Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological Sampling
2.2. DNA Extraction and Processing
2.3. Bioinformatics Analysis
2.4. Statistical Analysis
3. Results
3.1. Grape Developmental Stage Significantly Influences Microbial Diversity
3.2. Microbial Community Composition and Succession
3.3. Microbial Community Assembly Processes
3.4. Microbial Co-Occurrence/Co-Antagonistic Interactions
3.5. Correlation of Weather Parameters with Microbial Communities
3.6. Prediction of Microbial Community Metabolic Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grassi, F.; De Lorenzis, G. Back to the origins: Background and perspectives of grapevine domestication. Int. J. Mol. Sci. 2021, 22, 4518. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Duan, S.; Xia, Q.; Liang, Z.; Dong, X.; Margaryan, K.; Chen, W. Dual domestications and origin of traits in grapevine evolution. Science 2023, 379, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Sun, Z.; Yao, X.; Kong, J.; Wang, Y.; Zhang, X.; Chen, W.; Fan, P.; Li, S.; Liang, Z.; et al. Viticultural suitability analysis based on multi-source data highlights climate-change-induced decrease in potential suitable areas: A case analysis in Ningxia, China. Remote Sens. 2022, 14, 3717. [Google Scholar] [CrossRef]
- Han, X.; Xue, T.; Liu, X.; Wang, Z.; Zhang, L.; Wang, Y.; Yao, F.; Wang, H.; Li, H. A sustainable viticulture method adapted to the cold climate zone in China. Horticulturae 2021, 7, 150. [Google Scholar] [CrossRef]
- Fu, G.; Ren, Y.; Kang, J.; Wang, B.; Zhang, J.; Fang, J.; Wu, W. Integrative analysis of grapevine (Vitis vinifera L.) transcriptome reveals regulatory network for Chardonnay quality formation. Front. Nutr. 2023, 10, 1187842. [Google Scholar] [CrossRef] [PubMed]
- Martiniuk, J.T.; Hamilton, J.; Dodsworth, T.; Measday, V. Grape-associated fungal community patterns persist from berry to wine on a fine geographical scale. FEMS Yeast Res. 2023, 23, foac067. [Google Scholar] [CrossRef] [PubMed]
- Andreote, F.D.; Gumiere, T.; Durrer, A. Exploring interactions of plant microbiomes. Sci. Agric. 2014, 71, 528–539. [Google Scholar] [CrossRef]
- Kusstatscher, P.; Cernava, T.; Abdelfattah, A.; Gokul, J.; Korsten, L.; Berg, G. Microbiome approaches provide the key to biologically control postharvest pathogens and storability of fruits and vegetables. FEMS Microbiol. Ecol. 2020, 96, fiaa119. [Google Scholar] [CrossRef] [PubMed]
- Griggs, R.G.; Steenwerth, K.L.; Mills, D.A.; Cantu, D.; Bokulich, N.A. Sources and assembly of microbial communities in vineyards as a functional component of winegrowing. Front. Microbiol. 2021, 12, 673810. [Google Scholar] [CrossRef]
- Darriaut, R.; Lailheugue, V.; Masneuf-Pomarède, I.; Marguerit, E.; Martins, G.; Compant, S.; Lauvergeat, V. Grapevine rootstock and soil microbiome interactions: Keys for a resilient viticulture. Hortic. Res. 2022, 9, uhac019. [Google Scholar] [CrossRef]
- Cobos, R.; Ibañez, A.; Diez-Galán, A.; Calvo-Peña, C.; Ghoreshizadeh, S.; Coque, J.J.R. The grapevine microbiome to the rescue: Implications for the biocontrol of trunk diseases. Plants 2022, 11, 840. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Divol, B.; Setati, M. A shotgun metagenomic sequencing exploration of Cabernet Sauvignon grape must reveals yeast hydrolytic enzymes. S. Afr. J. Enol. Vitic. 2021, 42, 213–223. [Google Scholar] [CrossRef]
- Liu, D.; Howell, K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ. Microbiol. 2021, 23, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Brader, G.; Muzammil, S.; Sessitsch, A.; Lebrihi, A.; Mathieu, F. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 2013, 58, 435–455. [Google Scholar] [CrossRef]
- Roca-Couso, R.; Flores-Félix, J.D.; Rivas, R. Mechanisms of action of microbial biocontrol agents against botrytis cinerea. J. Fungi 2021, 7, 1045. [Google Scholar] [CrossRef]
- Provost, C.; Pedneault, K. The organic vineyard as a balanced ecosystem: Improved organic grape management and impacts on wine quality. Sci. Hortic. 2016, 208, 43–56. [Google Scholar] [CrossRef]
- Bettenfeld, P.; Cadena i Canals, J.; Jacquens, L.; Fernandez, O.; Fontaine, F.; van Schaik, E.; Trouvelot, S. The microbiota of the grapevine holobiont: A key component of plant health. J. Adv. Res. 2022, 40, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ayogu, P.; Teixeira, A.; Gerós, H.; Martins, V. Identification of grape berry indigenous epiphytic yeasts with in vitro and in vivo antagonistic activity towards pathogenic fungi. OENO One 2023, 7, 253–264. [Google Scholar] [CrossRef]
- Ferrari, A.M.; Pini, M.; Sassi, D.; Zerazion, E.; Neri, P. Effects of grape quality on the environmental profile of an Italian vineyard for Lambrusco red wine production. J. Clean. Prod. 2018, 172, 3760–3769. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, Q.; Zhang, P.; Chen, D.; Howell, K.S. The fungal microbiome is an important component of vineyard ecosystems and correlates with regional distinctiveness of wine. Msphere 2020, 5, e00534-00520. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Wang, L.; Ding, Y.; Zhang, L.; Gao, F.; Chen, N.; Li, H.; Wang, H. Natural and sustainable wine: A review. Crit. Rev. Food Sci. 2022, 63, 8249–8260. [Google Scholar] [CrossRef] [PubMed]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Leyer, I. Vineyard management and its impacts on soil biodiversity, functions, and ecosystem services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated soil and crop management in organic agriculture: A logical framework to ensure food quality and human health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Perpetuini, G.; Rossetti, A.P.; Battistelli, N.; Zulli, C.; Cichelli, A.; Arfelli, G.; Tofalo, R. Impact of vineyard management on grape fungal community and Montepulciano d’Abruzzo wine quality. Food Res. Int. 2022, 158, 111577. [Google Scholar] [CrossRef]
- Duan, X.; Yan, Y.; Han, X.; Wang, Y.; Li, R.; Gao, F.; Wang, H. Effects of biodegradable liquid film on the soil and fruit quality of Vitis Franco-american L. Hutai-8 berries. Horticulturae 2022, 8, 418. [Google Scholar] [CrossRef]
- Xiong, C.; Singh, B.K.; He, J.Z.; Han, Y.L.; Li, P.P.; Wan, L.H.; Zhang, L.M. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 2021, 9, 171. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, H.; Han, H.; Zhang, B.; Zhang, C.; He, J.; Cao, H. Microbial community succession associated with poplar wood discoloration. Plants 2022, 11, 2420. [Google Scholar] [CrossRef]
- Fernandes, P.; Afonso, I.M.; Pereira, J.; Rocha, R.; Rodrigues, A.S. Epiphitic microbiome of Alvarinho wine grapes from different geographic regions in Portugal. Biology 2023, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, A.P.; Perpetuini, G.; Battistelli, N.; Zulli, C.; Arfelli, G.; Suzzi, G.; Cichelli, A.; Tofalo, R. Capturing the fungal community associated with conventional and organic trebbiano abruzzese grapes and its influence on wine characteristics. Food Biosci. 2023, 52, 102382. [Google Scholar] [CrossRef]
- Wei, R.; Ding, Y.; Gao, F.; Zhang, L.; Wang, L.; Li, H.; Wang, H. Community succession of the grape epidermis microbes of cabernet sauvignon (Vitis vinifera L.) from different regions in China during fruit development. Int. J. Food Microbiol. 2022, 362, 109475. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xue, T.T.; Gao, F.F.; Zhang, L.; Han, X.; Wang, Y.; Hui, M.; Wu, D.; Li, H.; Wang, H. Intraspecific recurrent selection in V. vinifera: An effective method for breeding of high quality, disease-, cold-, and drought-resistant grapes. Euphytica 2021, 217, 111. [Google Scholar] [CrossRef]
- Carmichael, P.C.; Siyoum, N.; Chidamba, L.; Korsten, L. Characterization of fungal communities of developmental stages in table grape grown in the northern region of South Africa. J. Appl. Microbiol. 2017, 123, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.T.; Chen, N.; Ding, Y.T.; Wang, L.; Gao, F.F.; Zhang, L.; Liu, Y.H.; Li, H.; Wang, H. Diversity and dynamics of epidermal microbes during grape development of Cabernet Sauvignon (Vitis vinifera L.) in the ecological viticulture model in Wuhai, China. Front. Microbiol. 2022, 13, 935647. [Google Scholar] [CrossRef] [PubMed]
- Ranade, Y.; Sawant, I.; Saha, S.; Chandrashekar, M.; Pathak, P. Epiphytic microbial diversity of Vitis vinifera fructosphere: Present status and potential applications. Curr. Microbiol. 2021, 78, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 2012, 153, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, T.; Xu, X.; Shi, X.; Wang, B. Succession of fungal communities at different developmental stages of Cabernet Sauvignon grapes from an organic vineyard in Xinjiang. Front. Microbiol. 2021, 12, 718261. [Google Scholar] [CrossRef] [PubMed]
- Jolly, N.P.; Varela, C.; Pretorius, I.S. Not your ordinary yeast: Non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res. 2014, 14, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7, 185047. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.; Miot-Sertier, C.; Lauga, B.; Claisse, O.; Lonvaud-Funel, A.; Soulas, G.; Masneuf-Pomarède, I. Grape berry bacterial microbiota: Impact of the ripening process and the farming system. Int. J. Food Microbiol. 2012, 158, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Steel, C.C.; Blackman, J.W.; Schmidtke, L.M. Grapevine bunch rots: Impacts on wine composition, quality, and potential procedures for the removal of wine faults. J. Agric. Food Chem. 2013, 61, 5189–5206. [Google Scholar] [CrossRef] [PubMed]
- Welke, J.E. Fungal and mycotoxin problems in grape juice and wine industries. Curr. Opin. Food Sci. 2019, 29, 7–13. [Google Scholar] [CrossRef]
- Mikušová, P.; Ritieni, A.; Santini, A.; Juhasová, G.; Šrobárová, A. Contamination by moulds of grape berries in Slovakia. Food Addit. Contam. 2010, 27, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Awais, S.; Gulshan, I.; Farah, N.; Salman, G.; Imran, H.; Nasir, M.; Hamzah, A. In vitro evaluation of plant essential oils against Alternaria alternata causing fruit rot of grapes. Asian J. Agric. Biol. 2020, 8, 168–173. [Google Scholar]
- Wassermann, B.; Korsten, L.; Berg, G. Plant health and sound vibration: Analyzing implications of the microbiome in grape wine leaves. Pathogens 2021, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Miao, Y.; Wang, H.; Du, J.; Wang, C.; Shi, X.; Wang, B. Analysis of microbial community diversity on the epidermis of wine grapes in Manasi’s vineyard, Xinjiang. Foods 2022, 11, 3174. [Google Scholar] [CrossRef]
- Milanović, V.; Cardinali, F.; Ferrocino, I.; Boban, A.; Franciosa, I.; Gajdoš Kljusurić, J.; Budić-Leto, I. Croatian white grape variety Maraština: First taste of its indigenous mycobiota. Food Res. Int. 2022, 162, 111917. [Google Scholar] [CrossRef]
- Li, H.; James, A.; Shen, X.; Wang, Y. Roles of microbiota in the formation of botrytized grapes and wines. CyTA-J. Food 2021, 19, 656–667. [Google Scholar] [CrossRef]
- N’guessan, C.A.; Brisse, S.; Le Roux-Nio, A.C.; Poussier, S.; Koné, D.; Wicker, E. Development of variable number of tandem repeats typing schemes for Ralstonia solanacearum, the agent of bacterial wilt, banana Moko disease and potato brown rot. J. Microbiol. Methods 2013, 92, 366–374. [Google Scholar] [CrossRef] [PubMed]
- García, R.O.; Kerns, J.P.; Thiessen, L. Ralstonia solanacearum species complex: A quick diagnostic guide. Plant Health Prog. 2019, 20, 7–13. [Google Scholar] [CrossRef]
- Mezzasalma, V.; Sandionigi, A.; Guzzetti, L.; Galimberti, A.; Grando, M.S.; Tardaguila, J.; Labra, M. Geographical and cultivar features differentiate grape microbiota in northern Italy and Spain vineyards. Front. Microbiol. 2018, 9, 365832. [Google Scholar] [CrossRef] [PubMed]
- Kopprio, G.A.; Luyen, N.D.; Cuong, L.H.; Duc, T.M.; Fricke, A.; Kunzmann, A.; Gärdes, A. Insights into the bacterial community composition of farmed Caulerpa lentillifera: A comparison between contrasting health states. Microbiologyopen 2021, 10, e1253. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Zhao, Z.; Liang, Z. Biodegradation of ochratoxin A and ochratoxin B by Brevundimonas naejangsanensis isolated from soil. Food Control 2022, 133, 108611. [Google Scholar] [CrossRef]
- Jiang, L.; Jeong, J.C.; Lee, J.S.; Park, J.M.; Yang, J.W.; Lee, M.H.; Choi, S.H.; Kim, C.Y.; Kim, D.H.; Kim, S.W.; et al. Potential of Pantoea dispersa as an effective biocontrol agent for black rot in sweet potato. Sci. Rep. 2019, 9, 16354. [Google Scholar] [CrossRef] [PubMed]
- Soto-Muñoz, L.; Teixidó, N.; Usall, J.; Viñas, I.; Abadias, M.; Torres, R. DNA-based methodologies to detect and quantify the postharvest biocontrol agent Pantoea agglomerans CPA-2 applied on oranges. Acta Hortic. 2016, 1144, 71–76. [Google Scholar] [CrossRef]
- Gasser, F.; Cardinale, M.; Schildberger, B.; Berg, G. Biocontrol of Botrytis cinerea by successful introduction of Pantoea ananatis in the grapevine phyllosphere. Int. J. Wine Bus. Res. 2012, 4, 53–63. [Google Scholar]
- Ding, Y.; Wei, R.; Wang, L.; Yang, C.; Li, H.; Wang, H. Diversity and dynamics of microbial ecosystem on berry surface during the ripening of Ecolly (Vitis vinifera L.) grape in Wuhai, China. World J. Microb. Biot. 2021, 37, 214. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wei, R.; Wang, L.; Wang, W.; Wang, H.; Li, H. Exploring the ecological characteristics of natural microbial communities along the continuum from grape berries to winemaking. Food Res. Int. 2023, 167, 112718. [Google Scholar] [CrossRef] [PubMed]
Microbe | Df | SumsOfSqs | MeanSqs | F Value | R2 | p Value | Significant |
---|---|---|---|---|---|---|---|
Fungi | 4 | 2.2967 | 0.5742 | 9.6534 | 0.7943 | 0.001 | ** |
Bacteria | 4 | 0.9916 | 0.2479 | 18.4511 | 0.8807 | 0.001 | ** |
Factor | Weather Parameter | Fungi | Bacteria | ||
---|---|---|---|---|---|
Envfit_r2 | Envfit_P | Envfit_r2 | Envfit_P | ||
EnV1 | Mean temperature | 0.6142 | 0.004 | 0.8976 | 0.001 |
EnV2 | Mean high temperature | 0.6488 | 0.005 | 0.8768 | 0.001 |
EnV3 | Mean low temperature | 0.5872 | 0.007 | 0.7654 | 0.001 |
EnV4 | Precipitation | 0.8907 | 0.002 | 0.8939 | 0.001 |
EnV5 | Relative moisture | 0.7913 | 0.001 | 0.8293 | 0.001 |
EnV6 | Evaporation | 0.421 | 0.035 | 0.0732 | 0.651 |
EnV7 | Solar radiation | 0.8568 | 0.002 | 0.8353 | 0.001 |
EnV8 | Sunlight hours | 0.8566 | 0.002 | 0.8351 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Wang, L.; Wang, H.; Li, H. Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation. Foods 2024, 13, 1580. https://doi.org/10.3390/foods13101580
Ding Y, Wang L, Wang H, Li H. Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation. Foods. 2024; 13(10):1580. https://doi.org/10.3390/foods13101580
Chicago/Turabian StyleDing, Yinting, Lin Wang, Hua Wang, and Hua Li. 2024. "Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation" Foods 13, no. 10: 1580. https://doi.org/10.3390/foods13101580
APA StyleDing, Y., Wang, L., Wang, H., & Li, H. (2024). Dynamic Succession of Natural Microbes during the Ecolly Grape Growth under Extremely Simplified Eco-Cultivation. Foods, 13(10), 1580. https://doi.org/10.3390/foods13101580