404–S421. [Google Scholar] [CrossRef]
- Karadag, A.; Ozcelik, B.; Saner, S. Review of Methods to Determine Antioxidant Capacities. Food Anal. Methods 2009, 2, 41–60. [Google Scholar] [CrossRef]
- Szot, D. Pozyskiwanie barwników betalainowych z biomasy dla celów przemysłu spożywczego. Nauki Ścisłe 2014, 8, 251–262. [Google Scholar]
- Sadowska-Bartosz, I.; Bartosz, G. Biological Properties and Applications of Betalains. Mol. Basel Switz. 2021, 26, 2520. [Google Scholar] [CrossRef]
- Czyżowska, A.; Siemianowska, K.; Śniadowska, M.; Nowak, A. Bioactive Compounds and Microbial Quality of Stored Fermented Red Beetroots and Red Beetroot Juice. Pol. J. Food Nutr. Sci. 2020, 70, 35–44. [Google Scholar] [CrossRef]
- Sawicki, T.; Wiczkowski, W. The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem. 2018, 259, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Sawicki, T.; Martinez-Villaluenga, C.; Frias, J.; Wiczkowski, W.; Peñas, E.; Bączek, N.; Zieliński, H. The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. J. Funct. Foods 2019, 55, 229–237. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of Phenolic Acids and Flavonoids of Red Beet and Its Fermentation Products. Does Long-Term Consumption of Fermented Beetroot Juice Affect Phenolics Profile in Human Blood Plasma and Urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Tracz, K.; Bielińska, P.; Rybak, K.; Pobiega, K.; Gniewosz, M.; Woźniak, Ł.; Gramza-Michałowska, A. The Impact of the Fermentation Method on the Pigment Content in Pickled Beetroot and Red Bell Pepper Juices and Freeze-Dried Powders. Appl. Sci. 2022, 12, 5766. [Google Scholar] [CrossRef]
- Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2018, 11, 1. [Google Scholar] [CrossRef]
- Kim, J.; Adhikari, K. Current Trends in Kombucha: Marketing Perspectives and the Need for Improved Sensory Research. Beverages 2020, 6, 15. [Google Scholar] [CrossRef]
- Jafari, R.; Naghavi, N.S.; Khosravi-Darani, K.; Doudi, M.; Shahanipour, K. Kombucha microbial starter with enhanced production of antioxidant compounds and invertase. Biocatal. Agric. Biotechnol. 2020, 29, 101789. [Google Scholar] [CrossRef]
- Panghal, A.; Virkar, K.; Kumar, V.; Dhull, S.B.; Gat, Y.; Chhikara, N. Development of Probiotic Beetroot Drink. Curr. Res. Nutr. Food Sci. J. 2017, 5. [Google Scholar] [CrossRef]
- Değirmencioğlu, N.; Gurbuz, O.; Şahan, Y. The Monitoring, Via an In vitro Digestion System, of the Bioactive Content of Vegetable Juice Fermented with Saccharomyces cerevisiae and Saccharomyces boulardii. J. Food Process. Preserv. 2016, 40, 798–811. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Ozyurt, D.; Demirata, B.; Apak, R. Determination of total antioxidant capacity by a new spectrophotometric method based on Ce(IV) reducing capacity measurement. Talanta 2007, 71, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, J.-A.; Park, G.-G.; Jang, J.-K.; Park, Y.-S. Semi-Continuous Fermentation of Onion Vinegar and Its Functional Properties. Mol. J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 1313. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, Y.-B.; Lee, C.-H.; Park, I. Effects of the Addition of Herbs on the Properties of Doenjang. Foods 2021, 10, 1307. [Google Scholar] [CrossRef] [PubMed]
- Wolkers-Rooijackers, J.C.M.; Thomas, S.M.; Nout, M.J.R. Effects of sodium reduction scenarios on fermentation and quality of sauerkraut. LWT -Food Sci. Technol. 2013, 54, 383–388. [Google Scholar] [CrossRef]
- Bautista-Gallego, J.; Rantsiou, K.; Garrido-Fernández, A.; Cocolin, L.; Arroyo-López, F.N. Salt Reduction in Vegetable Fermentation: Reality or Desire? J. Food Sci. 2013, 78, R1095–R1100. [Google Scholar] [CrossRef]
- Panagou, E.Z.; Hondrodimou, O.; Mallouchos, A.; Nychas, G.-J.E. A study on the implications of NaCl reduction in the fermentation profile of Conservolea natural black olives. Food Microbiol. 2011, 28, 1301–1307. [Google Scholar] [CrossRef]
- Albarracín, W.; Sánchez, I.C.; Grau, R.; Barat, J.M. Salt in food processing; usage and reduction: A review. Int. J. Food Sci. Technol. 2011, 46, 1329–1336. [Google Scholar] [CrossRef]
- Tobian, L. Salt and hypertension. Lessons from animal models that relate to human hypertension. Hypertension 1991, 17, I52. [Google Scholar] [CrossRef]
- Moritz, B.; Schmitz, A.E.; Rodrigues, A.L.S.; Dafre, A.L.; Cunha, M.P. The role of vitamin C in stress-related disorders. J. Nutr. Biochem. 2020, 85, 108459. [Google Scholar] [CrossRef]
- Travica, N.; Ried, K.; Sali, A.; Scholey, A.; Hudson, I.; Pipingas, A. Vitamin C Status and Cognitive Function: A Systematic Review. Nutrients 2017, 9, 960. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.-Y.; Xu, X.; Li, X.-C. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3091–3096. [Google Scholar] [PubMed]
- Jarosza, M.; Rychlik, E.; Stoś, K.; Charzewskiej, J. Normy Żywienia dla Populacji Polski i ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny: Warsaw, Poland, 2020; p. 465. [Google Scholar]
- Korus, A.; Bernaś, E.; Korus, J. Health-Promoting Constituents and Selected Quality Parameters of Different Types of Kimchi: Fermented Plant Products. Int. J. Food Sci. 2021, 2021, 9925344. [Google Scholar] [CrossRef]
- Nowak, D.; Gośliński, M.; Wojtowicz, E.; Przygoński, K. Antioxidant Properties and Phenolic Compounds of Vitamin C-Rich Juices. J. Food Sci. 2018, 83, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska-Świgło, A.; Szymusiak, H.; Malinowska, P. Betanin, the main pigment of red beet: Molecular origin of its exceptionally high free radical-scavenging activity. Food Addit. Contam. 2006, 23, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Saftić Martinović, L.; Birkic, N.; Miletić, V.; Antolović, R.; Štanfel, D.; Wittine, K. Antioxidant Activity, Stability in Aqueous Medium and Molecular Docking/Dynamics Study of 6-Amino- and N-Methyl-6-amino-L-ascorbic Acid. Int. J. Mol. Sci. 2023, 24, 1410. [Google Scholar] [CrossRef]
- Farah, H.S.; Alhmoud, J.F.; Al-Othman, A.; Alqaisi, K.M.; Atoom, A.M.; Shadid, K.; Shakya, A.; AlQaisi, T. Effect of pH, Temperature and Metal Salts in Different Storage Conditions on the Stability of Vitamin C Content of Yellow Bell Pepper Extracted in Aqueous Media. Syst. Rev. Pharm. 2020, 11, 661–667. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Kałduńska, J.; Kochman, J.; Janda, K. Chemical Profile and Antioxidant Activity of the Kombucha Beverage Derived from White, Green, Black and Red Tea. Antioxidants 2020, 9, 447. [Google Scholar] [CrossRef]
- Oliveira, Í.A.C.L.d.; Rolim, V.A.d.O.; Gaspar, R.P.L.; Rossini, D.Q.; de Souza, R.; Bogsan, C.S.B. The Technological Perspectives of Kombucha and Its Implications for Production. Fermentation 2022, 8, 185. [Google Scholar] [CrossRef]
Type of Fermented Beetroot Juice | Ingredients | Energy [kcal] | Fat of Which Saturates [g] | Carbohydrates of Which Sugars [g] | Protein [g] | Salt [g] |
---|---|---|---|---|---|---|
Traditional | Water, red beetroot*, garlic*, bay leaf*, allspice*, kłodawska salt | 12 | <0.1 (<0.1) | 1.8 (0.3) | 0.4 | 0.75 |
With horseradish | Water, red beetroot*, horseradish* 5%, garlic*, onion*, bay leaf*, allspice*, salt | 12 | <0.1 (<0.1) | 1.8 (0.3) | 0.4 | 0.75 |
With garlic | Water, red beetroot*, garlic*10%, bay leaf*, allspice*, kłodawska salt | 12 | <0.1 (<0.1) | 1.8 (0.3) | 0.4 | 0.75 |
With acerola | Water, red beetroot*, lemon*, acerola (1%), bay leaf*, allspice*, salt | 12 | <0.1 (<0.1) | 1.8 (0.3) | 0.4 | 0.75 |
Iodized | Red beetroot*, water, garlic*, allspice*, bay leaf*, salt, sodium iodide, potassium iodide | 12 | 0 (0) | 1.8 (0.3) | 0.4 | 0.75 |
Without salt | Water, red beetroot*41%, garlic*, bay leaf*, allspice | 12 | <0.1 (<0.1) | 1.8 (0.3) | 0.4 | 0 |
FRAP (µM Fe (II)/L) | |||||||
---|---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | K–W p Value | Different From * |
| 5553.400 | 5634.350 | 5663.40 | 5690.500 | 5761.800 | <0.000001 | b–f |
| 5464.100 | 5524.325 | 5538.60 | 5588.600 | 5670.600 | a, c, f | |
| 5253.400 | 5280.900 | 5334.60 | 5371.225 | 5391.200 | a, b, d–f | |
| 5433.900 | 5528.100 | 5623.20 | 5639.475 | 5677.400 | a, c, e, f | |
| 5406.000 | 5474.075 | 5511.00 | 5554.525 | 5625.800 | a, c, d, f | |
| 5341.600 | 5358.550 | 5420.80 | 5471.250 | 5521.700 | a–e |
ABTS (%) | |||||||
---|---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | K–W p Value | Different From * |
| 96.320 | 96.526 | 96.613 | 96.672 | 96.708 | <0.000001 | b–f |
| 94.009 | 94.105 | 94.236 | 94.380 | 94.418 | a, c–f | |
| 62.089 | 65.479 | 69.943 | 70.631 | 71.353 | a, b, d–f | |
| 48.171 | 49.157 | 54.369 | 61.475 | 61.837 | a–c, e–f | |
| 37.936 | 38.931 | 44.146 | 45.938 | 46.746 | a–d, f | |
| 79.991 | 80.065 | 80.118 | 80.656 | 80.985 | a–e |
DPPH (%) | |||||||
---|---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | K–W p Value | Different From * |
| 54.756 | 55.112 | 65.143 | 65.285 | 65.442 | <0.000001 | b–f |
| 73.452 | 73.470 | 73.489 | 74.041 | 74.408 | a, c–f | |
| 76.929 | 77.174 | 78.149 | 79.026 | 79.066 | a, b, d, e | |
| 73.897 | 73.939 | 73.959 | 74.824 | 74.967 | a–c, e, f | |
| 76.969 | 77.028 | 77.169 | 77.521 | 77.582 | a–d | |
| 77.003 | 77.169 | 77.293 | 77.365 | 77.431 | a, b, d |
TPC (mg GAE/L) | |||||||
---|---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | K–W p Value | Different From * |
| 750.580 | 750.655 | 760.020 | 787.195 | 790.450 | <0.000001 | b–f |
| 110.050 | 110.085 | 110.170 | 110.327 | 110.390 | a, c–f | |
| 108.740 | 108.817 | 109.470 | 109.653 | 109.700 | a, b, d | |
| 111.400 | 111.420 | 112.680 | 112.795 | 112.870 | a–c, e, f | |
| 108.770 | 108.827 | 108.930 | 110.280 | 110.350 | a, b, d, f | |
| 107.770 | 107.797 | 107.840 | 109.888 | 109.960 | a, b, d, e |
TFC (mg RE/L) | |||||||
---|---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | K–W p Value | Different From * |
| 205.330 | 206.337 | 221.280 | 222.180 | 223.420 | <0.000001 | b–f |
| 83.922 | 87.335 | 89.931 | 96.246 | 97.320 | a, c–e | |
| 101.650 | 106.068 | 108.090 | 109.278 | 110.290 | a, b, f | |
| 102.660 | 105.197 | 112.020 | 114.473 | 115.340 | a, b, e, f | |
| 98.296 | 99.371 | 104.020 | 108.830 | 109.090 | a, b, d, f | |
| 87.532 | 90.213 | 94.552 | 107.982 | 108.760 | a, c–e |
Vitamin C (mg/100 mL) | |||||||
---|---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | K–W p Value | Different From * |
| 29.870 | 29.903 | 29.927 | 29.933 | 29.966 | <0.000001 | b–f |
| 45.627 | 45.818 | 51.859 | 55.879 | 55.905 | a, c–f | |
| 39.316 | 39.370 | 41.669 | 43.253 | 43.371 | a, b, d, f | |
| 38.470 | 38.515 | 46.358 | 64.905 | 64.962 | a–c | |
| 38.982 | 39.076 | 44.678 | 46.019 | 46.057 | a, b | |
| 38.530 | 38.802 | 47.885 | 47.932 | 48.018 | a–c |
pH | ||||||
---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Minimum | 25th Percentile | Median | 75th Percentile | Maximum | K–W p Value |
| 3.90 | 3.90 | 3.91 | 3.96 | 3.98 | 0.055899 |
| 3.39 | 3.39 | 3.40 | 3.41 | 3.41 | |
| 3.50 | 3.50 | 3.50 | 362 | 3.66 | |
| 3.42 | 3.44 | 3.49 | 3.49 | 3.49 | |
| 3.53 | 3.57 | 3.67 | 3.67 | 3.67 | |
| 3.48 | 3.49 | 3.52 | 5.02 | 5.52 |
Sensory Evaluation | ||||||
---|---|---|---|---|---|---|
Type of Fermented Beetroot Juice | Aroma | Sweetness | Acidity | Colour | Overall Acceptability | K–W p Value |
| 7.60 | 7.40 | 7.40 | 8.80 | 8.20 | 0.41588 |
| 7.80 | 7.40 | 7.20 | 8.40 | 7.60 | |
| 7.83 | 6.67 | 7.80 | 8.33 | 7.83 | |
| 6.80 | 6.00 | 5.80 | 8.80 | 7.00 | |
| 8.25 | 7.50 | 8.00 | 9.00 | 8.00 | |
| 7.60 | 7.20 | 7.40 | 8.80 | 8.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, K.; Melkis, K.; Janda-Milczarek, K.; Skonieczna-Żydecka, K. Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives. Foods 2024, 13, 102. https://doi.org/10.3390/foods13010102
Jakubczyk K, Melkis K, Janda-Milczarek K, Skonieczna-Żydecka K. Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives. Foods. 2024; 13(1):102. https://doi.org/10.3390/foods13010102
Chicago/Turabian StyleJakubczyk, Karolina, Klaudia Melkis, Katarzyna Janda-Milczarek, and Karolina Skonieczna-Żydecka. 2024. "Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives" Foods 13, no. 1: 102. https://doi.org/10.3390/foods13010102
APA StyleJakubczyk, K., Melkis, K., Janda-Milczarek, K., & Skonieczna-Żydecka, K. (2024). Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives. Foods, 13(1), 102. https://doi.org/10.3390/foods13010102