Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of BBG/SCMC Emulsion
2.3. Process Optimization of Bovine Bone Gelatin-Based Nanoemulsion
2.3.1. One-Factor Experiments
2.3.2. Box–Behnken Design
2.3.3. Average Particle Size, Zeta Potential, and Polydispersity Index (PDI)
2.3.4. Turbidity
2.3.5. Rheological Properties
2.4. Characterization of BBG/SCMC–NE
2.4.1. Scanning Electron Microscope (SEM)
2.4.2. Fourier-Transform Infrared (FTIR) Analysis
2.4.3. X-ray Diffraction (XRD) Analysis
2.4.4. Differential Scanning Calorimetry (DSC) Analysis
2.4.5. DPPH Free Radical Scavenging Capacity
2.4.6. Encapsulation Ratio
2.4.7. Release Properties of Thymol
2.5. Statistical Analysis
3. Results
3.1. Effect of Independent Variables on Nanoemulsion
3.1.1. Effect of Different Treatment Conditions on Emulsion Particle Size and PDI Dispersion Index
3.1.2. Effect of Different Treatment Conditions on the Turbidity of Emulsions
3.1.3. Effect of Different Treatment Conditions on Rheological Properties of Emulsions
3.1.4. Effect of Different Treatment Conditions on Zeta Potential of Emulsion
3.2. Response Surface Experiment Optimization
3.2.1. Response Surface Optimization Test Results and Analysis of Variance
3.2.2. Analysis of Interactions between Factors
3.2.3. Verification Experiment
3.3. Structural Characterization of BBG/SCMC
3.3.1. Surface Morphology Analysis (SEM)
3.3.2. Fourier Infrared Spectral Analysis (FTIR)
3.3.3. X-ray Diffraction Analysis (XRD)
3.4. Thermal Stability and Oxidation Resistance of BBG/SCMC
3.4.1. Differential Scanning Calorimeter Analysis (DSC)
3.4.2. DPPH Free Radical Scavenging Capacity
3.5. Encapsulation Efficiency and Release Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gizaw, Z. Public health risks related to food safety issues in the food market: A systematic literature review. Environ. Health Prev. Med. 2019, 24, 68. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, N. Effects of grape seed oil nanoemulsion on physicochemical and antibacterial properties of gelatin-sodium alginate film blends. Int. J. Biol. Macromol. 2023, 237, 124207. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.V.; Nguyen, N.-N.; Nguyen, Q.-D.; Nguyen, T.-P.; Lien, T.-N. Gelatin/carboxymethyl cellulose edible films: Modification of physical properties by different hydrocolloids and application in beef preservation in combination with shallot waste powder. RSC Adv. 2023, 13, 10005–10014. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, G.; Wanbin, Z.; Minghao, J.; Wei, Y.; Hao, J.; Liu, X.; Gan, Z.; Sun, A. Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocoll. 2021, 112, 106280. [Google Scholar] [CrossRef]
- Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A. Intermolecular Interactions in the Formation of Polysaccharide-Gelatin Complexes: A Spectroscopic Study. Polymers 2022, 14, 2777. [Google Scholar] [CrossRef]
- Soltanzadeh, M.; Peighambardoust, S.H.; Ghanbarzadeh, B.; Amjadi, S.; Mohammadi, M.; Lorenzo, J.M.; Hamishehkar, H. Active gelatin/cress seed gum-based films reinforced with chitosan nanoparticles encapsulating pomegranate peel extract: Preparation and characterization. Food Hydrocoll. 2022, 129, 107620. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; El-Sakhawy, M.A.-M. Polysaccharides, Protein and Lipid -Based Natural Edible Films in Food Packaging: A Review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Bizymis, A.-P.; Tzia, C. Edible films and coatings: Properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit. Rev. Food Sci. Nutr. 2021, 62, 8777–8792. [Google Scholar] [CrossRef]
- Azizkhani, M.; Kavosi, S.; Partovi, R. Improving the quality of the chicken fillet using chitosan, gelatin, and starch coatings incorporated with bitter orange peel extract during refrigeration. Food Sci. Nutr. 2023, 11, 4700–4712. [Google Scholar] [CrossRef]
- Mutlu, N. Physicochemical and antimicrobial properties of biodegradable films based on gelatin/guar gum incorporated with grape seed oil. J. Food Meas. Charact. 2022, 17, 1515–1525. [Google Scholar] [CrossRef]
- Lou, L.; Chen, H. Functional modification of gelatin-based biodegradable composite films: A review. Food Addit. Contam. Part A 2023, 40, 928–949. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Zhao, P.; Wei, Y.; Guo, X.; Deng, X.; Zhang, J. Properties of Allicin–Zein Composite Nanoparticle Gelatin Film and Their Effects on the Quality of Cold, Fresh Beef during Storage. Foods 2023, 12, 3713. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Min, T.; Sun, X.; Bian, X.; Zhu, Z.; Wen, Y. Multifunctional film based on gelatin with titanium dioxide and thymol@β-cyclodextrins for fresh-keeping packaging. Food Biosci. 2022, 50, 102168. [Google Scholar] [CrossRef]
- Fatimah, S.; Sarto, S.; Fahrurrozi, M.; Budhijanto, B. Characterization and Development of Gelatin from Cow Bones: Investigation of the Effect of Solvents Used for Soaking Beef Bones. Appl. Sci. 2023, 13, 1550. [Google Scholar] [CrossRef]
- Ku, S.K.; Seo, D.W.; Kim, S.I.; Sim, K.H. Antioxidant activities and nutritional properties of Jeonyak prepared with beef bone stock and gelatin. Food Sci. Biotechnol. 2013, 23, 81–87. [Google Scholar] [CrossRef]
- Nguyen, Q.-D.; Tran, T.T.V.; Nguyen, N.-N.; Nguyen, T.-P.; Lien, T.-N. Preparation of gelatin/carboxymethyl cellulose/guar gum edible films enriched with methanolic extracts from shallot wastes and its application in the microbiological control of raw beef. Food Packag. Shelf Life 2023, 37, 101091. [Google Scholar] [CrossRef]
- Lv, Y.; Li, P.; Cen, L.; Wen, F.; Su, R.; Cai, J.; Chen, J.; Su, W. Gelatin/carboxymethylcellulose composite film combined with photodynamic antibacterial: New prospect for fruit preservation. Int. J. Biol. Macromol. 2024, 257, 128643. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, Y.; Gao, L.; Zhang, Y.; Yi, J. Oxidative stability and in vitro digestion of menhaden oil emulsions with whey protein: Effects of EGCG conjugation and interfacial cross-linking. Food Chem. 2018, 265, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Liu, C.; Huang, P.; Zhang, Y.; Hu, X.; Li, H.; Liu, Y.; Chen, L.; Liu, Y.; Qin, W. Effects of thymol concentration on postharvest diseases and quality of blueberry fruit. Food Chem. 2023, 402, 134227. [Google Scholar] [CrossRef]
- Ding, J.; Liu, C.; Huang, P.; Li, H.; Liu, Y.; Sameen, D.E.; Zhang, Y.; Liu, Y.; Qin, W. Effects of konjac glucan-nan/low-acyl gellan edible coatings loaded thymol-β-cyclodextrin microcapsules on postharvest blueberry. Food Chem. 2024, 430, 137080. [Google Scholar] [CrossRef]
- Almasi, H.; Azizi, S.; Amjadi, S. Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll. 2020, 99, 105338. [Google Scholar] [CrossRef]
- Harwansh, R.K.; Deshmukh, R.; Rahman, M.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives. J. Drug Deliv. Sci. Technol. 2019, 51, 224–233. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Mukhamadiev, A.; Feng, J.; Gao, Y.; Zhuansun, X.; Han, R.; Chong, Y.; Jafari, S.M. Formulation optimization and characterization of carvacrol-loaded nanoemulsions: In vitro antibacterial activity/mechanism and safety evaluation. Ind. Crops Prod. 2022, 181, 114816. [Google Scholar] [CrossRef]
- Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Pongsumpun, P.; Iwamoto, S.; Siripatrawan, U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2020, 60, 104604. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zou, B.; Zhang, J.; Cai, W.; Na, X.; Du, M.; Zhu, B.; Wu, C. Recent advances of ultrasound-assisted technology on aquatic protein processing: Extraction, modification, and freezing/thawing-induced oxidation. Trends Food Sci. Technol. 2024, 144, 104309. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, R.; Ding, M.; Tao, L.; Liu, L.; Tao, N.; Wang, X.; Zhong, J. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chem. 2020, 328, 127114. [Google Scholar] [CrossRef]
- Gao, Y.; He, W.; Zhao, Y.; Yao, Y.; Chen, S.; Xu, L.; Wu, N.; Tu, Y. The Effect of Ionic Strength on the Formation and Stability of Ovalbumin–Xanthan Gum Complex Emulsions. Foods 2024, 13, 218. [Google Scholar] [CrossRef]
- Chavoshi, F.; Didar, Z.; Vazifedoost, M.; Shahidi Noghabi, M.; Zendehdel, A. Psyllium seed gum films loading Oliveria decumbens essential oil encapsulated in nanoliposomes: Preparation and characterization. J. Food Meas. Charact. 2022, 16, 4318–4330. [Google Scholar] [CrossRef]
- Asdagh, A.; Karimi Sani, I.; Pirsa, S.; Amiri, S.; Shariatifar, N.; Eghbaljoo–Gharehgheshlaghi, H.; Shabahang, Z.; Taniyan, A. Production and Characterization of Nanocomposite Film Based on Whey Protein Isolated/Copper Oxide Nanoparticles Containing Coconut Essential Oil and Paprika Extract. J. Polym. Environ. 2020, 29, 335–349. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Qi, Z.; Zhao, R.; Wang, C.; Zhang, T. Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Res. Int. 2022, 160, 111713. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, L. Fabrication and characterization of chitosan nanoemulsions loading thymol or thyme essential oil for the preservation of refrigerated pork. Int. J. Biol. Macromol. 2020, 162, 1509–1515. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Jia, F.; Han, Y.; Meng, X.; Xiao, Y.; Bai, S. Development and characterization of zein edible films incorporated with catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohydr. Polym. 2021, 261, 117877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lu, Y.; Zhao, R.; Wang, C.; Wang, C.; Zhang, T. Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll. 2022, 124, 107331. [Google Scholar] [CrossRef]
- Tu, L.; He, Y.; Yang, H.; Wu, Z.; Yi, L. Preparation and characterization of alginate–gelatin microencapsulatedBacillus subtilisSL-13 by emulsification/internal gelation. J. Biomater. Sci. Polym. Ed. 2015, 26, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Topuz, O.K.; Özvural, E.B.; Zhao, Q.; Huang, Q.; Chikindas, M.; Gölükçü, M. Physical and antimicrobial properties of anise oil loaded nanoemulsions on the survival of foodborne pathogens. Food Chem. 2016, 203, 117–123. [Google Scholar] [CrossRef]
- Liang, R.; Xu, S.; Shoemaker, C.F.; Li, Y.; Zhong, F.; Huang, Q. Physical and Antimicrobial Properties of Peppermint Oil Nanoemulsions. J. Agric. Food Chem. 2012, 60, 7548–7555. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Li, Z.; Wang, J.; Zheng, B. Gelation properties and thermal gelling mechanism of golden threadfin bream myosin containing CaCl2 induced by high pressure processing. Food Hydrocoll. 2019, 95, 43–52. [Google Scholar] [CrossRef]
- Ibraheem, D.; Iqbal, M.; Agusti, G.; Fessi, H.; Elaissari, A. Effects of process parameters on the colloidal properties of polycaprolactone microparticles prepared by double emulsion like process. Colloids Surf. A Physicochem. Eng. Asp. 2014, 445, 79–91. [Google Scholar] [CrossRef]
- Lee, H.; Yildiz, G.; dos Santos, L.C.; Jiang, S.; Andrade, J.E.; Engeseth, N.J.; Feng, H. Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocoll. 2016, 55, 200–209. [Google Scholar] [CrossRef]
- Tao, Y.; Cai, J.; Wang, P.; Chen, J.; Zhou, L.; Yang, Z.; Xu, X. Exploring the relationship between the interfacial properties and emulsion properties of ultrasound-assisted cross-linked myofibrillar protein. Food Hydrocoll. 2024, 146, 109287. [Google Scholar] [CrossRef]
- Alade, O.S.; Mahmoud, M.; Al Shehri, D.A.; Sultan, A.S. Rapid Determination of Emulsion Stability Using Turbidity Measurement Incorporating Artificial Neural Network (ANN): Experimental Validation Using Video/Optical Microscopy and Kinetic Modeling. ACS Omega 2021, 6, 5910–5920. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.J.F.; Garcia-Rojas, E.E. Interpolymeric complexing between egg white proteins and xanthan gum: Effect of salt and protein/polysaccharide ratio. Food Hydrocoll. 2017, 66, 268–275. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, Y.; Chen, L.; Wu, H.; Zhang, Y.; Suo, Z.; Wang, S.; Liang, Y.; Xu, X.; Zhou, G.; et al. Inhibition of Epigallocatechin-3-gallate/Protein Interaction by Methyl-β-cyclodextrin in Myofibrillar Protein Emulsion Gels under Oxidative Stress. J. Agric. Food Chem. 2018, 66, 8094–8103. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.H.; Tang, J.; Paulson, A.T. Texture profile and turbidity of gellan/gelatin mixed gels. Food Res. Int. 2000, 33, 665–671. [Google Scholar] [CrossRef]
- Archut, A.; Klost, M.; Drusch, S.; Kastner, H. Complex coacervation of pea protein and pectin: Contribution of different protein fractions to turbidity. Food Hydrocoll. 2023, 134, 108032. [Google Scholar] [CrossRef]
- Zhu, H.; Kim, Y.D.; De Kee, D. Non-Newtonian fluids with a yield stress. J. Non Newton. Fluid Mech. 2005, 129, 177–181. [Google Scholar] [CrossRef]
- Xu, H.; Fan, Q.; Huang, M.; Cui, L.; Gao, Z.; Liu, L.; Chen, Y.; Jin, J.; Jin, Q.; Wang, X. Combination of carrageenan with sodium alginate, gum arabic, and locust bean gum: Effects on rheological properties and quiescent stabilities of partially crystalline emulsions. Int. J. Biol. Macromol. 2023, 253, 127561. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Liu, F.; Xu, X.; Huan, S.; Gu, J.; McClements, D.J. Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. J. Food Eng. 2017, 207, 35–45. [Google Scholar] [CrossRef]
- Liu, F.; Tang, C.-H. Emulsifying Properties of Soy Protein Nanoparticles: Influence of the Protein Concentration and/or Emulsification Process. J. Agric. Food Chem. 2014, 62, 2644–2654. [Google Scholar] [CrossRef]
- Liang, W.; Deng, F.; Wang, Y.; Yue, W.; Hu, D.; Rong, J.; Liu, R.; Xiong, S.; Hu, Y. Interfacial behavior and micro-rheological performance of Pickering emulsions co-stabilized by β-cyclodextrin and xanthan gum. Food Hydrocoll. 2023, 149, 109611. [Google Scholar] [CrossRef]
- Ding, Z.; Mo, M.; Zhang, K.; Bi, Y.; Kong, F. Preparation, characterization and biological activity of proanthocyanidin-chitosan nanoparticles. Int. J. Biol. Macromol. 2021, 188, 43–51. [Google Scholar] [CrossRef]
- Razzak, M.A.; Kim, M.; Chung, D. Elucidation of aqueous interactions between fish gelatin and sodium alginate. Carbohydr. Polym. 2016, 148, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.H.; Le Thi, T.T.; Nguyen, T.C.; Tran, T.V.; Le, Q.T.; Luu, T.T.; Dinh, V.P. Facile synthesis of novel nanocurcuminoids–sacha inchi oil using the phase inversion temperature method: Characterization and antioxidant activity. J. Food Process. Preserv. 2021, 45, e15402. [Google Scholar] [CrossRef]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Alvarez Igarzabal, C.I. Casein films crosslinked by tannic acid for food packaging applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
- Gong, H.; Zi, Y.; Kan, G.; Li, L.; Shi, C.; Wang, X.; Zhong, J. Preparation of food-grade EDC/NHS-crosslinked gelatin nanoparticles and their application for Pickering emulsion stabilization. Food Chem. 2024, 436, 137700. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Li, X.; Xin, Q.; Han, W.; Shi, C.; Guo, R.; Shi, W.; Qiao, R.; Wang, X.; Zhong, J. Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen. J. Biosci. Bioeng. 2019, 128, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.W.; Lee, H.; Park, S.; Lee, M.E.; Jin, H.-J. Chemical and physical reinforcement of hydrophilic gelatin film with di-aldehyde nanocellulose. Int. J. Biol. Macromol. 2020, 146, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Arfat, Y.A.; Ahmed, J.; Hiremath, N.; Auras, R.; Joseph, A. Thermo-mechanical, rheological, structural and antimicrobial properties of bionanocomposite films based on fish skin gelatin and silver-copper nanoparticles. Food Hydrocoll. 2017, 62, 191–202. [Google Scholar] [CrossRef]
- Dai, H.; Peng, L.; Wang, H.; Feng, X.; Ma, L.; Chen, H.; Yu, Y.; Zhu, H.; Zhang, Y. Improved properties of gelatin films involving transglutaminase cross-linking and ethanol dehydration: The self-assembly role of chitosan and montmorillonite. Food Hydrocoll. 2022, 132, 107870. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, C.; Cheng, X.; Li, G.; Shan, Y.; Zhu, X. β-Cyclodextrin Inclusion Complex Containing Litsea cubeba Essential Oil: Preparation, Optimization, Physicochemical, and Antifungal Characterization. Coatings 2020, 10, 850. [Google Scholar] [CrossRef]
- Ahmady, A.R.; Razmjooee, K.; Saber-Samandari, S.; Toghraie, D. Fabrication of chitosan-gelatin films incorporated with thymol-loaded alginate microparticles for controlled drug delivery, antibacterial activity and wound healing: In-vitro and in-vivo studies. Int. J. Biol. Macromol. 2022, 223, 567–582. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, C.; Sahoo, S.K. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 2010, 31, 6597–6611. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Ni, Z.-J.; Thakur, K.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Preparation and characterization of clove essential oil loaded nanoemulsion and pickering emulsion activated pullulan-gelatin based edible film. Int. J. Biol. Macromol. 2021, 181, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.C.; Lourenço, R.V.; Bittante, A.M.Q.B.; Moraes, I.C.F.; Sobral, P.J.d.A. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag. Shelf Life 2016, 10, 87–96. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solís, V.; Martínez-Guerra, E.; Piñón-Balderrama, C.I.; Compean Martínez, I.; Saavedra-Leos, M.Z. Application of Differential Scanning Calorimetry (DSC) and Modulated Differential Scanning Calorimetry (MDSC) in Food and Drug Industries. Polymers 2019, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zhao, Y.; Mao, S.; Hu, N.; Sun, D.; Yang, Q.; Chu, Z.; Zheng, Q.; Xiu, L.; Liu, J. Effects of Different Amounts of Corn Silk Polysaccharide on the Structure and Function of Peanut Protein Isolate Glycosylation Products. Foods 2022, 11, 2214. [Google Scholar] [CrossRef] [PubMed]
- Stounbjerg, L.; Andreasen, B.; Ipsen, R. Microparticles formed by heating potato protein—Polysaccharide electrostatic complexes. J. Food Eng. 2019, 263, 79–86. [Google Scholar] [CrossRef]
- Vall-llosera, M.; Jessen, F.; Henriet, P.; Marie, R.; Jahromi, M.; Sloth, J.J.; Mohammadifar, M.A.; Petersen, H.O.; Jørgensen, B.M.; Casanova, F. Physical Stability and Interfacial Properties of Oil in Water Emulsion Stabilized with Pea Protein and Fish Skin Gelatin. Food Biophys. 2020, 16, 139–151. [Google Scholar] [CrossRef]
- Zamani, M.; Moradi Delfani, A.; Jabbari, M. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 201, 288–299. [Google Scholar] [CrossRef]
- Seyoum, A.; Asres, K.; El-Fiky, F.K. Structure–radical scavenging activity relationships of flavonoids. Phytochemistry 2006, 67, 2058–2070. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wang, X.; Li, D.; Tang, H.; Yu, D.; Wang, L.; Jiang, L. Effect of anionic polysaccharides on conformational changes and antioxidant properties of protein-polyphenol binary covalently-linked complexes. Process Biochem. 2020, 89, 89–97. [Google Scholar] [CrossRef]
- Qiao, J.; Dong, Y.; Chen, C.; Xie, J. Development and characterization of starch/PVA antimicrobial active films with controlled release property by utilizing electrostatic interactions between nanocellulose and lauroyl arginate ethyl ester. Int. J. Biol. Macromol. 2024, 261, 129415. [Google Scholar] [CrossRef] [PubMed]
- Coban, O.; Aytac, Z.; Yildiz, Z.I.; Uyar, T. Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids Surf. B Biointerfaces 2021, 197, 111391. [Google Scholar] [CrossRef] [PubMed]
Level | Factors | |||
---|---|---|---|---|
A Total Solids Content/% | B Concentration of Active Material/% | C Base Material Ratio | D Magnetic Stirring Time/min | |
−1 | 1 | 0.1 | 10:0 | 50 |
0 | 2 | 0.2 | 9:1 | 60 |
1 | 3 | 0.3 | 8:2 | 70 |
Number | A | B | C | D | Y1 (Particle Size) | Y2 (Zeta Potential) | Y (Aggregate Value) |
---|---|---|---|---|---|---|---|
1 | −1 | −1 | 0 | 0 | 147 | −8.93 | 0.79 |
2 | 1 | −1 | 0 | 0 | 187 | −9.66 | 0.78 |
3 | −1 | 1 | 0 | 0 | 149 | −12.68 | 0.84 |
4 | 1 | 1 | 0 | 0 | 190 | −13.24 | 0.85 |
5 | 0 | 0 | −1 | −1 | 142 | −16.52 | 0.86 |
6 | 0 | 0 | 1 | −1 | 148 | −16.77 | 0.85 |
7 | 0 | 0 | −1 | 1 | 146 | −16.83 | 0.88 |
8 | 0 | 0 | 1 | 1 | 144 | −17.02 | 0.87 |
9 | −1 | 0 | 0 | −1 | 153 | −16.31 | 0.79 |
10 | 1 | 0 | 0 | −1 | 189 | −16.72 | 0.83 |
11 | −1 | 0 | 0 | 1 | 156 | −16.57 | 0.82 |
12 | 1 | 0 | 0 | 1 | 194 | −16.89 | 0.85 |
13 | 0 | −1 | −1 | 0 | 152 | −9.47 | 0.81 |
14 | 0 | 1 | −1 | 0 | 155 | −12.55 | 0.84 |
15 | 0 | −1 | 1 | 0 | 161 | −9.83 | 0.87 |
16 | 0 | 1 | 1 | 0 | 164 | −12.68 | 0.9 |
17 | −1 | 0 | −1 | 0 | 135 | −16.56 | 0.79 |
18 | 1 | 0 | −1 | 0 | 152 | −16.74 | 0.86 |
19 | −1 | 0 | 1 | 0 | 138 | −16.83 | 0.82 |
20 | 1 | 0 | 1 | 0 | 155 | −16.92 | 0.87 |
21 | 0 | −1 | 0 | −1 | 147 | −9.23 | 0.81 |
22 | 0 | 1 | 0 | −1 | 158 | −12.57 | 0.86 |
23 | 0 | −1 | 0 | 1 | 142 | −9.66 | 0.85 |
24 | 0 | 1 | 0 | 1 | 153 | −13.21 | 0.89 |
25 | 0 | 0 | 0 | 0 | 142 | −17.08 | 0.98 |
26 | 0 | 0 | 0 | 0 | 143 | −17.08 | 0.98 |
27 | 0 | 0 | 0 | 0 | 143 | −17.09 | 0.99 |
28 | 0 | 0 | 0 | 0 | 143 | −17.09 | 0.98 |
29 | 0 | 0 | 0 | 0 | 142 | −17.09 | 0.98 |
Source | Sum of Squares | D.F. | M.S. | F-Value | p-Value | Sig. |
---|---|---|---|---|---|---|
Model | 0.0920 | 4 | 0.0066 | 17.57 | <0.0001 | ** |
A | 0.0030 | 1 | 0.0030 | 8.04 | 0.0132 | * |
B | 0.0061 | 1 | 0.0061 | 16.24 | 0.0012 | ** |
C | 0.0016 | 1 | 0.0016 | 4.37 | 0.0554 | * |
D | 0.0021 | 1 | 0.0021 | 5.70 | 0.0316 | * |
AB | 0.0001 | 1 | 0.0001 | 0.2673 | 0.6132 | |
AC | 0.0001 | 1 | 0.0001 | 0.2673 | 0.6132 | |
AD | 0.0000 | 1 | 0.0000 | 0.0668 | 0.7998 | |
BC | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
BD | 0.0000 | 1 | 0.0000 | 0.0668 | 0.7998 | |
CD | 1.388 × 10−17 | 1 | 1.388 × 10−17 | 3.709 × 10−14 | 1.0000 | |
A2 | 0.0532 | 1 | 0.0532 | 142.25 | <0.0001 | ** |
B2 | 0.0279 | 1 | 0.0279 | 74.56 | <0.0001 | ** |
C2 | 0.0158 | 1 | 0.0158 | 42.19 | <0.0001 | ** |
D2 | 0.0210 | 1 | 0.0210 | 56.00 | <0.0001 | ** |
Residual | 0.0052 | 4 | 0.0004 | |||
Lack of Fit | 0.0050 | 0 | 0.0005 | 7.08 | 0.2371 | |
Pure Error | 0.0003 | 4 | 0.0001 | |||
Cor Total | 0.0973 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Shen, R.; Wang, L.; Yang, X.; Zhang, L.; Ma, X.; He, L.; Li, A.; Kong, X.; Shi, H. Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol. Foods 2024, 13, 1506. https://doi.org/10.3390/foods13101506
Liu M, Shen R, Wang L, Yang X, Zhang L, Ma X, He L, Li A, Kong X, Shi H. Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol. Foods. 2024; 13(10):1506. https://doi.org/10.3390/foods13101506
Chicago/Turabian StyleLiu, Mengying, Ruheng Shen, Liyuan Wang, Xue Yang, Li Zhang, Xiaotong Ma, Long He, Aixia Li, Xiangying Kong, and Hongmei Shi. 2024. "Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol" Foods 13, no. 10: 1506. https://doi.org/10.3390/foods13101506
APA StyleLiu, M., Shen, R., Wang, L., Yang, X., Zhang, L., Ma, X., He, L., Li, A., Kong, X., & Shi, H. (2024). Preparation, Optimization, and Characterization of Bovine Bone Gelatin/Sodium Carboxymethyl Cellulose Nanoemulsion Containing Thymol. Foods, 13(10), 1506. https://doi.org/10.3390/foods13101506