Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals—Reagents
2.2. Apparatus and Instruments
2.3. Modified QuEChERS Sample Preparation
3. Results and Discussion
3.1. Optimization of the Modified QuEChERS (Sample Preparation) Technique Using Experimental Design
3.2. Method Validation
3.3. Optimization Process Screening Design, Plackett–Burman Design, and Experimental Design Approach
3.4. Central Composite Design
3.5. Response Surface Graphs by CCD and Optimal Values
3.6. Method Validation and Performance
3.7. Linearity and Limits of Quantification
3.8. Accuracy and Precision
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carro, N.; Vilas, L.; García, I.; Ignacio, M.; Mouteira, A.M. Optimization of a method based on micro-matrix solid-phase dispersion (micro-MSPD) for the determination of PCBs in mussel samples. Anal. Chem. Res. 2017, 11, 1–8. [Google Scholar] [CrossRef]
- Hana, L.; Matarrita, J.; Sapozhnikova, Y.; Lehotay, S.J. Evaluation of a recent product to remove lipids and other matrix co-extractives in the analysis of pesticide residues and environmental contaminants in foods. J. Chromatogr. A. 2016, 1449, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.C.; Fusco, G.; Monnolo, A.; Saggiomo, F.; Guccione, J.; Mercogliano, R.; Clausi, M.T. Food contamination by PCBs and waste disposal crisis: Evidence from goat milk in Campania (Italy). Chemosphere 2017, 186, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Elsharkawy, E.E.; Sharkawy, A.A.; Aly, W.A. The Risk Profile of Pesticide and PCB Residues in Imported Meat Consumed in Egypt. Asian Basic Appl. Res. J. 2020, 2, 56–75. [Google Scholar]
- Gandhi, N.; Bhavsar, S.P.; Reiner, E.J.; Chen, T.; Morse, D.; Arhonditsis, G.B.; Drouillard, K.G. Evaluation and interconversion of various indicator PCB schemes for∑ PCB and dioxin-like PCB toxic equivalent levels in fish. Environ. Sci. Technol. 2015, 49, 123–131. [Google Scholar] [CrossRef]
- Polanco Rodríguez, Á.G.; Inmaculada Riba López, M.; Angel DelValls Casillas, T.; Araujo León, J.A.; Anjan Kumar Prusty, B.; Álvarez Cervera, F.J. Levels of persistent organic pollutants in breast milk of Maya women in Yucatan, Mexico, Environ. Monit. Assess. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Orecchio, S.; Amorello, D.; Indelicato, R.; Barreca, S.; Orecchio, S. A Short Review of Simple Analytical Methods for the Evaluation of PAHs and PAEs as Indoor Pollutants in House Dust Samples. Atmosphere 2022, 13, 1799. [Google Scholar] [CrossRef]
- Hamidi, E.N.; Hajeb, P.; Selamat, J.; Razis, A.F.A. Polycyclic aromatic hydrocarbons (PAHs) and their bioaccessibility in meat: A tool for assessing human cancer risk. Asian Pac. J. Cancer Prev. 2016, 17, 15–23. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Eldaly, E.A.; Hussein, M.A.; El-Gaml, A.M.A.; El-hefny, D.E.; Mohammed, A.; Mishref, M.A. Polycyclic Aromatic Hydrocarbons (PAHs) in Charcoal Grilled Meat (Kebab) and Kofta and the Effect of Marinating on their Existence. Zagazig Vet. J. 2016, 44, 40–47. [Google Scholar] [CrossRef]
- Orecchio, S.; Bianchini, F.; Bonsignore, R.; Blandino, P.; Barreca, S.; Amorello, D. Profiles and Sources of PAHs in Sediments from an Open-Pit Mining Area in the Peruvian Andes. Polycycl. Aromat. Compd. 2016, 36, 429–451. [Google Scholar] [CrossRef]
- Zheng, X.; Kevin, T.; Dupuis, K.T.; Aly, N.A.; Zhou, Y.; Smith, F.B.; Tang, K.; Smith, R.D.; Baker, E.S. Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal. Chim. Acta 2018, 1037, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.O. Exposure to and health effects of volatile PCBs. Rev. Environ. Health 2015, 30, 81–92. [Google Scholar] [CrossRef]
- Hasan, G.A.; Shaikh, M.A.A.; Satter, M.A.; Hossain, M.S. Detection of indicator polychlorinated biphenyls (I-PCBs) and polycyclic aromatic hydrocarbons (PAHs) in cow milk from selected areas of Dhaka, Bangladesh and potential human health risks assessment. Toxicol. Rep. 2022, 9, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment for extracts clean up in PCB analysis from sediments. Talanta 2013, 103, 349–354. [Google Scholar] [CrossRef]
- Lee, J.G.; Kim, S.Y.; Moon, J.S.; Kim, S.H.; Kang, D.H.; Yoon, H.J. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 2016, 199, 632–638. [Google Scholar] [CrossRef]
- Domingo, J.L. Concentrations of environmental organic contaminants in meat and meat products and human dietary exposure: A review. Food Chem. Toxicol. 2017, 107, 20–26. [Google Scholar] [CrossRef]
- Hamidi, E.N.; Hajeb, P.; Selamat, J.; Razis, A.F.A.; Lee, S.Y. Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content. Int. J. Environ. Res. Public Health 2022, 19, 736. [Google Scholar] [CrossRef]
- Rose, M.; Holland, J.; Dowding, A.; Petch, S.; White, S.; Fernandes, A.; Mortimer, D. Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem. Toxicol. 2015, 78, 1–9. [Google Scholar] [CrossRef]
- Nassar, A.; Shafik, S.; Abdelaziem, O. Detection of Polycyclic Aromatic Hydrocarbon in charcoal-grilled meat with and without natural additives. Assiut Vet. Med. J. 2018, 64, 131–137. [Google Scholar] [CrossRef]
- EUR-Lex. Amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, 1–5. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0004:0008:EN:PDF (accessed on 19 August 2011).
- EUR-Lex. Amending Regulation (Eu) No 1259/2011 of 2 December 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for dioxins, dioxin-like PCBs and non dioxin-like PCBs in foodstuffs. Off. J. Eur. Union 2011. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:320:0018:0023:EN:PDF (accessed on 2 December 2011).
- Angioni, A.; Porcu, L.; Secci, M.; Addis, P. QuEChERS Method for the Determination of PAH Compounds in Sardinia Sea Urchin (Paracentrotus lividus) Roe, Using Gas Chromatography ITMS-MS Analysis. Food Anal. Methods 2012, 5, 1131–1136. [Google Scholar] [CrossRef]
- Surma, M.; Sadowska-Rociek, A.; Cieślik, E. The application of d-SPE in the QuEChERS method for the determination of PAHs in food of animal origin with GC–MS detection. Eur. Food Res. Technol. 2014, 238, 1029–1036. [Google Scholar] [CrossRef]
- Amiri, A.; Ghaemi, F. Graphene grown on stainless steel mesh as a highly efficient sorbent for sorptive microextraction of polycyclic aromatic hydrocarbons from water samples. Anal. Chim. Acta 2017, 994, 29–37. [Google Scholar] [CrossRef]
- Chamkasem, N.; Lee, S.; Harmon, T. Analysis of 19 PCB congeners in catfish tissue using a modified QuEChERS method with GC-MS/MS. Food Chem. 2016, 192, 900–906. [Google Scholar] [CrossRef]
- Tran-Lam, T.T.; Hai Dao, Y.; Kim Thi Nguyen, L.; Kim Ma, H.; Nguyen Tran, H.; Truong Le, G. Simultaneous Determination of 18 Polycyclic Aromatic Hydrocarbons in Daily Foods (Hanoi Metropolitan Area) by Gas Chromatography(-)Tandem Mass Spectrometry. Foods 2018, 7, 201. [Google Scholar] [CrossRef]
- Robles-Molina, J.; Gilbert-López, B.; García-Reyes, J.F.; Martos, N.R.; Molina-Díaz, A. Multiclass determination of pesticides and priority organic pollutants in fruit-based soft drinks by headspace solid-phase microextraction/gas chromatography tandem mass spectrometry. Anal. Methods 2011, 3, 10–15. [Google Scholar] [CrossRef]
- Kulikovskii, A.V.; Vostrikova, N.L.; Chernukha, I.M.; Savchuk, S.A. Methodology of the determination of polycyclic aromatic hydrocarbons in foods. J. Anal. Chem. 2014, 69, 205–209. [Google Scholar] [CrossRef]
- Moukas, A.I.; Thomaidis, N.S.; Calokerinos, A.C. Determination of polychlorinated biphenyls by liquid chromatography-atmospheric pressure photoionization-mass spectrometry. J. Mass Spectrom. 2014, 49, 1096–1107. [Google Scholar] [CrossRef]
- Cloutier, P.L.; Fortin, F.; Groleau, P.E.; Brousseau, P.; Fournier, M.; Desrosiers, M. QuEChERS extraction for multi-residue analysis of PCBs, PAHs, PBDEs and PCDD/Fs in biological samples. Talanta 2017, 165, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Saija, E.; Mangano, V.; Casale, K.E.; La Torre, G.L.; Dugo, G.; Salvo, A. Determination and quantification of PCBs, POCs and PAHs in Thunnus thynnus from the Straits of Messina (Italy). Data Brief 2016, 7, 129–134. [Google Scholar] [CrossRef]
- Yoshioka, T.; Nagatomi, Y.; Harayama, K.; Bamba, T. Development of an analytical method for polycyclic aromatic hydrocarbons in coffee beverages and dark beer using novel high-sensitivity technique of supercritical fluid chromatography/mass spectrometry. J. Biosci. Bioeng. 2018, 126, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Menezes, H.C.; Paulo, B.P.; Paiva, M.J.N.; de Barcelos, S.M.R.; Macedo, D.F.D.; Cardeal, Z.L. Determination of polycyclic aromatic hydrocarbons in artisanal cachaça by DI-CF-SPME–GC/MS. Microchem. J. 2015, 118, 272–277. [Google Scholar] [CrossRef]
- Punin Crespo, M.O.; Lage Yusty, M.A. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples. Chemosphere 2005, 59, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. J. 2015, 13, 1–10. [Google Scholar] [CrossRef]
- Santana-Mayor, A.; Socas-Rodríguez, B. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trends Anal. Chem. 2019, 116, 214–235. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.K.; Choi, S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Chamkasem, N.; Lee, S.; Harmon, T.A. GC/MS method for the determination of carcinogenic polycyclic aromatic hydrocarbons (PAH) in smoked meat products and liquid smokes. Eur. Food Res. Technol. 2004, 218, 208–212. [Google Scholar] [CrossRef]
- Sapozhnikova, Y. High-throughput analytical method for 265 pesticides and environmental contaminants in meats and poultry by fast low pressure gas chromatography and ultrahigh-performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A. 2018, 1572, 203–211. [Google Scholar] [CrossRef]
- Olanca, B.; Cakirogullari, G.; Ucar, Y.; Kirisik, D.; Kilic, D. Polychlorinated dioxins, furans (PCDD/Fs), dioxin-like polychlorinated biphenyls (dl-PCBs) and indicator PCBs (ind-PCBs) in egg and egg products in Turkey. J. Chemosphere 2013, 94, 9–13. [Google Scholar] [CrossRef]
- Knobel, G.; Campiglia, A.D. Determination of polycyclic aromatic hydrocarbon metabolites in milk by a quick, easy, cheap, effective, rugged and safe extraction and capillary electrophoresis. J. Sep. Sci. 2013, 14, 2291–2298. [Google Scholar] [CrossRef]
- Deng, K.; Chan, W. Development of a QuEChERS-Based Method for Determination of Carcinogenic 2-Nitrofluorene and 1-Nitropyrene in Rice Grains and Vegetables: A Comparative Study with Benzo[a]pyrene. J. Agric. Food Chem. 2017, 65, 1992–1999. [Google Scholar] [CrossRef]
- Taghvaee, Z.; Piravivanak, Z.; Rezaei, K.; Faraji, M. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Olive and Refined Pomace Olive Oils with Modified Low Temperature and Ultrasound-Assisted Liquid–Liquid Extraction Method Followed by the HPLC/FLD. Food Anal. Methods 2015, 9, 1220–1227. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Li, H.; Bai, Y.; Liu, H. Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes. Coord. Chem. Rev. 2019, 397, 1–13. [Google Scholar] [CrossRef]
- Yagüe, C.; Bayarri, S.; Conchello, P.; Lázaro, R.; Pérez-Arquillué, C.; Herrera, A.; Ariño, A. Determination of pesticides and PCBs in virgin olive oil by multicolumn solid-phase extraction cleanup followed by GC-NPD/ECD and confirmation by ion-trap GC-MS. J. Agric. Food Chem. 2005, 53, 5105–5109. [Google Scholar] [CrossRef]
- Lin, S.; Gan, N.; Zhang, J.; Chen, X.; Cao, Y.; Li, T. A novel reductive graphene oxide-based magnetic molecularly imprinted poly (ethylene-co-vinyl alcohol) polymers for the enrichment and determination of polychlorinated biphenyls in fish samples. J. Mol. Recognit. 2015, 28, 359–368. [Google Scholar] [CrossRef]
- Hu, C.; He, M.; Chen, B.; Hu, B. Simultaneous determination of polar and apolar compounds in environmental samples by a polyaniline/hydroxyl multi-walled carbon nanotubes composite-coated stir bar sorptive extraction coupled with high performance liquid chromatography. J. Chromatogr. A 2015, 1394, 36–45. [Google Scholar] [CrossRef] [PubMed]
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Evolution and applications of the QuEChERS method. TRAC 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Han, L.; Sapozhnikova, Y.; Lehotay, S.J. Method validation for 243 pesticides and environmental contaminants in meats and poultry by tandem mass spectrometry coupled to low-pressure gas chromatography and ultrahigh-performance liquid chromatography. Food Control 2016, 66, 270–282. [Google Scholar] [CrossRef]
- Rizzetti, T.M.; Kemmerich, M.; Martins, M.L.; Prestes, O.D.; Adaime, M.B.; Zanella, R. Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC-MS/MS. Food Chem. 2016, 196, 25–33. [Google Scholar] [CrossRef]
- Montgomery, D. Design and Analysis of Experiments, 1st ed.; Wiley: New York, NY, USA, 2004; pp. 4–5. [Google Scholar]
- Granato, D.; Ares, G. Mathematical and Statistical Methods in Food Science and Technology, 1st ed.; Wiley Blackwell: New York, NY, USA, 2014; pp. 10–11. [Google Scholar]
- González-Curbelo, M.A.; Lehotay, S.J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Use of ammonium formate in QuEChERS for high-throughput analysis of pesticides in food by fast, low-pressure gas chromatography and liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1358, 75–84. [Google Scholar] [CrossRef] [PubMed]
- EURL. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. Available online: https://www.eurl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727 (accessed on 1 January 2022).
- Forsberg, N.D.; Wilson, J.R.; Anderson, K.A. Determination of Parent and Substituted Polycyclic Aromatic Hydrocarbons in High-Fat Salmon Using a Modified QuEChERS Extraction, Dispersive SPE and GC MS. J. Agric. Food Chem. 2011, 59, 8108–8116. [Google Scholar] [CrossRef]
- Gustavo, A.P.M.; Andre’s, F.G.O.; Duvan, E.H.O.; Andre’s, R.R. GC–MS Applied to the Monitoring of Pesticides in Milk and Blackberries and PAHs in Processed Meats of Colombia, 1st ed.; Elsevier BV: New York, NY, USA, 2013; pp. 159–180. [Google Scholar] [CrossRef]
- Hussain, A.; Nada, A.; Murad, H. Development of QuEChERS Method for the Determination of Polycyclic Aromatic Hydrocarbons in Smoked Meat Products Using GC-MS from Qatar. J. Anal. Methods Chem. 2018, 2018, 208–219. [Google Scholar] [CrossRef]
- Yeakub, A.; Richard, B. SFE-plus-C18 Lipid Cleanup and Selective Extraction Method for GC/MS Quantitation of Polycyclic Aromatic Hydrocarbons in Smoked Meat. J. Agric. Food Chem. 2001, 49, 4192–4198. [Google Scholar] [CrossRef]
- Sharif, A.; Sarya, G.; Mohammed, H.; Mahmoud, A. Monitoring of polycyclic aromatic hydrocarbons (PAHs) in smoke of charcoal grilled meat restaurants in Amman, Jordan. J. Toxin Rev. 2021, 28, 1–8. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, J.; He, L.; Gan, J. Determination of Polychlorinated Biphenyls and Organochlorine Pesticides in Chinese mitten Crab (Eriocheir sinensis) using modified QuEChERS followed by GC–MS. J. Anal. Methods 2012, 1237, 30–36. [Google Scholar] [CrossRef]
- He, W.; Chen, Y.; Yang, C.; Liu, W. Optimized Multiresidue Analysis of Organic Contaminants of Priority Concern in a Daily Consumed Fish (Grass Carp). J. Anal. Methods Chem. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mottier, P.; Parisod, V.; Turesky, R. Quantitative Determination of Polycyclic Aromatic Hydrocarbons in Barbecued Meat Sausages by Gas Chromatography Coupled to Mass Spectrometry. J. Agric. Food Chem. 2000, 48, 1160–1166. [Google Scholar] [CrossRef] [PubMed]
- Kartalovi’c, B.; Mastanjevi’c, K.; Novakov, N. Organochlorine Pesticides and PCBs in Traditionally and Industrially Smoked Pork Meat Products from Bosnia and Herzegovina. J. Foods 2020, 9, 97. [Google Scholar] [CrossRef] [PubMed]
Factor | Notation | Type | Unit | Levels | Factor |
---|---|---|---|---|---|
−1 * | +1 ** | ||||
Sample weight | A | Numeric | g | 1 | 5 |
Solvent volume | C | Numeric | mL | 1 | 3 |
Water volume | D | Numeric | mL | 100 | 1000 |
Ammonium formate weight | E | Numeric | g | 0.5 | 2 |
PSA weight | F | Numeric | g | 0.1 | 0.3 |
Amount of sorbent | H | Numeric | g | 0.1 | 0.3 |
Extraction vortex time | J | Numeric | s | 60 | 1800 |
Cleanup vortex time | K | Numeric | s | 60 | 900 |
NaCl weight | L | Numeric | g | 0.1 | 2 |
Levels One | Levels Two | ||||
Type of solvent | B | Categoric | Acetonitrile | Mix of solvent | |
Type of sorbent | G | Categoric | Z-Sep+ | EMR-Lipid |
RUN | A | B | C | D | E | F | G | H | I | G | K | Response |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | Acetonitrile | 2 | 550 | 1.25 | 0.2 | EMR-Lipid | 0.2 | 930 | 480 | 1.05 | 0.1908 |
2 | 1 | Acetonitrile | 1 | 1000 | 0.5 | 0.3 | EMR-Lipid | 0.1 | 1800 | 900 | 2 | 0.01788 |
3 | 3 | Acetonitrile | 2 | 550 | 1.25 | 0.2 | Z-Sep+ | 0.2 | 930 | 480 | 1.05 | 0.2591 |
4 | 5 | Mix of solvents | 1 | 1000 | 2 | 0.3 | Z-Sep+ | 0.1 | 60 | 900 | 0.1 | 1 |
5 | 3 | Mix of solvents | 2 | 550 | 1.25 | 0.2 | EMR-Lipid | 0.2 | 930 | 480 | 1.05 | 0.6712 |
6 | 3 | Acetonitrile | 2 | 550 | 1.25 | 0.2 | EMR-Lipid | 0.2 | 930 | 480 | 1.05 | 0.2749 |
7 | 1 | Acetonitrile | 1 | 100 | 0.5 | 0.1 | Z-Sep+ | 0.1 | 60 | 60 | 0.1 | 0.0324 |
8 | 5 | Mix of solvents | 3 | 100 | 0.5 | 0.1 | EMR-Lipid | 0.1 | 1800 | 900 | 0.1 | 0.8902 |
9 | 5 | Mix of solvents | 1 | 100 | 0.5 | 0.3 | Z-Sep+ | 0.3 | 1800 | 60 | 2 | 0.0089 |
10 | 1 | Mix of solvents | 3 | 100 | 2 | 0.3 | EMR-Lipid | 0.1 | 60 | 60 | 2 | 0.0671 |
11 | 3 | Acetonitrile | 2 | 550 | 1.25 | 0.2 | Z-Sep+ | 0.2 | 930 | 480 | 1.05 | 0.3245 |
12 | 3 | Mix of solvents | 2 | 550 | 1.25 | 0.2 | EMR-Lipid | 0.2 | 930 | 480 | 1.05 | 0.7444 |
13 | 1 | Mix of solvents | 1 | 1000 | 2 | 0.1 | EMR-Lipid | 0.3 | 1800 | 60 | 0.1 | 0.0847 |
14 | 3 | Mix of solvents | 2 | 550 | 1.25 | 0.2 | Z-Sep+ | 0.2 | 930 | 480 | 1.05 | 0.7397 |
15 | 5 | Acetonitrile | 3 | 1000 | 0.5 | 0.3 | EMR-Lipid | 0.3 | 60 | 60 | 0.1 | 0.2305 |
16 | 5 | Acetonitrile | 1 | 100 | 2 | 0.1 | EMR-Lipid | 0.3 | 60 | 900 | 2 | 0.2176 |
17 | 1 | Acetonitrile | 3 | 100 | 2 | 0.3 | Z-Sep+ | 0.3 | 1800 | 900 | 0.1 | 0.0322 |
18 | 5 | Acetonitrile | 3 | 1000 | 2 | 0.1 | Z-Sep+ | 0.1 | 1800 | 60 | 2 | 0.4142 |
19 | 3 | Acetonitrile | 2 | 550 | 1.25 | 0.2 | EMR-Lipid | 0.2 | 930 | 480 | 1.05 | 0.3290 |
20 | 1 | Mix of solvents | 3 | 1000 | 0.5 | 0.1 | Z-Sep+ | 0.3 | 60 | 900 | 2 | 0.0541 |
21 | 3 | Mix of solvents | 2 | 550 | 1.25 | 0.2 | Z-Sep+ | 0.2 | 930 | 480 | 1.05 | 0.7905 |
22 | 3 | Mix of solvents | 2 | 550 | 1.25 | 0.2 | Z-Sep+ | 0.2 | 930 | 480 | 1.05 | 0.7707 |
23 | 3 | Mix of solvents | 2 | 550 | 1.25 | 0.2 | EMR-Lipid | 0.2 | 930 | 480 | 1.05 | 0.7778 |
24 | 3 | Acetonitrile | 2 | 550 | 1.25 | 0.2 | Z-Sep+ | 0.2 | 930 | 480 | 1.05 | 0.3966 |
Block | Run | NaCl Weight (g) | Sorbent Weight (g) | Ammonium Formate Weight (g) | Cleanup Time (s) | Recovery% |
---|---|---|---|---|---|---|
Block 1 | 1 | 0.45 | 0.15 | 1 | 465 | 61 |
Block 1 | 2 | 1.15 | 0.15 | 1 | 195 | 77 |
Block 1 | 3 | 0.45 | 0.25 | 2 | 465 | 69 |
Block 1 | 4 | 0.45 | 0.25 | 1 | 195 | 74 |
Block 1 | 5 | 0.8 | 0.2 | 1.5 | 330 | 82 |
Block 1 | 6 | 0.8 | 0.2 | 1.5 | 330 | 82 |
Block 1 | 7 | 1.15 | 0.25 | 2 | 195 | 78 |
Block 1 | 8 | 0.8 | 0.2 | 1.5 | 330 | 82 |
Block 1 | 9 | 0.8 | 0.2 | 1.5 | 330 | 82 |
Block 1 | 10 | 0.45 | 0.15 | 2 | 195 | 61 |
Block 1 | 11 | 1.15 | 0.25 | 1 | 465 | 65 |
Block 1 | 12 | 0.8 | 0.2 | 1.5 | 330 | 82 |
Block 1 | 13 | 1.15 | 0.15 | 2 | 465 | 68 |
Block 2 | 14 | 0.45 | 0.25 | 2 | 195 | 50 |
Block 2 | 15 | 0.8 | 0.2 | 1.5 | 330 | 65 |
Block 2 | 16 | 0.45 | 0.15 | 2 | 465 | 38 |
Block 2 | 17 | 0.45 | 0.15 | 1 | 195 | 51 |
Block 2 | 18 | 0.45 | 0.25 | 1 | 465 | 55 |
Block 2 | 19 | 1.15 | 0.15 | 2 | 195 | 63 |
Block 2 | 20 | 0.8 | 0.2 | 1.5 | 330 | 65 |
Block 2 | 21 | 0.8 | 0.2 | 1.5 | 330 | 65 |
Block 2 | 22 | 1.15 | 0.25 | 1 | 195 | 55 |
Block 2 | 23 | 0.8 | 0.2 | 1.5 | 330 | 65 |
Block 2 | 24 | 1.15 | 0.25 | 2 | 465 | 55 |
Block 2 | 25 | 1.15 | 0.15 | 1 | 465 | 45 |
Block 2 | 26 | 0.8 | 0.2 | 1.5 | 330 | 65 |
Block 3 | 27 | 1.5 | 0.2 | 1.5 | 330 | 45 |
Block 3 | 28 | 0.8 | 0.2 | 1.5 | 330 | 48 |
Block 3 | 29 | 0.8 | 0.2 | 2.5 | 330 | 37 |
Block 3 | 30 | 0.8 | 0.2 | 0.5 | 330 | 37 |
Block 3 | 31 | 0.8 | 0.2 | 1.5 | 60 | 26 |
Block 3 | 32 | 0.8 | 0.3 | 1.5 | 330 | 50 |
Block 3 | 33 | 0.8 | 0.2 | 1.5 | 330 | 53 |
Block 3 | 34 | 0.1 | 0.2 | 1.5 | 330 | 25 |
Block 3 | 35 | 0.8 | 0.1 | 1.5 | 330 | 41 |
Block 3 | 36 | 0.8 | 0.2 | 1.5 | 600 | 12 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Source |
---|---|---|---|---|---|---|
Model | 0.4693 | 7 | 0.0670 | 50.24 | <0.0001 | significant |
A-Sample weight | 0.1483 | 1 | 0.1483 | 111.17 | <0.0001 | |
B-Type of solvent | 0.0245 | 1 | 0.0245 | 18.38 | 0.0008 | |
D-Water volume | 0.0081 | 1 | 0.0081 | 6.10 | 0.0270 | |
E-AF Weight | 0.0093 | 1 | 0.0093 | 6.98 | 0.0193 | |
H-Sorbent weight | 0.0688 | 1 | 0.0688 | 51.55 | <0.0001 | |
K-Cleanup time | 0.0377 | 1 | 0.0377 | 28.28 | 0.0001 | |
L-NaCl weight | 0.0467 | 1 | 0.0467 | 35.00 | <0.0001 | |
Curvature | 0.1682 | 2 | 0.0841 | 63.03 | <0.0001 | |
Residual | 0.0187 | 14 | 0.0013 | |||
Lack of Fit | 0.0111 | 6 | 0.0019 | 1.97 | 0.1846 | not significant |
Pure Error | 0.0075 | 8 | 0.0009 | |||
Cor Total | 0.6562 | 23 |
Fit Statistics | Values |
---|---|
R2 | 0.9617 |
Adjusted R2 | 0.9426 |
Predicted R2 | 0.8065 |
Adeq Precision | 23.5079 |
Factor | Notation | Type | Unit | Levels | |
---|---|---|---|---|---|
−1 * | +1 ** | ||||
NaCl weight | A | Numeric | g | 0.1 | 1.50 |
Sorbent weight | B | Numeric | g | 0.1 | 0.3 |
Ammonium formate weight | C | Numeric | g | 0.5 | 2.50 |
Cleanup vortex time | D | Numeric | s | 60 | 600 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Source |
---|---|---|---|---|---|---|
Block | 0.8849 | 2 | 0.4424 | |||
Model | 0.3526 | 14 | 0.0252 | 139.79 | <0.0001 | significant |
A-NaCl weight | 0.0339 | 1 | 0.0339 | 187.91 | <0.0001 | |
B-Sorbent Weight | 0.0143 | 1 | 0.0143 | 79.43 | <0.0001 | |
C-AF | 5.766 × 10−7 | 1 | 5.766 × 10−7 | 0.0032 | 0.9555 | |
D-cleanup time | 0.0274 | 1 | 0.0274 | 151.98 | <0.0001 | |
AB | 0.0107 | 1 | 0.0107 | 59.20 | <0.0001 | |
AC | 0.0148 | 1 | 0.0148 | 82.08 | <0.0001 | |
AD | 0.0063 | 1 | 0.0063 | 34.85 | <0.0001 | |
BC | 0.0005 | 1 | 0.0005 | 2.52 | 0.1288 | |
BD | 0.0047 | 1 | 0.0047 | 26.21 | <0.0001 | |
CD | 0.0009 | 1 | 0.0009 | 4.73 | 0.0425 | |
A2 | 0.0423 | 1 | 0.0423 | 234.57 | <0.0001 | |
B2 | 0.0042 | 1 | 0.0042 | 23.08 | 0.0001 | |
C2 | 0.0341 | 1 | 0.0341 | 189.22 | <0.0001 | |
D2 | 0.1625 | 1 | 0.1625 | 902.26 | <0.0001 | |
Residual | 0.0034 | 19 | 0.0002 | |||
Lack of Fit | 0.0020 | 10 | 0.0002 | 1.29 | 0.3544 | not significant |
Pure Error | 0.0014 | 9 | 0.0002 | |||
Cor Total | 1.24 | 35 |
Fit Statistics | Values |
---|---|
R2 | 0.9904 |
Adjusted R2 | 0.9833 |
Predicted R2 | 0.9511 |
Adeq Precision | 78.0531 |
Compound | * RT (Min) | ** QI | R2 | LOQ (ng/g) | Linear Range (ng/g) | Recovery% (Mean) | %RSD (Range) |
---|---|---|---|---|---|---|---|
Naphthalene | 11.8 | 128.1 | 0.999 | 1 | 1–40 | 115.3 | 10.4–12.8 |
Acenaphthylene | 18.2 | 152.1 | 0.999 | 2 | 2–40 | 110.9 | 7.9–13.1 |
Acenaphthene | 19 | 153.1 | 0.999 | 0.5 | 0.5–40 | 95.4 | 9.5–11.9 |
Flourene | 21.3 | 166.1 | 0.999 | 1 | 1–40 | 113.6 | 11.2–15.3 |
Phenanthrene | 25.9 | 178.1 | 0.999 | 0.5 | 0.5–40 | 97.1 | 5.2–9.8 |
Anthracene | 26.1 | 178.1 | 0.999 | 0.5 | 0.5–40 | 119.5 | 3.2–7.5 |
PCB 28 | 27.6 | 255.9 | 0.999 | 0.5 | 0.5–40 | 100.4 | 1.1–2.8 |
PCB 52 | 29 | 291.9 | 0.999 | 0.5 | 0.5–40 | 101.7 | 1.5–2 |
PCB 49 | 29.2 | 291.9 | 0.999 | 0.5 | 0.5–40 | 98.9 | 1.3–2.1 |
PCB 44 | 29.8 | 291.9 | 0.999 | 0.5 | 0.5–40 | 100.7 | 1.8–2.5 |
PCB 74 | 31.2 | 290 | 0.999 | 0.5 | 0.5–40 | 110.1 | 1.2–2.1 |
PCB 66 | 31.5 | 291.9 | 0.999 | 0.5 | 0.5–40 | 103.9 | 1.2–1.9 |
Flouranthene | 31.7 | 202.1 | 0.999 | 1 | 1–40 | 80.9 | 6.4–10.5 |
PCB 155 | 32.1 | 357.8 | 0.999 | 0.5 | 0.5–40 | 93.7 | 1.5–2.4 |
PCB 101 | 32.4 | 325.9 | 0.999 | 0.5 | 0.5–40 | 110.6 | 1.1–1.8 |
PCB 99 | 32.6 | 325.9 | 0.999 | 0.5 | 0.5–40 | 99.4 | 1.9–2.9 |
Pyrene | 32.7 | 202.1 | 0.999 | 0.5 | 0.5–40 | 97.6 | 1.3–2.5 |
PCB 112 | 33.01 | 325.91 | 0.999 | 0.5 | 0.5–40 | 119.7 | 1.1–1.6 |
PCB 97 | 33.2 | 325.9 | 0.999 | 0.5 | 0.5–40 | 110.8 | 1.2–1.9 |
PCB 87 | 33.4 | 325.9 | 0.999 | 1 | 1–40 | 105.8 | 1.6–2.3 |
PCB 110 | 33.8 | 325.9 | 0.999 | 0.5 | 0.5–40 | 87.9 | 1.2–2.1 |
PCB 151 | 34.3 | 359.8 | 0.999 | 0.5 | 0.5–40 | 93.6 | 1.6–2.8 |
PCB 149 | 34.7 | 359.8 | 0.999 | 0.5 | 0.5–40 | 110.9 | 1.4–2.8 |
PCB 118 | 34.8 | 325.9 | 0.999 | 0.5 | 0.5–40 | 116.4 | 1.3–2.6 |
PCB 146 | 35.4 | 359.8 | 0.999 | 0.5 | 0.5–40 | 105.9 | 1.9–2.9 |
PCB 153 | 35.6 | 359.8 | 0.999 | 0.5 | 0.5–40 | 111.8 | 1.1–2.3 |
PCB 138 | 36.7 | 325.9 | 0.999 | 1 | 1–40 | 84.2 | 1.2–1.9 |
PCB 158 | 36.8 | 359.8 | 0.999 | 1 | 1–40 | 90.5 | 1.3–2.5 |
PCB 178 | 37.02 | 393.8 | 0.999 | 0.5 | 0.5–40 | 98.2 | 1.8–2.7 |
PCB 187 | 37.32 | 393.8 | 0.999 | 0.5 | 0.5–40 | 94.3 | 1.3–2.3 |
PCB 183 | 37.5 | 393.8 | 0.999 | 0.5 | 0.5–40 | 101.1 | 1.2–1.8 |
PCB 128 | 37.8 | 359.8 | 0.999 | 0.5 | 0.5–40 | 93.8 | 1.5–2.1 |
PCB 177 | 38.4 | 393.8 | 0.999 | 0.5 | 0.5–40 | 105.7 | 1.3–2.1 |
Benzo[a]anthracene | 38.5 | 228.1 | 0.999 | 0.5 | 0.5–40 | 110.6 | 8.8-12.9 |
Chrysene | 38.7 | 228.1 | 0.999 | 0.5 | 0.5–40 | 113.1 | 8.3–14 |
PCB 172 | 38.9 | 393.8 | 0.999 | 0.5 | 0.5–40 | 116.4 | 1.2–2.9 |
PCB 180 | 39.17 | 393.8 | 0.999 | 0.5 | 0.5–40 | 93.7 | 1.7–2.7 |
PCB 170 | 40.2 | 393.8 | 0.999 | 0.5 | 0.5–40 | 109 | 1.9–2.5 |
PCB 198 | 40.4 | 429.8 | 0.999 | 0.5 | 0.5–40 | 99.5 | 1.5–2.3 |
PCB 199 | 40.5 | 429.8 | 0.999 | 0.5 | 0.5–40 | 89.9 | 1.2–2.5 |
PCB 203 | 40.7 | 429.8 | 0.999 | 0.5 | 0.5–40 | 93.8 | 1.8–2.7 |
PCB 196 | 40.9 | 429.8 | 0.999 | 0.5 | 0.5–40 | 111 | 1.9–2.8 |
PCB 195 | 41.9 | 429.8 | 0.999 | 0.5 | 0.5–40 | 103 | 1.6–2.7 |
PCB 194 | 42.65 | 429.8 | 0.999 | 0.5 | 0.5–40 | 96.4 | 1.3–2.7 |
Benzo[b]flouranthene | 43.9 | 252.1 | 0.999 | 0.5 | 0.5–40 | 80.6 | 8.9–12.2 |
Benzo[k]flouranthene | 44.09 | 252.1 | 0.999 | 0.5 | 0.5–40 | 75.4 | 10–14.2 |
PCB 206 | 44.3 | 463.8 | 0.999 | 0.5 | 0.5–40 | 81.5 | 1.6–2.8 |
PCB 209 | 45.9 | 497.7 | 0.999 | 0.5 | 0.5–40 | 81 | 1.8–2.9 |
Benzo[a]pyrene | 45.9 | 252.1 | 0.999 | 0.5 | 0.5–40 | 79 | 10.2–14.1 |
Indeno[1,2,3-cd]pyrene | 54.9 | 276.1 | 0.999 | 1 | 1–40 | 75 | 12.6–16.1 |
Dibenz[a,h]anthracene | 55.17 | 278.1 | 0.999 | 1 | 1–40 | 75.6 | 11.1–15.7 |
Benzo[ghi]perylene | 57.5 | 276.1 | 0.999 | 2 | 2–40 | 72.5 | 12.6–16.8 |
Sample | Analyte | LOQ (ng/g) | Recovery% (Range) | %RSD (Range) | Extraction Method | References |
---|---|---|---|---|---|---|
Smoked meat products and liquid smokes | fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno [1,2,3-c,d] pyrene, dibenzo [a,h]anthracene and benzo[g,h,i]perylene) | 0.01 | 90–110 | 3–12 | ASE | [39] |
High-fat salmon | (PAHs) | - | 50–200 | <10 | Modified QuEChERS extraction, dispersive SPE | [56] |
Processed meats: sausages, cerveroni pepperoni, beer pepperoni, hams, mortadellas, smoked ribs, Antioquia’s sausages, bacon | PAHs | 0.5 | 55–116 | ≤20 | QuEChERS method | [57] |
Smoked meat products | 16 common PAHs | 1 and 10 | 74–117 | 1.15–37.57 | Development of QuEChERS method | [58] |
Smoked meat | PAHs | 0.5 | 63–94% | - | SFE-plus-C18 | [59] |
The smoke of charcoal-grilled meat restaurants | PAHs | 0.075–15 | 80–99 for the 50 ppb; 81–100 for the 250 ppb; 82–101 for the 750 ppb | - | QuEChERS method | [60] |
Chinese mitten crabs | PCBs | 0.1–3.6 | 85.9–119.8 | - | QuEChERS | [61] |
Daily consumed fish (Grass Carp) | PAHs–PCBs | 0.6 | 98–95 | 1.02–8.9 | Microwave-assisted extraction (MAE), lip removal by gel permeation chromatography (GPC), cleanup by solid-phase cartridge (SC) | [62] |
Grilled meat sausages | 16 (PAHs) | 0.20 | 60–134 at the 0.5 µg/kg and 69–121 at the 1.0 | saponification, liquid–liquid partition, and final cleanup using solid-phase extraction (SPE) | [63] | |
Dry pork neck (budiola), pork tenderloin, and sausages | PCBs | 5.7–13.8 | 81.61–116.33 | 3.7–10 | QuEChERS | [64] |
Grilled meat | 16 PAHs, 36 PCBs | 0.5–2 0.5–1 | 72.5–119.5 81–116.4 | 1.3–16.8 1.2–2.9 | Modified QuEChERS | Proposed study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostadgholami, M.; Zeeb, M.; Amirahmadi, M.; Daraei, B. Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. Foods 2024, 13, 143. https://doi.org/10.3390/foods13010143
Ostadgholami M, Zeeb M, Amirahmadi M, Daraei B. Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. Foods. 2024; 13(1):143. https://doi.org/10.3390/foods13010143
Chicago/Turabian StyleOstadgholami, Mahsa, Mohsen Zeeb, Maryam Amirahmadi, and Bahram Daraei. 2024. "Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS" Foods 13, no. 1: 143. https://doi.org/10.3390/foods13010143
APA StyleOstadgholami, M., Zeeb, M., Amirahmadi, M., & Daraei, B. (2024). Multivariate Optimization and Validation of a Modified QuEChERS Method for Determination of PAHs and PCBs in Grilled Meat by GC-MS. Foods, 13(1), 143. https://doi.org/10.3390/foods13010143