Replacing Fishmeal and Fish Oil with Complex Protein and Canola Oil: Effect on Organoleptic and Nutritional Quality of Triploid Rainbow Trout (Oncorhynchus mykiss)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Diets and Feeding Trial
2.2. Biometric Parameters Calculation
2.3. Fillet Color, Texture, PH and Water Holding Capacity Measurements
2.4. Biochemical Compositions Analysis
2.5. Volatile Compounds Analysis
2.6. Non-Volatile Compounds Analysis
2.7. Fatty Acids Analysis
2.8. Statistical Analysis
3. Results
3.1. Fillet Appearance Quality
3.2. Fillet Texture
3.3. Fillet Odor
3.4. Fillet Taste
3.5. Fillet Nutritional Values
3.6. Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Ingredients | F100 | F50 | F0 |
---|---|---|---|
Fish meal 1 | 60.0 | 30.0 | 0.0 |
Soybean meal 1 | 0.0 | 11.0 | 22.0 |
Soy protein concentrate 1 | 0.0 | 5.0 | 10.0 |
Corn gluten meal 1 | 0.0 | 4.5 | 9.0 |
Wheat gluten 1 | 0.0 | 4.0 | 8.0 |
Blood cell powder 1 | 0.0 | 5.0 | 10.0 |
Wheat meal 1 | 13.5 | 13.5 | 13.5 |
Cellulose | 5.12 | 2.57 | 0.0 |
Fish oil | 18.6 | 10.25 | 0.00 |
Canola oil | 0.00 | 10.25 | 22.52 |
Mineral and vitamin premix 2 | 1.00 | 1.00 | 1.00 |
Ca(H2PO4)2 | 0.80 | 0.80 | 0.80 |
Choline chloride | 0.30 | 0.30 | 0.30 |
Mold inhibitor | 0.10 | 0.10 | 0.10 |
Ethoxyquin | 0.05 | 0.05 | 0.05 |
betaine | 0.50 | 0.50 | 0.50 |
Astaxanthin 3 | 0.03 | 0.03 | 0.03 |
Lysine HCL (75%) | 0.00 | 0.80 | 1.50 |
DL-methionine | 0.00 | 0.35 | 0.70 |
Total | 100 | 100 | 100 |
Proximate analysis | |||
Crude protein (% dry matter) | 45.6 | 45.5 | 45.3 |
Crude lipid (% dry matter) | 23.0 | 23.3 | 23.2 |
Lysine (% dry matter) | 2.97 | 3.04 | 2.98 |
Methionine (% dry matter) | 1.00 | 1.01 | 1.01 |
Threonine (% dry matter) | 1.47 | 1.50 | 1.53 |
Arginine (% dry matter) | 2.13 | 2.09 | 2.04 |
Fatty acids (% of identified fatty acids) | |||
C14:0 | 3.67 | 2.12 | 1.71 |
C16:0 | 16.8 | 13.4 | 12.0 |
C18:0 | 4.08 | 3.61 | 3.27 |
C16:1n-7 | 3.42 | 2.10 | 1.63 |
C18:1n-9 | 21.2 | 28.2 | 31.5 |
C20:1n-9 | 2.71 | 2.24 | 2.70 |
C22:1n-9 | 3.53 | 1.57 | 2.27 |
C18:2n-6 | 25.7 | 33.5 | 33.0 |
C20:4n-6 | 1.38 | 0.84 | 0.84 |
C18:3n-3 | 4.02 | 5.47 | 5.99 |
C20:5n-3 | 5.37 | 3.34 | 2.22 |
C22:6n-3 | 8.07 | 3.87 | 3.04 |
Formula cost saving rate (%, compared with F100 diet) | - | 24.6% | 50.7% |
References
- García-Ortega, A.; Kissinger, K.R.; Trushenski, J.T. Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus. Aquaculture 2016, 452, 1–8. [Google Scholar] [CrossRef]
- Güroy, D.; Güroy, B.; Merrifield, D.L.; Tekinay, A.A.; Davies, S.J.; Şahin, İ. Effects of fish oil and partial fish meal substitution with oilseed oils and meals on growth performance, nutrient utilization and health of the rainbow trout (Oncorhynchus mykiss). Aquac. Int. 2012, 20, 481–497. [Google Scholar] [CrossRef]
- Qin, C.; Ji, J.; Wang, Y.; Xie, B.; Zhou, Y.; Yue, X. Advances on the effect of vegetable oil substitution for fish oil on lipid metabolism in fish. Chin. J. Oceanlo. Limn. 2013, 4, 89–99. [Google Scholar]
- Bouraoui, L.; Sánchez-Gurmaches, J.; Cruz-Garcia, L.; Gutiérrez, J.; Benedito-Palos, L.; Pérez-Sánchez, J.; Navarro, I. Effect of dietary fish meal and fish oil replacement on lipogenic and lipoprotein lipase activities and plasma insulin in gilthead sea bream (Sparus aurata). Aquac. Nutr. 2011, 17, 54–63. [Google Scholar] [CrossRef]
- Sprague, M.; Dick, J.R.; Tocher, D.R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon. Sci. Rep. 2016, 6, 21892. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.F.; Paulo, R.; Sadasivam, J. Replacement of fish meal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss): Digestibility and growth performance. Aquaculture 1995, 130, 177–186. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Cao, K.; Leng, X. Effects of replacing fishmeal with the mixture of cottonseed protein concentrate and clostridium autoethanogenum protein on the growth, nutrient utilization, serum biochemical indices, intestinal and hepatopancreas histology of rainbow trout (Oncorhynchus mykiss). Animals 2023, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Zhuo, L.; Tian, H.; Li, C.; Li, J.; Meng, Y.; Ma, R. Canola oil substitution doesn’t affect growth but alters fillet quality of triploid rainbow trout. Aquaculture 2023, 569, 739385. [Google Scholar] [CrossRef]
- Drew Murray, D.; Ayoleke, E.; David, M.; Andrew, G. Dietary influence of replacing fish meal and oil with canola protein concentrate and vegetable oils on growth performance, fatty acid composition and organochlorine residues in rainbow trout (Oncorhynchus mykiss). Aquaculture 2007, 267, 260–268. [Google Scholar] [CrossRef]
- Torstensen, B.E.; Frøyland, L.; Lie, Ø. Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil-effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquac. Nutr. 2004, 10, 175–192. [Google Scholar] [CrossRef]
- Ma, R.; Liu, X.; Meng, Y.; Wu, J.; Zhang, L.; Han, B.; Qian, K.; Luo, Z.; Wei, Y.; Li, C. Protein nutrition on sub-adult triploid rainbow trout (1): Dietary requirement and effect on anti-oxidative capacity, protein digestion and absorption. Aquaculture 2019, 507, 428–434. [Google Scholar] [CrossRef]
- Meng, Y.; Han, B.; Li, C.; Qian, K.; Liu, X.; Hu, X.; Yang, X.; Tian, H.; Ma, R. Digestive characteristics and blood chemistry profile of triploid rainbow trout oncorhynchus mykiss: Influence of body size and seasonal variation. Fish. Sci. 2019, 85, 1001–1010. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X.; Guan, L.; Bao, S.; Zhuo, L.; Tian, H.; Li, C.; Ma, R. Does dietary lipid level affect the quality of triploid rainbow trout and how should it be assessed? Foods 2022, 12, 15. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of Official Analytical Chemists International, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Ma, R.; Meng, Y.; Zhang, W.; Mai, K. Comparative study on the organoleptic quality of wild and farmed large yellow croaker Larimichthys crocea. J. Oceanol. Limnol. 2020, 38, 260–274. [Google Scholar] [CrossRef]
- Ma, R.; Liu, X.; Tian, H.; Han, B.; Li, Y.; Tang, C.; Zhu, K.; Li, C.; Meng, Y. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes. Aquac. Rep. 2020, 17, 100312. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, M. Non-volatile taste active compounds in the meat of Chinese mitten crab (Eriocheir sinensis). Food Chem. 2007, 104, 1200–1205. [Google Scholar] [CrossRef]
- Liu, C.; Ji, W.; Jiang, H.; Shi, Y.; He, L.; Gu, Z.; Zhu, S. Comparison of biochemical composition and non-volatile taste active compounds in raw, high hydrostatic pressure-treated and steamed oysters crassostrea hongkongensis. Food Chem. 2021, 344, 128632. [Google Scholar] [CrossRef]
- Regost, C.; Jan, V.; Anna, M. Flesh quality of raw and smoked fillets of Atlantic salmon as influenced by dietary oil sources and frozen storage. Food Res. Int. 2004, 37, 259–271. [Google Scholar] [CrossRef]
- Bell, J.G.; McEvoy, J.; Tocher, D.R.; McGhee, F.; Sargent, J.R.; Campbell, P.J. Replacement of fish oil with rapeseed oil in diets of Atlantic, salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. J. Nutr. 2001, 131, 1535–1543. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Montero, D.; Robaina, L.; Caballero, M.J.; Rosenlund, G.; Ginés, R. Alterations in fillet fatty acid profile and flesh quality in gilthead seabream (Sparus aurata) fed vegetable oils for a long term period. Recovery of fatty acid profiles by fish oil feeding. Aquaculture 2005, 250, 431–444. [Google Scholar] [CrossRef]
- Xu, H.; Giovanni, M.; David, S.; Liang, M.; Thomas, S.; Artur, R.; Ai, Q. Are fish what they eat? A fatty acid’s perspective. Prog. Lipid Res. 2020, 80, 101064. [Google Scholar] [CrossRef]
- Hyldig, G.; Nielsen, D. A review of sensory and instrumental methods used to evaluate the texture of fish muscle. J. Texture Stud. 2001, 32, 219–242. [Google Scholar] [CrossRef]
- Jankowiak, H.; Cebulska, A.; Bocian, M. The relationship between acidification (pH) and meat quality traits of polish white breed pigs. Eur. Food Res. Technol. 2021, 247, 2813–2820. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Shan, B.; Shi, J.; Xia, D.; Wegner, J.; Zhao, R. Meat quality is associated with muscle metabolic status but not contractile myofiber type composition in premature pigs. Meat Sci. 2009, 81, 218–223. [Google Scholar] [CrossRef]
- Zhuo, L. The Study of Volatile Flavor Compounds in the Fillets of Triploid Rainbow Trouts (Oncorhynchus mykiss) and Its Influencing Factors. Master Dissertation, Qinghai University, Xining, China, 2022. [Google Scholar]
- Varlet, V.; Carole, P.; Thierry, S. Volatile aldehydes in smoked fish: Analysis methods, occurence and mechanisms of formation. Food Chem. 2007, 105, 1536–1556. [Google Scholar] [CrossRef]
- Duflos, G.; Vincent, M.; Marie, C.; Jean-Francois, A.; Pierre, M. Determination of volatile compounds to characterize fish spoilage using headspace/mass spectrometry and solid-phase microextraction/gas chromatography/mass spectrometry. J. Sci. Food. Agric. 2006, 86, 600–611. [Google Scholar] [CrossRef]
- Schlichtherle-Cerny, H.; Grosch, W. Evaluation of taste compounds of stewed beef juice. Z. Für Leb. Und-Forsch. A 1998, 207, 369–376. [Google Scholar] [CrossRef]
- Śmietana, N.; Panicz, R.; Sobczak, M.; Śmietana, P.; Nędzarek, A. Spiny-cheek crayfish, faxonius limosus (Rafinesque, 1817), as an alternative food source. Animals 2021, 11, 59. [Google Scholar] [CrossRef]
- Rincón-Cervera, M.Á.; González-Barriga, V.; Valenzuela, R.; López-Arana, S.; Romero, J.; Valenzuela, A. Profile and distribution of fatty acids in edible parts of commonly consumed marine fishes in chile. Food Chem. 2019, 274, 123–129. [Google Scholar] [CrossRef]
- Fernandes, C.E.; da Silva Vasconcelos, M.A.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade, S.A.C.; de Melo Filho, A.B. Nutritional and lipid profiles in marine fish species from brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef] [PubMed]
F100 | F50 | F0 | |
---|---|---|---|
Biometric parameters | |||
Specific growth rate (SGR) 1 | 1.56 ± 0.22 | 1.55 ± 0.01 | 1.58 ± 0.02 |
Condition factor (%) 1 | 1.86 ± 0.03 | 1.89 ± 0.03 | 1.96 ± 0.02 |
Gutted yield (%) 1 | 89.34 ± 0.41 | 90.04 ± 0.27 | 89.53 ± 0.29 |
Fillet yield (%) 1 | 61.90 ± 0.37 | 60.55 ± 0.59 | 62.13 ± 0.54 |
Fillet color | |||
L* 2 | 51.76 ± 0.90 b | 44.01 ± 1.32 a | 43.64 ± 0.58 a |
a* 2 | 11.16 ± 0.59 a | 12.95 ± 0.43 b | 12.25 ± 0.37 b |
b* 2 | 19.61 ± 0.83 | 21.41 ± 0.40 | 20.70 ± 0.52 |
C*ab 3 | 20.47 ± 1.13 a | 24.25 ± 0.95 b | 22.81 ± 0.51 ab |
H°ab 3 | 62.45 ± 0.72 b | 60.78 ± 0.85 a | 59.83 ± 0.52 a |
F100 | F50 | F0 | |
---|---|---|---|
Physical properties Texture profile analyses (TPA) | |||
Muscle thickness (mm) | 10.33 ± 0.29 a | 15.29 ± 0.75 b | 11.32 ± 0.31 a |
Breaking force (N) | 3.20 ± 0.26 | 3.61 ± 0.53 | 4.09 ± 0.22 |
Hardness (N) | 4.19 ± 0.20 a | 4.00 ± 0.23 a | 5.33 ± 0.18 b |
Adhesiveness (mJ) | 2.59 ± 0.14 b | 0.59 ± 0.06 a | 2.52 ± 0.10 b |
Cohesiveness | 0.20 ± 0.01 a | 0.29 ± 0.03 b | 0.18 ± 0.01 a |
Springiness (mm) | 1.78 ± 0.09 a | 7.10 ± 0.55 b | 2.53 ± 0.12 a |
Chewiness (mJ) | 1.48 ± 0.13 a | 7.48 ± 0.65 b | 2.51 ± 0.19 a |
Water holding capacity (WHC, %) 1 | 90.39 ± 0.49 | 90.87 ± 0.36 | 89.33 ± 0.49 |
pH | 6.32 ± 0.01 a | 6.30 ± 0.01 a | 6.47 ± 0.05 b |
Biochemical compositions | |||
Moisture (%) | 69.57 ± 0.05 | 69.82 ± 0.33 | 69.68 ± 0.50 |
Ash (%) | 1.36 ± 0.05 | 1.24 ± 0.05 | 1.33 ± 0.05 |
Lipid (%) | 7.89 ± 0.18 b | 8.44 ± 0.49 b | 6.31 ± 0.34 a |
Protein (%) | 19.13 ± 0.35 a | 20.26 ± 0.24 b | 20.92 ± 0.08 b |
Water soluble protein (mg/g muscle) | 61.73 ± 2.06 | 66.66 ± 0.79 | 58.23 ± 4.34 |
Salt soluble protein (mg/g muscle) | 79.08 ± 1.47 ab | 82.23 ± 1.92 b | 74.53 ± 1.91 a |
a-s HYP (mg/g muscle) 2 | 0.04 ± 0.00 ab | 0.05 ± 0.00 b | 0.04 ± 0.00 a |
a-i HYP (mg/g muscle) 2 | 0.13 ± 0.01 b | 0.11 ± 0.01 ab | 0.07 ± 0.01 a |
Total HYP (mg/g muscle) 2 | 0.18 ± 0.01 b | 0.16 ± 0.01 b | 0.11 ± 0.01 a |
Muscle glycogen (mg/g muscle) | 0.32 ± 0.02 | 0.38 ± 0.04 | 0.33 ± 0.05 |
LDH activity (U/gprot) 3 | 21,089.96 ± 2994.98 | 15,594.32 ± 2360.29 | 15,126.40 ± 3063.59 |
Odor-Active Compounds 1 | Odor Description 2 | F100 | F50 | F0 |
---|---|---|---|---|
ng/g Muscle (OAV 1) | ||||
Nonanal | Geranium, fishy, plastic, orange, green, fatty | 174.49 ± 12.64 (158.63) a | 200.28 ± 20.79 (182.07) a | 429.76 ± 7.43 (390.69) b |
Octanal | Sweet, orange, floral, pungent, green, fatty | 115.48 ± 15.46 (164.96) a | 118.67 ± 9.14 (169.53) a | 186.35 ± 15.68 (266.22) b |
(E)-2-Nonenal | Moss, woody, floral, green, fruity | 6.61 ± 0.75 (82.58) | 7.08 ± 1.17 (88.41) | 8.93 ± 0.85 (111.65) |
1-Octen-3-ol | Earthy, mushroom, fermented | 98.76 ± 23.8 (65.84) a | 131.43 ± 30.03 (87.62) ab | 231.32 ± 34.89 (154.21) b |
Hexanal | Garlic, green, grassy, pungent, fatty, fishy | 228.03 ± 50.11 (50.67) a | 520.26 ± 38.10 (115.61) b | 1004.63 ± 58.20 (223.25) c |
(E)-2-Decenal | Orange, fatty | 10.10 ± 0.94 (33.68) a | 10.13 ± 0.48 (33.78) a | 17.07 ± 3.17 (56.89) b |
Heptanal | Green, floral, fatty, pungent, fishy, nutty, chocolate, mushroom | 65.88 ± 18.58 (23.53) a | 159.14 ± 38.59 (56.84) ab | 203.10 ± 13.37 (72.53) b |
(E, Z)-2,6-Nonadienal | Cucumber, floral | 8.88 ± 2.19 (11.1) | 8.58 ± 0.28 (10.73) | 8.54 ± 0.83 (10.67) |
(Z)-4-Heptenal | Fishy, boiled potato | 37.04 ± 8.39 (8.82) | 60.08 ± 18.77 (14.3) | 55.45 ± 12.23 (13.2) |
Decanal | Marine, cucumber, floral, fatty, orange, green | 14.86 ± 3.32 (7.43) | 18.25 ± 4.73 (9.12) | 24.51 ± 2.67 (12.25) |
2,3-Octanedione | Metallic | 76.62 ± 16.84 (6.38) | 91.13 ± 16.81 (7.59) | 131.99 ± 32.16 (11.00) |
1-Heptanol | Green, fermented, nutty | 33.90 ± 6.47 (6.28) | 36.95 ± 9.34 (6.84) | 45.02 ± 5.32 (8.34) |
Undecanal | Green, aniseed, fruity, minty | 17.19 ± 4.39 (3.44) | 22.03 ± 9.36 (4.41) | 25.42 ± 5.16 (5.08) |
2-Ethyl-Furan | Rubber, pungent, green bean | 7.91 ± 1.81 (3.44) a | 15.02 ± 1.82 (6.53) ab | 16.92 ± 0.30 (7.35) b |
(E)-2-Octenal | Moldy, pungent, cucumber, fatty, mushroom | 9.76 ± 1.67 (3.25) a | 11.52 ± 1.65 (3.84) ab | 18.12 ± 1.90 (6.04) b |
Pentanal | Acetaldehyde-like, pungent | 11.99 ± 3.08 (1.85) | 79.12 ± 9.15 (8.79) | |
3,5-octadien-2-one | Green, floral, cucumber | 246.58 ± 34.50 (1.64) | 188.64 ± 95.07 | 243.43 ± 28.08 (1.62) |
2-Pentyl-furan | Liquorice, orange | 5.02 ± 0.76 a | 8.48 ± 1.11 (1.41) ab | 12.04 ± 0.94 (2.01) b |
(E, E)-2,4-Heptadienal | Fishy, grassy | 14.59 ± 0.75 | 16.00 ± 1.24 (1.11) | 14.49 ± 2.66 |
Total odor-activecompounds (TOAC) | 896.13 ± 72.31 a | 1434.96 ± 71.22 b | 2482.82 ± 197.89 c | |
∑n-3 derived 3 | 65.33 ± 4.60 a | 103.32 ± 10.23 b | 102.35 ± 10.18 b | |
∑n-6 derived 4 | 325.43 ± 119.35 a | 723.85 ± 68.21 ab | 1228.49 ± 206.39 b | |
∑n-9 derived 5 | 379.67 ± 85.12 a | 572.3 ± 106.38 ab | 865.25 ± 82.68 b |
Taste-Related Compounds | Taste Description 1 | F100 | F50 | F0 |
---|---|---|---|---|
mg/100 g Muscle (TAV 2) | ||||
AMP 3 | Umami | 6.88 ± 0.24 (0.14) | 6.82 ± 0.64 (0.14) | 6.66 ± 0.37 (0.13) |
IMP 3 | Umami | 63.77 ± 7.11 (2.55) a | 94.03 ± 14.36 (3.76) b | 84.01 ± 12.87 (3.36) ab |
GMP 3 | Umami | 0.35 ± 0.01 (0.03) b | 0.25 ± 0.04 (0.02) a | 0.28 ± 0.02 (0.02) ab |
Aspartic acid | Umami | 0.11 ± 0.01 (0.001) c | 0.09 ± 0.01 (0.001) b | 0.05 ± 0.00 (0.001) a |
Glutamic acid | Umami | 19.99 ± 0.66 (0.67) a | 28.83 ± 0.76 (0.96) c | 24.68 ± 1.03 (0.82) b |
Sum of umami taste compounds (SUTC) | 112.63 ± 7.44 a | 162.52 ± 14.37 b | 141.77 ± 14.58 ab | |
EUC (g/100 g) 4 | 1.73 ± 0.01 a | 1.85 ± 0.03 b | 1.76 ± 0.03 ab | |
Threonine | Sweet | 1.21 ± 0.05 (0.005) | 1.39 ± 0.08 (0.005) | 1.19 ± 0.07 (0.005) |
Serine | Sweet | 3.87 ± 0.31 (0.03) a | 6.19 ± 0.50 (0.04) b | 3.27 ± 0.18 (0.02) a |
Glycine | Sweet | 47.47 ± 2.58 (0.36) b | 45.51 ± 2.61 (0.35) b | 28.78 ± 1.31 (0.22) a |
Alanine | Sweet | 31.23 ± 0.41 (0.52) a | 35.52 ± 0.48 (0.59) b | 36.54 ± 0.99 (0.61) b |
Proline | Sweet | 10.11 ± 1.39 (0.03) | 7.44 ± 0.44 (0.02) | 8.50 ± 0.88 (0.03) |
Lysine | Sweet | 1.57 ± 0.08 (0.03) | 1.66 ± 0.07 (0.03) | 1.74 ± 0.07 (0.03) |
Sum of sweet taste compounds (SWTC) | 95.00 ± 2.84 b | 97.71± 3.24 b | 80.03 ± 2.23 a | |
Valine | Bitter | 8.86 ± 0.31 (0.22) a | 10.91 ± 0.38 (0.27) b | 11.30 ± 0.45 (0.28) b |
Methionine | Bitter | 5.72 ± 0.20 (0.19) | 5.38 ± 0.22 (0.18) | 5.46 ± 0.16 (0.18) |
Leucine | Bitter | 7.45 ± 0.23 (0.04) a | 9.87 ± 0.31 (0.05) b | 9.59 ± 0.45 (0.05) b |
Isoleucine | Bitter | 2.45 ± 0.10 (0.03) a | 3.38 ± 0.11 (0.04) b | 3.59 ± 0.20 (0.04) b |
Arginine | Bitter | 3.34 ± 0.22 (0.07) a | 3.56 ± 0.20 (0.07) a | 5.80 ± 0.58 (0.12) b |
Histidine | Bitter | 51.87 ± 1.06 (2.61) a | 57.36 ± 1.27 (2.87) b | 48.20 ± 0.86 (2.41) a |
Phenylalanine | Bitter | 4.16 ± 0.17 (0.05) | 4.76 ± 0.27 (0.05) | 4.08 ± 0.25 (0.05) |
Tyrosine | Bitter | 9.08 ± 0.44 | 10.00 ± 0.39 | 10.35 ± 0.39 |
Sum of bitter taste compounds (SBTC) | 93.31 ± 1.86 a | 105.21 ± 1.18 b | 98.36 ± 9.48 ab | |
Oxalic acid | Sour | 401.05 ± 26.78 (7.96) | 370.12 ± 6.62 (7.34) | 354.14 ± 14.13 (7.03) |
Lactic acid | Sour | 499.79 ± 24.43 (3.97) | 536.77 ± 37.78 (4.26) | 514.41 ± 16.16 (4.08) |
Maleic acid | Sour | 15.17 ± 1.09 b | 13.78 ± 0.28 ab | 11.80 ± 0.49 a |
Succinic acid | Sour | 86.48 ± 5.93 (8.65) | 119.60 ± 8.79 (11.96) | 96.89 ± 22.28 (9.69) |
Sum of sour taste compounds (SOTC) | 1002.49 ± 48.25 | 1040.28 ± 34.89 | 977.24 ± 39.96 | |
Na+ | Saline | 51.66 ± 9.37 (0.29) | 33.22 ± 2.19 (0.18) | 41.85 ± 3.74 (0.23) |
K+ | Saline | 504.70 ± 43.68 (3.88) | 461.40 ± 11.72 (3.55) | 463.79 ± 16.76 (3.57) |
Ca2+ | Saline | 19.49 ± 6.15 (0.13) a | 28.86 ± 9.66 (0.19) ab | 54.84 ± 7.86 (0.37) b |
Mg2+ | Saline | 33.46 ± 0.96 (0.35) | 31.79 ± 0.59 (0.33) | 32.48 ± 1.31 (0.34) |
Cl− | Saline | 235.50 ± 8.76 (1.81) a | 254.93 ± 3.87 (1.96) ab | 273.23 ± 1.69 (2.10) b |
PO43− | Saline | 100.08 ± 4.79 (0.77) | 113.14 ± 3.30 (0.87) | 109.81 ± 1.39 (0.84) |
Sum of saline taste compounds (SATC) | 944.89 ± 52.23 | 923.33 ± 11.83 | 976.00 ± 20.90 |
Fatty Acid Compositions | F100 | F50 | F0 |
---|---|---|---|
mg/g Muscle | |||
C12:0 | 0.01 ± 0.00 | 0.02 ± 0.00 | 0.01 ± 0.00 |
C14:0 | 0.89 ± 0.01 c | 0.77 ± 0.05 b | 0.44 ± 0.02 a |
C16:0 | 4.62 ± 0.06 b | 5.23 ± 0.16 c | 3.71 ± 0.17 a |
C18:0 | 1.81 ± 0.02 b | 2.11 ± 0.13 c | 1.29 ± 0.01 a |
C20:0 | 0.11 ± 0.00 b | 0.12 ± 0.01 b | 0.08 ± 0.00 a |
C22:0 | 0.07 ± 0.00 b | 0.07 ± 0.01 b | 0.05 ± 0.00 a |
C24:0 | 0.03 ± 0.00 b | 0.02 ± 0.00 b | 0.01 ± 0.00 a |
C16:1n-7 | 1.21 ± 0.02 b | 1.05 ± 0.06 b | 0.50 ± 0.16 a |
C18:1n-9(Z) | 6.90 ± 0.10 a | 10.1 ± 0.38 b | 8.00 ± 0.77 ab |
C18:1n-9(E) | 1.08 ± 0.01 b | 1.26 ± 0.08 c | 0.75 ± 0.01 a |
C20:1n-9 | 1.16 ± 0.05 b | 0.98 ± 0.06 b | 0.74 ± 0.02 a |
C22:1n-9 | 0.16 ± 0.00 a | 0.19 ± 0.02 b | 0.16 ± 0.00 a |
C24:1n-9 | 0.21 ± 0.06 | 0.07 ± 0.01 | 0.06 ± 0.01 |
C18:2n-6 | 6.05 ± 0.16 a | 9.28 ± 0.42 b | 5.99 ± 0.36 a |
C20:2n-6 | 0.35 ± 0.01 b | 0.46 ± 0.03 c | 0.26 ± 0.01 a |
C20:3n-6 | 0.12 ± 0.01 a | 0.22 ± 0.02 c | 0.16 ± 0.00 b |
C20:4n-6 | 0.13 ± 0.00 b | 0.12 ± 0.01 b | 0.10 ± 0.00 a |
C18:3n-3 | 0.05 ± 0.00 | 0.10 ± 0.01 | 0.10 ± 0.02 |
C20:5n-3 (EPA) | 0.72 ± 0.06 b | 0.59 ± 0.05 b | 0.38 ± 0.01 a |
C22:6n-3 (DHA) | 2.26 ± 0.19 b | 1.77 ± 0.07 ab | 1.44 ± 0.06 a |
EPA + DHA | 2.98 ± 0.25 b | 2.36 ± 0.12 ab | 1.82 ± 0.07 a |
SFA1 | 7.54 ± 0.07 b | 8.34 ± 0.35 c | 5.59 ± 0.16 a |
MUFA1 | 10.72 ± 0.13 a | 13.64 ± 0.61 b | 10.22 ± 0.63 a |
PUFA1 | 9.67 ± 0.42 a | 12.53 ± 0.60 b | 8.59 ± 0.43 a |
PUFA/SFA | 1.28 ± 0.05 | 1.50 ± 0.01 | 1.53 ± 0.06 |
LC-PUFA 1 | 3.23 ± 0.25 b | 2.70 ± 0.14 ab | 2.09 ± 0.08 a |
∑n-3 1 | 3.03 ± 0.25 b | 2.45 ± 0.13 ab | 1.91 ± 0.08 a |
∑n-6 1 | 6.64 ± 0.18 a | 10.08 ± 0.48 b | 6.52 ± 0.37 a |
∑n-3/∑n-6 | 0.45 ± 0.03 b | 0.24 ± 0.00 a | 0.30 ± 0.01 a |
AI 2 | 0.49 ± 0.01 b | 0.40 ± 0.00 a | 0.36 ± 0.02 a |
TI 3 | 0.40 ± 0.02 | 0.42 ± 0.00 | 0.37 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Sun, G.; Wei, F.; Wu, Z.; Tian, H.; Meng, Y.; Ma, R. Replacing Fishmeal and Fish Oil with Complex Protein and Canola Oil: Effect on Organoleptic and Nutritional Quality of Triploid Rainbow Trout (Oncorhynchus mykiss). Foods 2024, 13, 1591. https://doi.org/10.3390/foods13111591
Song Y, Sun G, Wei F, Wu Z, Tian H, Meng Y, Ma R. Replacing Fishmeal and Fish Oil with Complex Protein and Canola Oil: Effect on Organoleptic and Nutritional Quality of Triploid Rainbow Trout (Oncorhynchus mykiss). Foods. 2024; 13(11):1591. https://doi.org/10.3390/foods13111591
Chicago/Turabian StyleSong, Yongna, Guoliang Sun, Fulei Wei, Zezhong Wu, Haining Tian, Yuqiong Meng, and Rui Ma. 2024. "Replacing Fishmeal and Fish Oil with Complex Protein and Canola Oil: Effect on Organoleptic and Nutritional Quality of Triploid Rainbow Trout (Oncorhynchus mykiss)" Foods 13, no. 11: 1591. https://doi.org/10.3390/foods13111591
APA StyleSong, Y., Sun, G., Wei, F., Wu, Z., Tian, H., Meng, Y., & Ma, R. (2024). Replacing Fishmeal and Fish Oil with Complex Protein and Canola Oil: Effect on Organoleptic and Nutritional Quality of Triploid Rainbow Trout (Oncorhynchus mykiss). Foods, 13(11), 1591. https://doi.org/10.3390/foods13111591