Comprehensive Characterization of Micronized Wholemeal Flours: Investigating Technological Properties across Various Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Chemical Composition of Raw Materials
2.2.2. Farinograph Water Absorption
2.2.3. Solvent Retention Capacity Profile
2.2.4. Determination of Falling Number
2.2.5. Amylographic Measurements
2.2.6. Pasting Properties of Flours
2.3. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Raw Materials
3.2. Farinograph Water Absorption
3.3. Solvent Retention Capacity Profile
3.4. Determination of the Characteristics of the Starch–Amylase Complex Using the Falling Number and Amylograph
3.5. Pasting Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, H.; Shams, R.; Dash, K.K.; Dar, A.H. A Comprehensive Review of Pseudo-Cereals: Nutritional Profile, Phytochemicals Constituents and Potential Health Promoting Benefits. Appl. Food Res. 2023, 3, 100351. [Google Scholar] [CrossRef]
- Allen, T. Whole Grains as an Antioxidant and Its Health Benefits. Oxid. Antioxid. Med. Sci. 2022, 11, 1–2. [Google Scholar]
- Both, J.; Biduski, B.; Gómez, M.; Bertolin, T.E.; Friedrich, M.T.; Gutkoski, L.C. Micronized Whole Wheat Flour and Xylanase Application: Dough Properties and Bread Quality. J. Food. Sci. Technol. 2021, 58, 3902–3912. [Google Scholar] [CrossRef]
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markelou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of Wheat Species (Triticum Aestivum vs T. Spelta), Farming System (Organic vs Conventional) and Flour Type (Wholegrain vs White) on Composition of Wheat Flour—Results of a Retail Survey in the UK and Germany—2. Antioxidant Activity, and Phenolic and Mineral Content. Food Chem. X 2020, 6, 100091. [Google Scholar] [CrossRef]
- Tebben, L.; Shen, Y.; Li, Y. Improvers and Functional Ingredients in Whole Wheat Bread: A Review of Their Effects on Dough Properties and 2 Bread Quality 3 4. Trends Food Sci. Technol. 2018, 81, 10–24. [Google Scholar] [CrossRef]
- Heiniö, R.-L.; Katina, K.; Alam, S.A.; Sozer, N.; Kock, D. Sensory Characteristics of Wholegrain and Bran-Rich Cereal Foods-a Review. Trends Food Sci. Technol. 2016, 47, 25–38. [Google Scholar] [CrossRef]
- Skřivan, P.; Sluková, M.; Jurkaninová, L.; Švec, I. Preliminary Investigations on the Use of a New Milling Technology for Obtaining Wholemeal Flours. Appl. Sci. 2021, 11, 6138. [Google Scholar] [CrossRef]
- Torbica, A.; Radosavljević, M.; Belović, M.; Tamilselvan, T.; Prabhasankar, P. Biotechnological Tools for Cereal and Pseudocereal Dietary Fibre Modification in the Bakery Products Creation—Advantages, Disadvantages and Challenges. Trends Food Sci. Technol. 2022, 129, 194–209. [Google Scholar] [CrossRef]
- Protonotariou, S.; Mandala, I.; Rosell, C.M. Jet Milling Effect on Functionality, Quality and In Vitro Digestibility of Whole Wheat Flour and Bread. Food Bioproc Technol. 2015, 8, 1319–1329. [Google Scholar] [CrossRef]
- Noort, M.; Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R. The Effect of Particle Size of Wheat Bran Fractions on Bread Quality—Evidence for Fibre–Protein Interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- International association for cereal science and technology. ICC Standards: Standard Methods of the International Association for Cereal Science and Technology (ICC); ICC: Dubai, United Arab Emirates, 1999. [Google Scholar]
- AOAC (Association of Official Analytical Chemists). AOAC (2012) Official Methods of Analysis, 18th ed.; AOAC: Arlington, TX, USA, 2012. [Google Scholar]
- Gillarová, S.; Henke, S.; Svoboda, T.; Krčová, P.; Bubník, Z.; Kadlec, P.; Sluková, M. Possibilities of Optimizing the Purity of Mannose in Continuous Chromatographic Separation. Chem. Eng. Technol. 2023, 46, 1298–1306. [Google Scholar] [CrossRef]
- Vernarelli, J.A.; Mitchell, D.C.; Rolls, B.J.; Hartman, T.J. Methods for Calculating Dietary Energy Density in a Nationally Representative Sample. Procedia Food Sci. 2013, 2, 68–74. [Google Scholar] [CrossRef] [PubMed]
- AACC (American Association of Cereal Chemists). AACC (2000) Approved Methods of the AACC, 10th ed.; AACC: St. Paul, MN, USA, 2000. [Google Scholar]
- Xu, Q.; Zheng, F.; Cao, X.; Yang, P.; Xing, Y.; Zhang, P.; Liu, H.; Zhou, G.; Liu, X.; Bi, X. Effects of Airflow Ultrafine-Grinding on the Physicochemical Characteristics of Tartary Buckwheat Powder. Molecules 2021, 26, 5841. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Kim, M.J.; Kwak, H.S.; Kim, S.S. Effects of Milling Methods and Cultivars on Physicochemical Properties of Whole-Wheat Flour. J. Food Qual. 2019, 2019, 3416905. [Google Scholar] [CrossRef]
- Mueen-ud-Din, G.; Salim-ur-Rehman; Anjum, F.M.; Nawaz, H.; Murtaza, M.A. Effect of Wheat Flour Extraction Rates on Flour Composition, Farinographic Characteristics and Sensory Perception of Sourdough Naans. Int. J. Nutr. Food Eng. 2010, 4, 668–674. [Google Scholar]
- Sinkovič, L.; Tóth, V.; Rakszegi, M.; Pipan, B. Elemental Composition and Nutritional Characteristics of Spelt Flours and Wholemeals. J. Elem. 2023, 28, 27–39. [Google Scholar] [CrossRef]
- Ijarotimi, O.S.; Ogunjobi, O.G.; Oluwajuyitan, T.D. Gluten Free and High Protein-Fiber Wheat Flour Blends: Macro-Micronutrient, Dietary Fiber, Functional Properties, and Sensory Attributes. Food Chem. Adv. 2022, 1, 100134. [Google Scholar] [CrossRef]
- Skřivan, P.; Chrpová, D.; Klitschová, B.; Švec, I.; Sluková, M. Buckwheat Flour (Fagopyrum Esculentum Moench)—A Contemporary View on the Problems of Its Production for Human Nutrition. Foods 2023, 12, 3055. [Google Scholar] [CrossRef]
- Niu, M.; Hou, G.G.; Wang, L.; Chen, Z. Effects of Superfine Grinding on the Quality Characteristics of Whole-Wheat Flour and Its Raw Noodle Product. J. Cereal Sci. 2014, 60, 382–388. [Google Scholar] [CrossRef]
- Makran, M.; Cilla, A.; Haros, C.M.; Garcia-Llatas, G. Enrichment of Wholemeal Rye Bread with Plant Sterols: Rheological Analysis, Optimization of the Production, Nutritional Profile and Starch Digestibility. Foods 2023, 12, 93. [Google Scholar] [CrossRef]
- Hussein, A.M.S.; Kamil, M.M.; Hegazy, N.A.; Abo El-Nor, S.A.H. Effect of Wheat Flour Supplemented with Barely and/or Corn Flour on Balady Bread Quality. Pol. J. Food Nutr. Sci. 2013, 63, 11–18. [Google Scholar] [CrossRef]
- Rumler, R.; Bender, D.; Speranza, S.; Frauenlob, J.; Gamper, L.; Hoek, J.; Jäger, H.; Schönlechner, R. Chemical and Physical Characterization of Sorghum Milling Fractions and Sorghum Whole Meal Flours Obtained via Stone or Roller Milling. Foods 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Protonotariou, S.; Stergiou, P.; Christaki, M.; Mandala, I.G. Physical Properties and Sensory Evaluation of Bread Containing Micronized Whole Wheat Flour. Food Chem. 2020, 318, 126497. [Google Scholar] [CrossRef] [PubMed]
- Švec, I.; Hrušková, M.; Jurinová, I. Technological and Nutritional Aspect of Different Hemp Types Addition: Comparison of Flour and Wholemeal Effect. Croat. J. Food Sci. Technol. 2015, 7, 68–75. [Google Scholar] [CrossRef]
- U.S. Wheat Associates. 2021-Solvent-Retention-Capacity-Recommendations; U.S. Wheat Associates: Arlington, VA, USA, 2021. [Google Scholar]
- Skrabanja, V.; Kreft, I.; Golob, T.; Modic, M.; Ikeda, S.; Ikeda, K.; Kreft, S.; Bonafaccia, G.; Knapp, M.; Kosmelj, K. Nutrients Content in Buckwheat Milling Fractions. Cereal Chem. 2004, 81, 2. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.-S.M. Pasting Properties of Starch and Protein in Selected Cereals and Quality of Their Food Products. Food Chem. 2006, 95, 9–18. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, Q.; Zhao, G.; Ye, F. Comparison of Milling Methods on the Properties of Common Buckwheat Flour and the Quality of Wantuan, a Traditional Chinese Buckwheat Food. Food Chem. X 2023, 19, 100845. [Google Scholar] [CrossRef]
- Cheng, J.; Lei, S.; Gao, L.; Zhang, Y.; Cheng, W.; Wang, Z.; Tang, X. Effects of Jet Milling on the Physicochemical Properties of Buckwheat Flour and the Quality Characteristics of Extruded Whole Buckwheat Noodles. Foods 2022, 11, 2722. [Google Scholar] [CrossRef]
Flour Type | Moisture (%) | Energy Value (kcal/100 g) | Total Protein Content (g/100 g d.m.) | Ash (g/100 g d.m.) | Fat (g/100 g d.m.) | Carbohydrates (g/100 g d.m.) | Sugars (g/100 g d.m.) | TDF (g/100 g d.m.) |
---|---|---|---|---|---|---|---|---|
MWF | 8.0 ± 0.2 c | 334.8 ± 1.6 b | 14.7 ± 0.2 a | 2.36 ± 0.05 a | 2.8 ± 0.2 ab | 54.0 ± 1.1 b | 3.2 ± 0.1 b | 18.7 ± 0.9 a |
MRF | 9.7 ± 0.4 b | 335.3 ± 1.3 b | 11.0 ± 0.3 b | 1.54 ± 0.03 c | 1.9 ± 0.1 b | 62.0 ± 1.2 ab | 8.1 ± 0.3 a | 14.6 ± 0.6 ab |
MSF | 8.7 ± 0.3 c | 345.4 ± 1.4 ab | 14.6 ± 0.5 a | 1.63 ± 0.04 c | 2.3 ± 0.3 b | 61.0 ± 0.9 ab | 3.8 ± 0.1 b | 12.4 ± 0.5 b |
MBF | 9.8 ± 0.4 b | 340.2 ± 1.2 ab | 13.8 ± 0.4 ab | 1.75 ± 0.04 c | 3.0 ± 0.4 ab | 59.0 ± 0.8 ab | 3.3 ± 0.1 b | 14.1 ± 0.5 ab |
MBWF | 10.2 ± 0.5 ab | 356.9 ± 1.6 a | 13.8 ± 0.4 ab | 2.08 ± 0.05 b | 2.9 ± 0.1 ab | 68.0 ± 1.4 a | 1.9 ± 0.0 c | 4.4 ± 0.2 d |
MSGF | 10.5 ± 0.5 ab | 353.4 ± 1.4 a | 13.4 ± 0.4 ab | 1.66 ± 0.04 c | 3.4 ± 0.4 a | 65.0 ± 0.9 a | 3.1 ± 0.1 b | 7.5 ± 0.3 c |
T530 | 11.6 ± 0.6 a | 331.3 ± 1.1 b | 9.6 ± 0.1 c | 0.55 ± 0.00 d | 1.8 ± 0.1 b | 64.5 ± 1.0 a | 1.2 ± 0.1 d | 10.7 ± 0.4 b |
Flour Type | Water Absorption (%) |
---|---|
MWF | 87.4 ± 0.7 a |
MRF | 83.4 ± 0.8 b |
MSF | 76.4 ± 0.5 c |
MBF | 70.6 ± 0.4 d |
MBWF | 63.4 ± 0.3 e |
MSGF | 63.8 ± 0.3 e |
T530 | 60.6 ± 0.4 f |
Flour Type | WRC (%) | SC-SRC (%) |
---|---|---|
MWF | 68.9 ± 0.6 ef | 82.9 ± 0.9 e |
MRF | 128.8 ± 0.9 a | 121.6 ± 1.1 a |
MSF | 73.4 ± 0.6 de | 100.9 ± 1.0 c |
MBF | 80.5 ± 0.8 c | 109.4 ± 1.1 b |
MBWF | 89.0 ± 0.8 b | 90.5 ± 0.9 d |
MSGF | 77.2 ± 0.7 cd | 92.5 ± 0.9 d |
T530 | 65.9 ± 0.6 f | 87.7 ± 0.9 de |
Flour Type | Falling Number (s) | Initial Gelatinization Temperature (°C) | Final Gelatinization Temperature (°C) | Maximum Viscosity (AU) |
---|---|---|---|---|
MWF | 324 ± 1.5 c | 63.5 ± 0.4 ab | 92.3 ± 0.9 a | 805 ± 1.8 d |
MRF | 200 ± 1.0 e | 54.6 ± 0.3 d | 72.8 ± 0.7 e | 495 ± 1.4 e |
MSF | 238 ± 1.1 d | 58.6 ± 0.3 bcd | 80.2 ± 0.8 d | 353 ± 1.3 f |
MBF | 389 ± 1.6 b | 61.0 ± 0.5 abc | 87.2 ± 0.8 abc | 1234 ± 2.4 c |
MBWF | 918 ± 1.9 a | 59.8 ± 0.4 bc | 88.7 ± 0.7 ab | 3702 ± 3.5 a |
MSGF | 398 ± 1.6 b | 65.6 ± 0.7 a | 86.4 ± 0.9 bc | 1655 ± 1.6 b |
T530 | 320 ± 1.4 c | 56.1 ± 0.5 cd | 82.5 ± 0.8 cd | 540 ± 1.0 e |
Flour Type | Pasting Temperature (°C) | Peak Time (min) | Peak Viscosity (cP) | Holding Viscosity (cP) | Final Viscosity (cP) | Breakdown (cP) | Setback (cP) |
---|---|---|---|---|---|---|---|
MWF | 89.7 ± 1.1 a | 5.8 ± 0.3 bc | 1282 ± 12 d | 761 ± 9 c | 2074 ± 22 d | 522 ± 5 d | 1312 ± 17 cd |
MRF | 79.9 ± 1.0 bc | 5.1 ± 0.2 e | 846 ± 9 e | 379 ± 4 d | 1038 ± 16 f | 466 ± 4 e | 658 ± 9 e |
MSF | 86.5 ± 1.2 ab | 5.4 ± 0.2 d | 887 ± 8 e | 378 ± 6 d | 1022 ± 11 f | 508 ± 6 d | 644 ± 8 e |
MBF | 86.4 ± 1.3 ab | 6.1 ± 0.3 a | 2670 ± 16 a | 1244 ± 11 b | 2794 ± 21 c | 1426 ± 8 a | 1550 ± 19 c |
MBWF | 74.3 ± 0.9 c | 5.9 ± 0.4 b | 2729 ± 21 a | 2460 ± 23 a | 5278 ± 31 a | 270 ± 5 f | 2818 ± 31 a |
MSGF | 87.2 ± 1.3 ab | 6.1 ± 0.3 a | 1914 ± 19 b | 1348 ± 14 b | 3416 ± 25 b | 566 ± 9 c | 2068 ± 21 b |
T530 | 76.3 ± 1.1 c | 5.6 ± 0.1 c | 1487 ± 13 c | 644 ± 6 c | 1541 ± 15 e | 842 ± 1.8 b | 896 ± 11 de |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojciechowicz-Budzisz, A.; Skřivan, P.; Sluková, M.; Švec, I.; Pejcz, E.; Stupák, M.; Czubaszek, A.; Harasym, J. Comprehensive Characterization of Micronized Wholemeal Flours: Investigating Technological Properties across Various Grains. Foods 2024, 13, 39. https://doi.org/10.3390/foods13010039
Wojciechowicz-Budzisz A, Skřivan P, Sluková M, Švec I, Pejcz E, Stupák M, Czubaszek A, Harasym J. Comprehensive Characterization of Micronized Wholemeal Flours: Investigating Technological Properties across Various Grains. Foods. 2024; 13(1):39. https://doi.org/10.3390/foods13010039
Chicago/Turabian StyleWojciechowicz-Budzisz, Agata, Pavel Skřivan, Marcela Sluková, Ivan Švec, Ewa Pejcz, Michal Stupák, Anna Czubaszek, and Joanna Harasym. 2024. "Comprehensive Characterization of Micronized Wholemeal Flours: Investigating Technological Properties across Various Grains" Foods 13, no. 1: 39. https://doi.org/10.3390/foods13010039
APA StyleWojciechowicz-Budzisz, A., Skřivan, P., Sluková, M., Švec, I., Pejcz, E., Stupák, M., Czubaszek, A., & Harasym, J. (2024). Comprehensive Characterization of Micronized Wholemeal Flours: Investigating Technological Properties across Various Grains. Foods, 13(1), 39. https://doi.org/10.3390/foods13010039