Revealing the Hypoglycemic Effect of Red Yeast Rice: Perspectives from the Inhibition of α-Glucosidase and the Anti-Glycation Capability by Ankaflavin and Monascin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Inhibition Effect of AK and MS on α-Glu
2.2.1. α-Glu inhibition Assay
2.2.2. Inhibition Kinetics Analysis
2.3. Binding Mode Analysis of MS/AK to α-Glu
2.3.1. Binding Mode Analysis of MS/AK to α-Glu by Fluorescence Spectroscopy
2.3.2. Enzyme Monitoring by Circular Dichroism (CD) Spectroscopy
2.3.3. Molecular Docking
2.4. Anti-Glycation Activity Evaluation
2.4.1. Assessment of Fructosamine, α-Dicarbonyl Compounds, and the Total Fluorescent AGE Content
2.4.2. Evaluation of the Total Carbonyl and Thiol Group Content
2.4.3. Measurement of the Surface Hydrophobicity
2.4.4. Structural Analysis of Glycated BSA
2.5. Statistical Analysis
3. Results and Discussion
3.1. Effects of AK/MS on α-Glu Activity In Vitro
3.2. Inhibition Kinetics Mode of AK/MS
3.3. Fluorescence Quenching of α-Glu by AK/MS
3.4. Binding Constants and Thermodynamic Parameters
3.5. Conformational Changes of α-Glu Induced by AK/MS
3.6. Molecular-Docking Studies
3.7. Anti-Glycation Activity of Monascus Pigments (MPs)
3.7.1. Inhibitory Impact of MPs on the Generation of the Glycation Products
3.7.2. Determination of Carbonyl Group and Sulfhydryl Group Level
3.7.3. Characterization of Conformational Changes
3.7.4. Detection of Cross-β Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, W.P.; Chen, R.F.; Liu, Q.P.; He, Y.; He, K.; Ding, X.L.; Kang, L.J.; Guo, X.X.; Xie, N.N.; Zhou, Y.X.; et al. Orange, red, yellow: Biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 2017, 8, 4917–4925. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.P.; He, Y.; Zhou, Y.X.; Shao, Y.C.; Chen, F.S. Edible filamentous fungi from the species Monascus: Early traditional fermentations, modern molecular biology, and future genomics. Compr. Rev. Food Sci. Food Saf. 2015, 14, 555–567. [Google Scholar] [CrossRef]
- Ma, J.Y.; Li, Y.G.; Ye, Q.; Li, J.; Hua, Y.J.; Ju, D.J.; Zhang, D.C.; Cooper, R.; Chang, M. Constituents of red yeast rice, a traditional Chinese food and medicine. J. Agric. Food Chem. 2000, 48, 5220–5225. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.C.; Liang, Y.H.; Hsu, Y.W.; Kuo, Y.H.; Pan, T.M. Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. J. Agric. Food Chem. 2013, 61, 2796–2802. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.C.; Pan, T.M.; Liao, V.H.C. Monascin from Monascus-fermented products reduces oxidative stress and amyloid-β toxicity via DAF-16/FOXO in caenorhabditis elegans. J. Agric. Food Chem. 2016, 64, 7114–7120. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.J.; Wang, P.Q.; Li, X.K.; Zhang, Y.Q.; Li, S.J. The effects of red yeast rice dietary supplement on blood pressure, lipid profile, and C-reactive protein in hypertension: A systematic review. Compr. Rev. Food Sci. Food Saf. 2017, 57, 1831–1851. [Google Scholar] [CrossRef]
- Zeng, L.; Ding, H.F.; Hu, X.; Zhang, G.W.; Gong, D.M. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products. Food Chem. 2019, 271, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 5 April 2023).
- Luevano-Contreras, C.; Garay-Sevilla, M.E.; Preciado-Puga, M.; Chapman-Novakofski, K.M. The relationship between dietary advanced glycation end products and indicators of diabetes severity in Mexicans and non-Hispanic whites: A pilot study. Int. J. Food Sci. Nutr. 2013, 64, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Li, H.; Tao, G.; Lin, J.; Lu, M.; Yan, R.; Huang, J. Effects of four bamboo derived flavonoids on advanced glycation end products formation in vitro. J. Funct. Foods. 2020, 71, 103976. [Google Scholar] [CrossRef]
- Garay-Sevilla, M.E.; Beeri, M.S.; Maza, M.P.D.L.A.; Salazar-Villanea, R.S.; Uribarri, J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: A narrative review. Nutr. Res. Rev. 2020, 33, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Khan, S.; Almatroudi, A.; Khan, A.A.; Rahmani, A.H. A review on mechanism of inhibition of advanced glycation end products formation by plant derived polyphenolic compounds, Mol. Biol. Rep. 2021, 48, 1–19. [Google Scholar]
- Chen, Y.; Lin, Y.; Pan, M.; Ho, C.; Hung, W. Inhibitory effects of rooibos (Aspalathus linearis) against reactive carbonyl species and advanced glycation end product formation in a glucose-bovine serum albumin model and cookies. Food Chem. X 2022, 16, 100515. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Sun, Y.; Li, L.; Zhou, Q.; Wang, M. The antiglycative effect of apple flowers in fructose/glucose-BSA models and cookies. Food Chem. 2020, 330, 127170. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.Y.; Fantus, I.G. Oral antihyperglycemic therapy for type 2 diabetes mellitus. Can. Med. Assoc. J. 2005, 172, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Fujusawa, T.; Ikegami, H.; Inoue, K.; Kawabata, Y.; Ogihara, T. Effect of two α-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism 2005, 54, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Zhang, G.; Lin, S.; Gong, D. Inhibitory mechanism of apigenin on α-glucosidase and synergy analysis of flavonoids. J. Agric. Food Chem. 2016, 64, 6393–6949. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Chen, G.; Xu, W.; Peng, Y.; Wan, P.; Sun, Y.; Zeng, X.; Liu, Z. Preparation of theasinensin A and theasinensin B and exploration of their inhibitory mechanism on α-glucosidase. Food Funct. 2020, 11, 3527–3538. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Cheng, K.; Xiao, J.; Wang, M. The multifunctional roles of flavonoids against the formation of advanced glycation end products (AGEs) and AGEs-induced harmful effects. Trends Food Sci. Tech. 2020, 103, 333–347. [Google Scholar] [CrossRef]
- Cheng, C.; Pan, T. Ankaflavin and monascin induce apoptosis in activated hepatic stellate cells through suppression of the Akt/NF-κB/p38 signaling pathway. J. Agric. Food Chem. 2016, 64, 9326–9334. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wen, J.; Hsu, Y.; Pan, T. The blood lipid regulation of Monascus-produced monascin and ankaflavin via the suppression of low-density lipoprotein cholesterol assembly and stimulation of apolipoprotein A1 expression in the liver. J. Microbiol. Immunol. 2018, 51, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.F.; Sun, Y.; Chen, D.; Liu, H.; Li, Z.J.; Chen, M.H.; Wang, C.L.; Cheng, L.; Guo, Q.B.; Peng, X. The noncovalent conjugations of human serum albumin (HSA) with MS/AK and the effect on anti-oxidant capacity as well as anti-glycation activity of Monascus yellow pigments. Food Funct. 2021, 12, 3692–3704. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Hu, X.; Gong, D.; Zhang, G. Inhibitory mechanism of vitexin on α-glucosidase and its synergy with acarbose. Food Hydrocolloid. 2020, 105, 105824. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhang, C.; Ma, L.; Wei, T.; Zhao, Y.; Peng, X. Comparative study of inhibition mechanisms of structurally different flavonoid compounds on α-glucosidase and synergistic effect with acarbose. Food Chem. 2021, 347, 129056. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.F.; Wang, X.C.; Bao, Y.X.; Zhang, C.Y.; Liu, H.; Li, Z.J.; Chen, M.H.; Wang, C.L.; Guo, Q.B.; Peng, X. Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Food Chem. 2020, 315, 126228. [Google Scholar] [CrossRef] [PubMed]
- Lestari, W.; Dewi, R.; Kardono, L.; Yanuar, A. Docking sulochrin and its derivative as α-glucosidase inhibitors of Saccharomyces cerevisiae. Indones J. Chem. 2017, 17, 144. [Google Scholar] [CrossRef]
- Calingasan, N.Y.; Uchida, K.; Gibson, G.E. Protein-bound acrolein: A novel marker of oxidative stress in Alzheimer’s disease. J. Neurochem. 1999, 72, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1958, 82, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Levine, H. Quantification of β-sheet amyloid fibril structures with thioflavin T. Method Enzymol. 1999, 11, 274–284. [Google Scholar]
- Bouma, B.; Kroon-Batenburg, L.M.J.; Wu, Y.P.; Brunjes, B.; Posthuma, G.; Kranenburg, O.; De Groot, P.G.; Voest, E.E.; Gebbink, M.F.B.G. Glycation induces formation of amyloid cross-β structure in albumin. J. Biol. Chem. 2003, 278, 41810–41819. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.N. Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem Soc. 1979, 16, 203–208. [Google Scholar]
- Yang, J.; Li, H.; Wang, X.; Zhang, C.; Feng, G.; Peng, X. Inhibition mechanism of α-amylase/α-glucosidase by silibinin, its synergism with acarbose, and the effect of milk proteins. J. Agric. Food Chem. 2021, 69, 10515–10526. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R.; Weber, G. Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 1973, 12, 4161–4170. [Google Scholar] [CrossRef]
- Wu, X.; Ding, H.; Hu, X.; Pan, J.; Liao, Y.; Gong, D.; Zhang, G.W. Exploring inhibitory mechanism of gallocatechin gallate on α-amylase and α-glucosidase relevant to postprandial hyperglycemia. J. Funct. Foods 2018, 48, 200–209. [Google Scholar] [CrossRef]
- Wu, S.F.; Wang, W.Y.; Lu, J.W.; Deng, W.L.; Zhao, N.; Sun, Y.; Liu, H.; Li, Z.J.; Chen, M.H.; Cheng, L.; et al. Binding of ankaflavin with bovine serum albumin (BSA) in the presence of carrageenan and protective effects of Monascus yellow pigments against oxidative damage to BSA after forming a complex with carrageenan. Food Funct. 2023, 14, 2459–2471. [Google Scholar] [CrossRef] [PubMed]
- Bettiga, A.; Fiorio, F.; Marco, F.D.; Trevisani, F.; Vago, R. The modern western diet rich in advanced glycation end-products (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients 2019, 11, 1748. [Google Scholar] [CrossRef] [PubMed]
- Koschinsky, T.; He, C.J.; Mitsuhashi, T.; Bucala, R.; Liu, C.; Buenting, C.; Heitmann, K.; Vlassara, H. Orally absorbed reactive glycation products (glycotoxins): An environmental risk factor in diabeticnephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474–6479. [Google Scholar] [CrossRef] [PubMed]
- Rajan, B.S.; Krishnan, K.; Vellaichamy, E. Diet-derived advanced glycation end products (dAGEs) induce proinflammatory cytokine expression in cardiac and renal tissues of experimental mice: Protective effect of curcumin. Cardiovasc. Toxicol. 2022, 22, 35–51. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Z.; Wang, Y.; Wang, Y.; Fu, L.; Su, L. Chinese bayberry (Myrica rubra) phenolics mitigated protein glycoxidation and formation of advanced glycation end-products: A mechanistic investigation. Food Chem. 2021, 361, 130102. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Hu, X.; Liu, K.; Gong, D.; Zhang, G.W. Exploring inhibitory effect and mechanism of hesperetin-Cu (II) complex against protein glycation. Food Chem. 2023, 416, 135801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ismail, B. Effect of Maillard-induced glycosylation on the nutritional quality, solubility, thermal stability and molecular configuration of whey protein, Int. Dairy J. 2012, 25, 112–122. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, G.; Hu, M.; Pan, J.; Zhang, Y. Molecular characteristics of gallocatechin gallate affecting protein glycation. Food Hydrocolloid. 2020, 105, 105782. [Google Scholar] [CrossRef]
Compound | Concentrations (μM) | Vmax (μM min−1) | Km (μM) | Kis (μM) | Ki (μM) |
---|---|---|---|---|---|
AK | 0 | 4.10 ± 0.10 | 21.10 ± 0.25 | 3.45 ± 0.06 | 57.81 ± 5.89 |
30 | 4.02 ± 0.07 | 19.99 ± 0.21 | |||
40 | 3.86 ± 0.04 | 18.69 ± 0.13 | |||
MS | 0 | 1.91 ± 0.06 | 9.97 ± 0.09 | 15.92 ± 0.18 | 298.41 ± 18.06 |
100 | 1.85 ± 0.04 | 9.95 ± 0.08 | |||
200 | 1.76 ± 0.08 | 8.64 ± 0.09 |
System | T (K) | Ksv (104 M−1) | Kq (1012 M−1s−1) | Ka (104 M−1) | ΔG0 (kJ mol−1) | ΔH0 (kJ mol−1) | ΔS0 (J mol−1K−1) |
---|---|---|---|---|---|---|---|
α-Glu-AK | 298 | 2.23 ± 0.12 | 2.23 ± 0.12 | 1.72 ± 0.10 | −10.27 ± 0.12 | ||
304 | 2.08 ± 0.07 | 2.08 ± 0.07 | 1.58 ± 0.03 | −10.41 ± 0.34 | −3.52 ± 0.02 | 22.66 ± 0.84 | |
310 | 1.91 ± 0.08 | 1.91 ± 0.08 | 1.44 ± 0.01 | −10.54 ± 0.22 | |||
α-Glu-MS | 298 | 2.09 ± 0.02 | 2.09 ± 0.02 | 1.41 ± 0.03 | −10.49 ± 0.04 | ||
304 | 1.94 ± 0.04 | 1.94 ± 0.04 | 1.31 ± 0.22 | −10.61 ± 0.02 | −4.93 ± 0.10 | 18.68 ± 3.20 | |
310 | 1.58 ± 0.03 | 1.58 ± 0.03 | 1.24 ± 0.26 | −10.72 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Dong, C.; Zhang, M.; Cheng, Y.; Cao, X.; Yang, B.; Li, C.; Peng, X. Revealing the Hypoglycemic Effect of Red Yeast Rice: Perspectives from the Inhibition of α-Glucosidase and the Anti-Glycation Capability by Ankaflavin and Monascin. Foods 2024, 13, 1573. https://doi.org/10.3390/foods13101573
Wu S, Dong C, Zhang M, Cheng Y, Cao X, Yang B, Li C, Peng X. Revealing the Hypoglycemic Effect of Red Yeast Rice: Perspectives from the Inhibition of α-Glucosidase and the Anti-Glycation Capability by Ankaflavin and Monascin. Foods. 2024; 13(10):1573. https://doi.org/10.3390/foods13101573
Chicago/Turabian StyleWu, Shufen, Changyan Dong, Meihui Zhang, Yi Cheng, Xiaobo Cao, Benxu Yang, Chao Li, and Xin Peng. 2024. "Revealing the Hypoglycemic Effect of Red Yeast Rice: Perspectives from the Inhibition of α-Glucosidase and the Anti-Glycation Capability by Ankaflavin and Monascin" Foods 13, no. 10: 1573. https://doi.org/10.3390/foods13101573
APA StyleWu, S., Dong, C., Zhang, M., Cheng, Y., Cao, X., Yang, B., Li, C., & Peng, X. (2024). Revealing the Hypoglycemic Effect of Red Yeast Rice: Perspectives from the Inhibition of α-Glucosidase and the Anti-Glycation Capability by Ankaflavin and Monascin. Foods, 13(10), 1573. https://doi.org/10.3390/foods13101573