Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Biological Materials and Chemicals
2.3. Microbial Growth and Ethanol Production of C. rhodanensis DK in Various Glucose Concentrations
2.4. Evaluation of Microbial Growth and Ethanol Productivity of C. rhodanensis DK under Different Compositions of Cashew Apple Juice
2.5. Co-Culture Fermentation of Cashew Apple Juice by C. rhodanensis DK with S. cerevisiae TISTR 5088 or L. pentosus A14-6
2.6. Analysis of Biological and Physicochemical Properties of the Fermented Products
2.6.1. Viable Cell Counts
2.6.2. pH and Total Titratable Acidity
2.6.3. Total Sugar and Reducing Sugar
2.6.4. Sugars and Ethanol
2.7. Analysis of Bioactive Compounds and Antioxidant Activity
2.7.1. Total Polyphenols
2.7.2. Total Tannins
2.7.3. Total Flavonoids
2.7.4. Antioxidant Activity
2.8. β-Glucosidase Assay
2.9. Determination of In Vitro α-Glucosidase Inhibitory Activity
2.10. Statistical Analysis
3. Results
3.1. Microbial Growth and Ethanol Production of C. rhodanensis DK in Various Glucose Concentrations
3.2. Evaluation of Microbial Growth and Ethanol Productivity of C. rhodanensis DK under Different Compositions of Cashew Apple Juice
3.3. Analysis of Biological and Physicochemical Properties of the Fermented Products
3.3.1. Viable Cell Counts
3.3.2. pH and Total Titratable Acidity
3.3.3. Total Sugar and Reducing Sugar
3.3.4. Sugars and Ethanol
3.4. Analysis of Bioactive Compounds and Antioxidant Activity
3.4.1. Total Polyphenols
3.4.2. Total Tannins
3.4.3. Total Flavonoids
3.4.4. Antioxidant Activity
3.5. β-Glucosidase Activity
3.6. Determination of In Vitro α-Glucosidase Inhibitory Activity
3.7. Comparison of Fermented CAJ Product Properties Using Different Microbial Inoculums
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, S.S.; Abdullah, S.; Pradhan, R.C.; Mishra, S. Physical, chemical, textural, and thermal properties of cashew apple fruit. J. Food Process Eng. 2019, 42, e13094. [Google Scholar] [CrossRef]
- Prommajak, T.; Leksawasdi, N.; Rattanapanone, N. Biotechnological valorization of cashew apple: A review. CMUJ. Nat. Sci. 2014, 13, 159–182. [Google Scholar] [CrossRef]
- Maciel, M.L.; Hansen, T.J.; Aldinger, S.B.; Labows, J.N. Flavor chemistry of cashew apple juice. J. Agric. Food Chem. 1986, 34, 923–927. [Google Scholar] [CrossRef]
- Kaprasob, R.; Kerdchoechuen, O.; Laohakunjit, N.; Thumthanaruk, B.; Shetty, K. Changes in physico-chemical, astringency, volatile compounds and antioxidant activity of fresh and concentrated cashew apple juice fermented with Lactobacillus plantarum. J. Food Sci. Technol. 2018, 55, 3979–3990. [Google Scholar] [CrossRef]
- Gamero, A.; Ren, X.; Lamboni, Y.; de Jong, C.; Smid, E.J.; Linnemann, A.R. Development of a low-alcoholic fermented beverage employing cashew apple juice and non-conventional yeasts. Fermentation 2019, 5, 71. [Google Scholar] [CrossRef]
- Mohanty, S.; Ray, P.; Swain, M.R.; Ray, R.C. Fermentation of cashew (Anacardium occidentale L.) “apple” into wine. J. Food Process. 2006, 30, 314–322. [Google Scholar] [CrossRef]
- Neelakandan, T.; Usharani, G. Optimization and production of bioethanol from cashew apple juice using immobilized yeast cells by Saccharomyces cerevisiae. Am. J. Scientific Res. 2009, 4, 85–88. [Google Scholar]
- Pereira, A.L.F.; Maciel, T.C.; Rodrigues, S. Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Int. Food Res. J. 2011, 44, 1276–1283. [Google Scholar] [CrossRef]
- Silveira, M.S.; Fontes, C.P.M.L.; Guilherme, A.A.; Fernandes, F.A.N.; Rodrigues, S. Cashew apple juice as substrate for lactic acid production. Food Bioprocess Technol. 2012, 5, 947–953. [Google Scholar] [CrossRef]
- Rêgo, E.S.B.; Rosa, C.A.; Freire, A.L.; de Resende Machado, A.M.; de Cássia Oliveira Gomes, F.; da Costa, A.S.P.; da Costa Mendonça, M.; Hernández-Macedo, M.L.; Padilha, F.F. Cashew wine and volatile compounds produced during fermentation by non-Saccharomyces and Saccharomyces yeast. LWT 2020, 126, 109291. [Google Scholar] [CrossRef]
- Yanase, S.; Hasunuma, T.; Yamada, R.; Tanaka, T.; Ogino, C.; Fukuda, H.; Kondo, A. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl. Microbiol. Biotechnol. 2010, 88, 381–388. [Google Scholar] [CrossRef]
- Méndez-Zamora, A.; Gutiérrez-Avendaño, D.O.; Arellano-Plaza, M.; De la Torre González, F.J.; Barrera-Martínez, I.; Gschaedler Mathis, A.; Casas-Godoy, L. The non-Saccharomyces yeast Pichia kluyveri for the production of aromatic volatile compounds in alcoholic fermentation. FEMS. Yeast Res. 2021, 20, foaa067. [Google Scholar] [CrossRef]
- Rodicio, R.; Heinisch, J.J. Sugar metabolism by Saccharomyces and non-Saccharomyces yeasts. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Fröhlich, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 113–134. [Google Scholar]
- Kodchasee, P.; Pharin, N.; Suwannarach, N.; Unban, K.; Saenjum, C.; Kanpiengjai, A.; Sakar, D.; Shetty, K.; Zarnkow, M.; Khanongnuch, C. Assessment of tannin tolerant non-Saccharomyces yeasts isolated from Miang for production of health-targeted beverage using Miang processing byproducts. J. Fungi 2023, 9, 165. [Google Scholar] [CrossRef]
- Mateo, J.J.; Maicas, S. Application of non-Saccharomyces yeasts to wine-making process. Fermentation 2016, 2, 14. [Google Scholar] [CrossRef]
- Jolly, N.; Augustyn, O.P.H.; Pretorius, I. The Role and use of non-Saccharomyces yeasts in wine production. S. Afr. J. Oenol. Vitic. 2006, 27, 15–38. [Google Scholar] [CrossRef]
- Wang, R.; Sun, J.; Lassabliere, B.; Yu, B.; Liu, S.Q. β-Glucosidase activity of Cyberlindnera (Williopsis) saturnus var. mrakii NCYC 2251 and its fermentation effect on green tea aroma compounds. LWT 2021, 151, 112184. [Google Scholar]
- Kham, N.N.N.; Phovisay, S.; Unban, K.; Kanpiengjai, A.; Saenjum, C.; Lumyong, S.; Shetty, K.; Khanongnuch, C. A thermotolerant yeast Cyberlindnera rhodanensis DK isolated from Laphet-so capable of extracellular thermostable β-glucosidase production. J. Fungi 2024, 10, 243. [Google Scholar] [CrossRef]
- Vasdev, S.; Gill, V.; Singal, P.K. Beneficial effect of low ethanol intake on the cardiovascular system: Possible biochemical mechanisms. Vasc. Health Risk Manag. 2006, 2, 263–276. [Google Scholar] [CrossRef]
- Yang, W.; Liu, S.; Marsol, A.; Tähti, R.; Laaksonen, O.; Karhu, S.; Yang, B.; Ma, X. Chemical composition, sensory profile and antioxidant capacity of low-alcohol strawberry beverages fermented with Saccharomyces cerevisiae and Torulaspora delbrueckii. LWT 2021, 149, 111910. [Google Scholar] [CrossRef]
- Unban, K.; Chaichana, W.; Baipong, S.; Abdullahi, A.D.; Kanpiengjai, A.; Shetty, K.; Khanongnuch, C. Probiotic and antioxidant properties of lactic acid bacteria isolated from indigenous fermented tea leaves (Miang) of north Thailand and promising application in synbiotic formulation. Fermentation 2021, 7, 195. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 18th ed.; Revision 3; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Abdullahi, A.D.; Kodchasee, P.; Unban, K.; Pattananandecha, T.; Saenjum, C.; Kanpiengjai, A.; Shetty, K.; Khanongnuch, C. Comparison of phenolic contents and scavenging activities of Miang extracts derived from filamentous and non-filamentous fungi-based fermentation processes. Antioxidants 2021, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Blümmel, M.; Borowy, N.K.; Becker, K. Gravimetric. Determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Eom, S.H.; Park, H.J.; Jin, C.W.; Kim, D.O.; Seo, D.W.; Jeong, Y.H.; Cho, D.H. Changes in antioxidant activity with temperature and time in Chrysanthemum indicum L. (Gamguk) teas during elution processes in hot water. Food Sci. Biotechnol. 2008, 17, 408–412. [Google Scholar]
- Sørensen, A.; Andersen, J.J.; Ahring, B.K.; Teller, P.J.; Lübeck, M. Screening of carbon sources for beta-glucosidase production by Aspergillus saccharolyticus. Int. Biodet. Biodeg. 2014, 93, 78–83. [Google Scholar] [CrossRef]
- Ahmed, K.; Milosavic, N.; Popovic, M.; Prodanovic, R.; Knezevic, Z.; Jankov, R. Preparation and studies on immobilized α-glucosidase from baker’s yeast Saccharomyces cerevisiae. J. Serb. Chem. Soc. 2007, 72, 1255–1263. [Google Scholar] [CrossRef]
- Utama, G.L.; Hartady, T.; Krissanti, I.; Wahyudha, D.; Balia, R. Stress tolerance yeast strain from papaya wastes for bioethanol production. Geomate J. 2019, 17, 97–103. [Google Scholar] [CrossRef]
- Chang, Y.-H.; Chang, K.-S.; Chen, C.-Y.; Hsu, C.-L.; Chang, T.-C.; Jang, H.-D. Enhancement of the efficiency of bioethanol production by Saccharomyces cerevisiae via gradually batch-wise and fed-batch increasing the glucose concentration. Fermentation 2018, 4, 45. [Google Scholar] [CrossRef]
- Lee, S.-B.; Park, H.-D. Isolation and investigation of potential non-Saccharomyces yeasts to improve the volatile terpene compounds in korean muscat bailey a wine. Microorganisms 2020, 8, 1552. [Google Scholar] [CrossRef]
- da Cruz, S.H.; Cilli, E.M.; Ernandes, J.R. Structural complexity of the nitrogen source and influence on yeast growth and fermentation. J. Inst. Brew. 2002, 108, 54–61. [Google Scholar] [CrossRef]
- Collí, C.; Barahona, F.; Medina-Medina, L.; Canto, A. The effect of sugar concentration on growth of yeast associated to floral nectar and honey. Sci. Fungorum 2021, 52, 1288. [Google Scholar] [CrossRef]
- Gschaedler, A.; Iñiguez-Muñoz, L.E.; Flores-Flores, N.Y.; Kirchmayr, M.; Arellano-Plaza, M. Use of non-Saccharomyces yeasts in cider fermentation: Importance of the nutrients addition to obtain an efficient fermentation. Int. J. Food Microbiol. 2021, 347, 109169. [Google Scholar] [CrossRef] [PubMed]
- Mohd-Zaki, Z.; Bastidas-Oyanedel, J.R.; Lu, Y.; Hoelzle, R.; Pratt, S.; Slater, F.R.; Batstone, D.J. Influence of pH regulation mode in glucose fermentation on product selection and process stability. Microorganisms 2016, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Sudun; Wulijideligen; Arakawa, K.; Miyamoto, M.; Miyamoto, T. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Anim. Sci. J. 2013, 84, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Sadineni, V.; Kondapalli, N.; Obulam, V.S.R. Effect of co-fermentation with Saccharomyces cerevisiae and Torulaspora delbrueckii or metschnikowia pulcherrima on the aroma and sensory properties of mango wine. Ann. Microbiol. 2012, 62, 1353–1360. [Google Scholar] [CrossRef]
- Kim, D.-H.; Hong, Y.-A.; Park, H.-D. Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol. Lett. 2008, 30, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Wang, W.; Tong, J.; Fang, L.; He, X.; Xue, Q.; Li, Y. Changes of bioactive substances in lactic acid bacteria and yeasts fermented kiwifruit extract during the fermentation. LWT 2022, 164, 113629. [Google Scholar] [CrossRef]
- Resende Oliveira, É.; Caliari, M.; Soares Soares Júnior, M.; Ribeiro Oliveira, A.; Cristina Marques Duarte, R.; Valério de Barros Vilas Boas, E. Assessment of chemical and sensory quality of sugarcane alcoholic fermented beverage. J. Food Sci. Technol. 2018, 55, 72–81. [Google Scholar] [CrossRef]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef]
- Contreras, A.; Hidalgo, C.; Henschke, P.A.; Chambers, P.J.; Curtin, C.; Varela, C. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Appl. Environ. Microbiol. 2014, 80, 1670–1678. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, W.; Li, C.; Sakakibara, K.; Tanaka, S.; Kong, H. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass Bioenergy. 2012, 47, 395–401. [Google Scholar] [CrossRef]
- Wischral, D.; Arias, J.M.; Modesto, L.F.; de França Passos, D.; Pereira, N. Lactic acid production from sugarcane bagasse hydrolysates by Lactobacillus pentosus: Integrating xylose and glucose fermentation. Biotechnol. Prog. 2019, 35, e2718. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.M.; Gondim, D.R.; Gonçalves, L.R.B. Ethanol Production by fermentation using immobilized cells of Saccharomyces cerevisiae in cashew apple bagasse. Appl. Biochem. Biotechnol. 2010, 161, 209–217. [Google Scholar] [CrossRef]
- Pérez-Gregorio, M.R.; Regueiro, J.; Alonso-González, E.; Pastrana-Castro, L.M.; Simal-Gándara, J. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.). LWT Food Sci. Technol. 2011, 44, 1793–1801. [Google Scholar] [CrossRef]
- Filannino, P.; Bai, Y.; Di Cagno, R.; Gobbetti, M.; Gänzle, M.G. Metabolism of phenolic compounds by Lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiol. 2015, 46, 272–279. [Google Scholar] [CrossRef]
- Mekoue Nguela, J.; Vernhet, A.; Julien-Ortiz, A.; Sieczkowski, N.; Mouret, J.-R. Effect of grape must polyphenols on yeast metabolism during alcoholic fermentation. Int. Food Res. 2019, 121, 161–175. [Google Scholar] [CrossRef]
- Carrasco, J.A.; Lucena-Padrós, H.; Brenes, M.; Ruiz-Barba, J.L. Expression of genes involved in metabolism of phenolic compounds by Lactobacillus pentosus and its relevance for table-olive fermentations. Food Microbiol. 2018, 76, 382–389. [Google Scholar] [CrossRef]
- Rebaya, A.; Belghith, S.I.; Baghdikian, B.; Leddet, V.M.; Mabrouki, F.; Olivier, E.; kalthoum Cherif, J.; Ayadi, M.T. Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). J. App. Pharm. Sci. 2015, 5, 052–057. [Google Scholar]
- Watrelot, A.A.; Schulz, D.L.; Kennedy, J.A. Wine polysaccharides influence tannin-protein interactions. Food Hydrocoll. 2017, 63, 571–579. [Google Scholar] [CrossRef]
- Leangnim, N.; Aisara, J.; Unban, K.; Khanongnuch, C.; Kanpiengjai, A. Acid stable yeast cell-associated tannase with high capability in gallated catechin biotransformation. Microorganisms 2021, 9, 1418. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, A.; Blaiotta, G.; Aponte, M.; Moio, L. Effect of yeast strain and some nutritional factors on tannin composition and potential astringency of model wines. Food Microbiol. 2016, 53, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Šeruga, M.; Novak, I.; Jakobek, L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- He, L.; Xu, H.; Liu, X.; He, W.; Yuan, F.; Hou, Z.; Gao, Y. Identification of phenolic compounds from pomegranate (Punica granatum L.) seed residues and investigation into their antioxidant capacities by HPLC–ABTS+ assay. Int. Food Res. 2011, 44, 1161–1167. [Google Scholar] [CrossRef]
- Cumming, B.M.; Chinta, K.C.; Reddy, V.P.; Steyn, A.J.C. Role of ergothioneine in microbial physiology and pathogenesis. Antioxid. Redox Signal. 2018, 28, 431–444. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef]
- Lorn, D.; Nguyen, T.-K.-C.; Ho, P.-H.; Tan, R.; Licandro, H.; Waché, Y. Screening of lactic acid bacteria for their potential use as aromatic starters in fermented vegetables. Int. J. Food Microbiol. 2021, 350, 109242. [Google Scholar] [CrossRef]
- Lu, H.; Xie, T.; Wu, Q.; Hu, Z.; Luo, Y.; Luo, F. Alpha-Glucosidase inhibitory peptides: Sources, preparations, identifications, and action mechanisms. Nutrients 2023, 15, 4267. [Google Scholar] [CrossRef]
- Nalawade, M.L.; Patil, R.S.; Bavkar, L.N.; Rooge, S.B.; Haldavnekar, V.S.; Arvindekar, A.U. Early Metabolic changes in the gut leads to higher expression of intestinal alpha glucosidase and thereby causes enhanced postprandial spikes. Life Sci. 2019, 218, 8–15. [Google Scholar] [CrossRef]
- Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Inhibitory potential of wine and tea against α-amylase and α-glucosidase for management of Hyperglycemia linked to type 2 diabetes. J. Food Biochem. 2008, 32, 15–31. [Google Scholar] [CrossRef]
- Frediansyah, A.; Suryani; Nurhayati, R.; Miftakhussolikhah; Sholihah, J. Lactobacillus pentosus Isolated from Muntingia calabura shows inhibition activity toward alpha-glucosidase and alpha-amylase in intra and extracellular level. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012045. [Google Scholar] [CrossRef]
- Dashko, S.; Zhou, N.; Compagno, C.; Piškur, J. Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 2014, 14, 826–832. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control | C. rhodanensis DK | C. rhodanensis DK + L. pentosus A14-6 | C. rhodanensis DK + S. cerevisiae TISTR 5088 |
---|---|---|---|---|
pH | 6.05 | 5.61 | 3.58 | 5.09 |
Total titratable acidity (M) | 0.02 ± 0.01 d | 0.04 ± 0.01 b | 0.28 ± 0.01 a | 0.03 ± 0.01 c |
Total sugars (g/L) | 68.52 ± 0.01 a | 7.71 ± 0.01 b | 4.96 ± 0.02 c | 2.33 ± 0.02 d |
Reducing sugars (g/L) | 64.10 ± 0.00 d | 6.70 ± 0.03 c | 3.04 ± 0.03 b | 1.82 ± 0.01 a |
Type of sugars (g/L) | G* 30.13 ± 0.14 a | G* 1.39 ± 0.04 b | G* nd.* | G* nd.* |
F* 37.49 ± 0.15 a | F* 5.21 ± 0.16 b | F* 3.20 ± 0.05 c | F* 0.24 ± 0.03 d | |
S* 2.13 ± 0.03 a | S* 2.15 ± 0.03 a | S* 2.12 ± 0.03 a | S* nd.* | |
Ethanol (g/L) | nd.* | 28.23 ± 0.16 b | 19.47 ± 0.06 c | 33.61 ± 0.11 a |
Total polyphenols (mg GAE/mL) | 0.94 ± 0.01 b | 1.94 ± 0.01 a | 2.01 ± 0.04 a | 0.39 ± 0.01 c |
Total tannins (mg TAE/mL) | 0.43 ± 0.01 c | 1.44 ± 0.04 b | 1.53 ± 0.01 a | nd.* |
Antioxidant activity (% DPPH scavenging) | 53.46 ± 0.79 d | 65.05 ± 0.34 a | 62.14 ± 0.34 b | 54.63 ± 0.16 c |
α-Glucosidase inhibitory activity (%) | 48.51 ± 0.51 a | 33.50 ± 0.76 c | 43.46 ± 1.71 b | 28.07 ± 0.51 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kham, N.N.N.; Phovisay, S.; Unban, K.; Kanpiengjai, A.; Saenjum, C.; Lumyong, S.; Shetty, K.; Khanongnuch, C. Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6. Foods 2024, 13, 1469. https://doi.org/10.3390/foods13101469
Kham NNN, Phovisay S, Unban K, Kanpiengjai A, Saenjum C, Lumyong S, Shetty K, Khanongnuch C. Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6. Foods. 2024; 13(10):1469. https://doi.org/10.3390/foods13101469
Chicago/Turabian StyleKham, Nang Nwet Noon, Somsay Phovisay, Kridsada Unban, Apinun Kanpiengjai, Chalermpong Saenjum, Saisamorn Lumyong, Kalidas Shetty, and Chartchai Khanongnuch. 2024. "Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6" Foods 13, no. 10: 1469. https://doi.org/10.3390/foods13101469
APA StyleKham, N. N. N., Phovisay, S., Unban, K., Kanpiengjai, A., Saenjum, C., Lumyong, S., Shetty, K., & Khanongnuch, C. (2024). Valorization of Cashew Apple Waste into a Low-Alcohol, Healthy Drink Using a Co-Culture of Cyberlindnera rhodanensis DK and Lactobacillus pentosus A14-6. Foods, 13(10), 1469. https://doi.org/10.3390/foods13101469