Antibacterial Activity and Action Mechanism of Bacteriocin Paracin wx7 as a Selective Biopreservative against Vancomycin-Resistant Enterococcus faecalis in Fresh-Cut Lettuce
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteriocin Synthesis and Antimicrobial Spectrum Measurement
2.2. Growth Curve and Time-Kill Curve
2.3. Selective Control of E. faecalis in Fresh-Cut Lettuce
2.4. Live/Death and Cell Aggregation
2.5. Fluorescence Microscope and Confocal Microscope
2.6. Membrane Permeability
2.7. Membrane Electrical Potential
2.8. Scanning Electron Microscope (SEM)
2.9. Determination of Intracellular Reactive Oxygen Species (ROS)
2.10. Statistical Analysis
3. Results
3.1. Antimicrobial Spectrum of Bacteriocin Paracin wx7
3.2. Effect of Paracin wx7 on the Growth and Survival of E. faecalis
3.3. Selective Control of E. faecalis by Paracin wx7 in Fresh-Cut Lettuce
3.4. Effect of Paracin wx7 on Live/Death and Cell Aggregation of E. faecalis
3.5. Action Location of Paracin wx7
3.6. Effect of Paracin wx7 on Membrane Integrity of E. faecalis
3.7. Membrane Depolarization of Paracin wx7
3.8. Effect of Paracin wx7 on Cell Morphology of E. faecalis
3.9. Inducing ROS Production by Paracin wx7
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalid, W.; Ikram, A.; Nadeem, M.T.; Arshad, M.S.; Rodrigues, S.D.; Pagnossa, J.P.; Al-Farga, A.; Chamba, M.V.M.; Batiha, G.E.; Koraqi, H. Effects of Traditional and Novel Cooking Processes on the Nutritional and Bioactive Profile of Brassica oleracea (Kale). J. Food Process. Preserv. 2023, 2023, 2827547. [Google Scholar] [CrossRef]
- Givens, C.E.; Kolpin, D.W.; Hubbard, L.E.; Meppelink, S.M.; Cwiertny, D.M.; Thompson, D.A.; Lane, R.F.; Wilson, M.C. Simultaneous stream assessment of antibiotics, bacteria, antibiotic resistant bacteria, and antibiotic resistance genes in an agricultural region of the United States. Sci. Total Environ. 2023, 904, 166753. [Google Scholar] [CrossRef]
- Kim, N.H.; Kim, H.W.; Park, S.M.; Seo, G.H.; Cho, T.J.; Yu, H.R.; Kim, S.H.; Hwang, J.H.; Choi, C.; Rhee, M.S. Virulence patterns and prevalence of seven Enterococcus species isolated from meats and leafy vegetables in South Korea. Food Control 2020, 108, 106867. [Google Scholar] [CrossRef]
- Luo, Q.X.; Lu, P.; Chen, Y.B.; Shen, P.; Zheng, B.W.; Ji, J.R.; Ying, C.Q.; Liu, Z.Y.; Xiao, Y.H. ESKAPE in China: Epidemiology and characteristics of antibiotic resistance. Emerg. Microbes Infect. 2024, 13, 2317915. [Google Scholar] [CrossRef]
- Bager, P.; Kaehler, J.; Andersson, M.; Holzknecht, B.J.; Hansen, S.G.K.; Schonning, K.; Nielsen, K.L.; Koch, K.; Pinholt, M.; Voldstedlund, M.; et al. Comparison of morbidity and mortality after bloodstream infection with vancomycin-resistant versus -susceptible Enterococcus faecium: A nationwide cohort study in Denmark, 2010–2019. Emerg. Microbes Infect. 2024, 13, 2309969. [Google Scholar] [CrossRef]
- Nair, P.; Sankar, S.; Neelusree, P. Study on Biofilm Formation Among Enterococcus Isolates and Association with Their Antibiotic Resistance Patterns. Cureus J. Med. Sci. 2024, 16, e53594. [Google Scholar] [CrossRef]
- Ferdous, F.B.; Islam, M.S.; Ullah, M.A.; Rana, M.L.; Punom, S.A.; Neloy, F.H.; Chowdhury, M.N.U.; Hassan, J.; Siddique, M.P.; Saha, S.; et al. Antimicrobial Resistance Profiles, Virulence Determinants, and Biofilm Formation in Enterococci Isolated from Rhesus Macaques (Macaca mulatta): A Potential Threat for Wildlife in Bangladesh? Animals 2023, 13, 2268. [Google Scholar] [CrossRef]
- Amuasi, G.R.; Dsani, E.; Owusu-Nyantakyi, C.; Owusu, F.A.; Mohktar, Q.; Nilsson, P.; Adu, B.; Hendriksen, R.S.; Egyir, B. Enterococcus species: Insights into antimicrobial resistance and whole-genome features of isolates recovered from livestock and raw meat in Ghana. Front. Microbiol. 2023, 14, 1254896. [Google Scholar] [CrossRef]
- Morandi, S.; Silvetti, T.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Brasca, M. Biodiversity and antibiotic resistance profile provide new evidence for a different origin of Enterococci in bovine raw milk and feces. Food Microbiol. 2024, 120, 104492. [Google Scholar] [CrossRef]
- Al-Kharousi, Z.S.; Guizani, N.; Al-Sadi, A.M.; Al-Bulushi, I.M. Antimicrobial Susceptibility of Fresh Produce-Associated Enterobacteriaceae and Enterococci in Oman. Foods 2022, 11, 3085. [Google Scholar] [CrossRef]
- Zhu, B.K.; Chen, Q.L.; Chen, S.C.; Zhu, Y.G. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced? Environ. Int. 2017, 98, 152–159. [Google Scholar] [CrossRef]
- Smith, J.R.; Martini, A.; Gibney, P.A. Utilizing functional genomics in Saccharomyces cerevisiae to characterize food preservative compounds: A pilot study. J. Food Sci. 2024, 89, 1196–1210. [Google Scholar] [CrossRef]
- Mavani, N.R.; Ali, J.M.; Hussain, M.A.; Rahman, N.A.; Hashim, H. Determining food safety in canned food using fuzzy logic based on sulphur dioxide, benzoic acid and sorbic acid concentration. Heliyon 2024, 10, e26273. [Google Scholar] [CrossRef]
- Wang, T.W.; Wilson, A.G.; Peck, G.M.; Gibney, P.A.; Hodge, K.T. Patulin contamination of hard apple cider by Paecilomyces niveus and other postharvest apple pathogens: Assessing risk factors. Int. J. Food Microbiol. 2024, 412, 110545. [Google Scholar] [CrossRef]
- Li, W.J.; Zhou, X.Y.; An, X.L.; Li, L.J.; Lin, C.S.; Li, H.; Li, H.Z. Enhancement of beneficial microbiomes in plant-soil continuums through organic fertilization: Insights into the composition and multifunctionality. Soil Ecol. Lett. 2024, 6, 230223. [Google Scholar] [CrossRef]
- Wicaksono, W.A.; Cernava, T.; Wassermann, B.; Abdelfattah, A.; Soto-Giron, M.J.; Toledo, G.V.; Virtanen, S.M.; Knip, M.; Hyöty, H.; Berg, G. The edible plant microbiome: Evidence for the occurrence of fruit and vegetable bacteria in the human gut. Gut Microbes 2023, 15, 2258565. [Google Scholar] [CrossRef]
- Viera Herrera, C.; O’Connor, P.M.; Ratrey, P.; Paul Ross, R.; Hill, C.; Hudson, S.P. Anionic liposome formulation for oral delivery of thuricin CD, a potential antimicrobial peptide therapeutic. Int. J. Pharm. 2024, 654, 123918. [Google Scholar] [CrossRef]
- Zheng, X.R.; Nie, K.; Xu, Y.L.; Zhang, H.B.; Xie, F.; Xu, L.M.; Zhang, Z.Y.; Ding, Y.Y.; Yin, Z.J.; Zhang, X.D. Fecal Microbial Structure and Metabolic Profile in Post-Weaning Diarrheic Piglets. Genes 2023, 14, 1166. [Google Scholar] [CrossRef]
- Daba, G.M.; Elkhateeb, W.A. Ribosomally synthesized bacteriocins of lactic acid bacteria: Simplicity yet having wide potentials—A review. Int. J. Biol. Macromol. 2024, 256, 128325. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, E.S.; Kim, B.M.; Ham, J.S.; Oh, M.H. Simple Purification and Antimicrobial Properties of Bacteriocin-like Inhibitory Substance from Bacillus Species for the Biopreservation of Cheese. Foods 2024, 13, 10. [Google Scholar] [CrossRef]
- Yi, L.H.; Zeng, P.; Liu, J.; Wong, K.Y.; Chan, E.W.C.; Lin, Y.B.; Chan, K.F.; Chen, S. Antimicrobial peptide zp37 inhibits Escherichia coli O157:H7 in alfalfa sprouts by inflicting damage in cell membrane and binding to DNA. LWT-Food Sci. Technol. 2021, 146, 111392. [Google Scholar] [CrossRef]
- Pu, D.N.; Zhao, J.K.; Lu, B.H.; Zhang, Y.L.; Wu, Y.L.; Li, Z.Y.; Zhuo, X.X.; Cao, B. Within-host resistance evolution of a fatal ST11 hypervirulent carbapenem-resistant Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2023, 61, 106747. [Google Scholar] [CrossRef]
- Yi, L.H.; Li, X.; Luo, L.L.; Lu, Y.Y.; Yan, H.; Qiao, Z.; Lu, X. A novel bacteriocin BMP11 and its antibacterial mechanism on cell envelope of Listeria monocytogenes and Cronobacter sakazakii. Food Control 2018, 91, 160–169. [Google Scholar] [CrossRef]
- Woo, H.J.; Kang, J.H.; Lee, C.H.; Song, K.B. Application of Cudrania tricuspidata leaf extract as a washing agent to inactivate Listeria monocytogenes on fresh-cut romaine lettuce and kale. Int. J. Food Sci. Technol. 2020, 55, 276–282. [Google Scholar] [CrossRef]
- Weng, Z.; Zeng, F.; Wang, M.; Guo, S.; Tang, Z.; Itagaki, K.; Lin, Y.; Shen, X.; Cao, Y.; Duan, J.-A.; et al. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J. Adv. Res. 2024, 57, 197–212. [Google Scholar] [CrossRef]
- Qiao, X.X.; Du, R.P.; Wang, Y.; Han, Y.; Zhou, Z.J. Purification, characterization and mode of action of enterocin, a novel bacteriocin produced by Enterococcus faecium TJUQ1. Int. J. Biol. Macromol. 2020, 144, 151–159. [Google Scholar] [CrossRef]
- Sabolova, D.; Kozurkova, M.; Plichta, T.; Ondrusova, Z.; Hudecova, D.; Simkovic, M.; Paulikova, H.; Valent, A. Interaction of a copper(II)-Schiff base complexes with calf thymus DNA and their antimicrobial activity. Int. J. Biol. Macromol. 2011, 48, 319–325. [Google Scholar] [CrossRef]
- Wilkinson, M.G. Flow cytometry as a potential method of measuring bacterial viability in probiotic products: A review. Trends Food Sci. Technol. 2018, 78, 1–10. [Google Scholar] [CrossRef]
- Chinnathambi, A.; Alharbi, S.A.; Meganathan, V.; Renuka, J.; Palaniappan, S. Fabrication of drugs loaded UiO-66 nanoparticles loaded core-shell nanofibers: Investigation of antiproliferative activity and apoptosis induction in lung cancer cells. Mater. Technol. 2024, 39, 2304437. [Google Scholar] [CrossRef]
- Tempone, A.G.; Theodoro, R.D.; Romanelli, M.M.; Ferreira, D.A.S.; Amaral, M.; de Assis, L.R.; Cruz, L.M.S.; Costa, A.R.; Zanella, R.C.; Christodoulides, M.; et al. A new reduced chalcone-derivative affects the membrane permeability and electric potential of multidrug-resistant Enterococcus faecalis. Chem.-Biol. Interact. 2022, 365, 110086. [Google Scholar] [CrossRef]
- Chen, X.Q.; Yang, J.L.; Qu, C.; Zhang, Q.; Sun, S.J.; Liu, L.H. Anti-Staphylococcus aureus effects of natural antimicrobial peptides and the underlying mechanisms. Future Microbiol. 2024, 19, 355–372. [Google Scholar] [CrossRef]
- Boix-Lemonche, G.; Lekka, M.; Skerlavaj, B. A Rapid Fluorescence-Based Microplate Assay to Investigate the Interaction of Membrane Active Antimicrobial Peptides with Whole Gram-Positive Bacteria. Antibiotics 2020, 9, 92. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant Natural Flavonoids Against Multidrug Resistant Pathogens. Adv. Sci. 2021, 8, 2100749. [Google Scholar] [CrossRef]
- Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of gram-positive bacterial infections. Clin. Infect. Dis. 2004, 38, 864–870. [Google Scholar] [CrossRef]
- Iancu, C.; Grainger, A.; Field, D.; Cotter, P.D.; Hill, C.; Ross, R.P. Comparison of the Potency of the Lipid II Targeting Antimicrobials Nisin, Lacticin 3147 and Vancomycin Against Gram-Positive Bacteria. Probiotics Antimicrob. Proteins 2012, 4, 108–115. [Google Scholar] [CrossRef]
- Wang, J.; Liang, S.Y.; Lu, X.F.; Xu, Q.; Zhu, Y.; Yu, S.Y.; Zhang, W.J.; Liu, S.G.; Xie, F. Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by Enterococci and Staphylococcus aureus. Front. Microbiol. 2023, 14, 1304932. [Google Scholar] [CrossRef]
- Li, S.Q.; Wang, Y.J.; Xue, Z.H.; Jia, Y.A.; Li, R.L.; He, C.W.; Chen, H.X. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci. Technol. 2021, 109, 103–115. [Google Scholar] [CrossRef]
- Chen, E.H.L.; Wang, C.H.; Liao, Y.T.; Chan, F.Y.; Kanaoka, Y.; Uchihashi, T.; Kato, K.; Lai, L.S.; Chang, Y.W.; Ho, M.C.; et al. Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat. Commun. 2023, 14, 5464. [Google Scholar] [CrossRef]
- Arbulu, S.; Kjos, M. Revisiting the Multifaceted Roles of Bacteriocins. Microb. Ecol. 2024, 87, 41. [Google Scholar] [CrossRef]
- Sessa, L.; Concilio, S.; Marrafino, F.; Sarkar, A.; Diana, R.; Piotto, S. Theoretical investigation of hydroxylated analogues of valinomycin as potassium transporter. Comput. Biol. Chem. 2023, 106, 107936. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J.; Yang, Y.; Wang, N.; Yang, X.; Deng, L.; Cao, X.; Ran, Z.; Fang, D.; Xu, K.; et al. CuFeS2 nanozyme regulating ROS/GSH redox induces ferroptosis-like death in bacteria for robust anti-infection therapy. Mater. Des. 2024, 239, 112809. [Google Scholar] [CrossRef]
No. | Strain | MIC Value (μM) | Antibiotic Resistance |
---|---|---|---|
1 | E. faecalis ATCC29212 | 4 | - |
2 | E. faecalis ATCC51575 | 8 | vancomycin |
3 | E. faecalis 1 a | 8 | vancomycin |
4 | E. faecalis 2 a | 8 | vancomycin |
5 | E. faecalis 3 a | 8 | vancomycin |
6 | E. faecalis 4 a | 4 | vancomycin |
7 | E. faecalis 5 a | 8 | vancomycin |
8 | E. faecalis 6 a | 8 | vancomycin |
9 | Staphylococcus aureus ATCC29213 | >64 | - |
10 | MRSA ATCC1717 | >64 | methicillin |
11 | Escherichia coli ATCC25922 | >64 | - |
12 | Escherichia coli O157:H7 NCTC12900 | >64 | - |
13 | Listeria monocytogenes ATCC19114 | >64 | - |
14 | Salmonella ATCC51005 | >64 | - |
15 | Pseudomonas aeruginosa PA01 | >64 | - |
16 | Klebsiella pneumoniae ATCC78578 | >64 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Zhao, Q.; Li, J.; Yi, L. Antibacterial Activity and Action Mechanism of Bacteriocin Paracin wx7 as a Selective Biopreservative against Vancomycin-Resistant Enterococcus faecalis in Fresh-Cut Lettuce. Foods 2024, 13, 1448. https://doi.org/10.3390/foods13101448
Zhao Q, Zhao Q, Li J, Yi L. Antibacterial Activity and Action Mechanism of Bacteriocin Paracin wx7 as a Selective Biopreservative against Vancomycin-Resistant Enterococcus faecalis in Fresh-Cut Lettuce. Foods. 2024; 13(10):1448. https://doi.org/10.3390/foods13101448
Chicago/Turabian StyleZhao, Qian, Qingling Zhao, Jiabo Li, and Lanhua Yi. 2024. "Antibacterial Activity and Action Mechanism of Bacteriocin Paracin wx7 as a Selective Biopreservative against Vancomycin-Resistant Enterococcus faecalis in Fresh-Cut Lettuce" Foods 13, no. 10: 1448. https://doi.org/10.3390/foods13101448
APA StyleZhao, Q., Zhao, Q., Li, J., & Yi, L. (2024). Antibacterial Activity and Action Mechanism of Bacteriocin Paracin wx7 as a Selective Biopreservative against Vancomycin-Resistant Enterococcus faecalis in Fresh-Cut Lettuce. Foods, 13(10), 1448. https://doi.org/10.3390/foods13101448