Exploring Chitosan Lactate as a Multifunctional Additive: Enhancing Quality and Extending Shelf Life of Whole Wheat Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WWBs
2.3. Moisture Content Analysis
2.4. Impedance Analysis
2.5. Swelling Study
2.6. FTIR Analysis
2.7. Colorimetric Analysis
2.8. Microscopic Analysis
2.9. Texture Analysis
2.9.1. Texture Profile Analysis
2.9.2. Stress Relaxation Profile
2.10. Microbiological Analysis
2.10.1. Preparation of Media and Reagents
2.10.2. Estimation of the Total Viable Count (TVC)
2.11. Sensory Analysis
2.12. Statistical Analysis
3. Results
3.1. Visual and Physical Inspection
3.2. Moisture Content Analysis
3.3. Impedance Analysis
3.4. Swelling Study
3.5. FTIR Analysis
3.6. Colorimetric Analysis
3.7. Surface Topology
3.8. Texture Analysis
3.8.1. Texture Profile Analysis (TPA)
3.8.2. Stress Relaxation Profile (SRP)
3.9. Microbiological Analysis
3.10. Sensory Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kweon, M.; Slade, L.; Levine, H.; Gannon, D.J. Cookie-versus cracker-baking—What’s the difference? Flour functionality requirements explored by src and alveography. Crit. Rev. Food Sci. Nutr. 2014, 54, 115–138. [Google Scholar] [CrossRef] [PubMed]
- Giannou, V.; Kessoglou, V.; Tzia, C.J. Quality and safety characteristics of bread made from frozen dough. Trends Food Sci. Technol. 2003, 14, 99–108. [Google Scholar] [CrossRef]
- Pico, J.; Bernal, J.; Gómez, M.J. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Leenhardt, F.; Lioger, D.; Scalbert, A.; Rémésy, C.J. Parameters controlling the glycaemic response to breads. Nutr. Res. Rev. 2006, 19, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Juntunen, K.S.; Niskanen, L.K.; Liukkonen, K.H.; Poutanen, K.S.; Holst, J.J.; Mykkänen, H.M. Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am. J. Clin. Nutr. 2002, 75, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.L.; Zemel, M.B. Glycemic index, cardiovascular disease, and obesity. Nutr. Rev. 1999, 57, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J. Whole grains and human health. Nutr. Res. Rev. 2004, 17, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Doblado-Maldonado, A.F.; Pike, O.A.; Sweley, J.C.; Rose, D.J. Key issues and challenges in whole wheat flour milling and storage. J. Cereal Sci. 2012, 56, 119–126. [Google Scholar] [CrossRef]
- Galliard, T.; Collins, A. Effects of oxidising improvers, an emulsifier, fat and mixer atmosphere on the performance of wholemeal flour in the chorleywood bread process. J. Cereal Sci. 1988, 8, 139–146. [Google Scholar] [CrossRef]
- Wang, J.; Rosell, C.M.; de Barber, C.B. Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem. 2002, 79, 221–226. [Google Scholar] [CrossRef]
- Ferrero, C. Hydrocolloids in wheat breadmaking: A concise review. Food Hydrocoll. 2017, 68, 15–22. [Google Scholar] [CrossRef]
- Gómez, M.; Ronda, F.; Caballero, P.A.; Blanco, C.A.; Rosell, C.M. Functionality of different hydrocolloids on the quality and shelf-life of yellow layer cakes. Food Hydrocoll. 2007, 21, 167–173. [Google Scholar] [CrossRef]
- Tabara, A.; Miyajima, C.; Moki, N.; Kasahara, F.; Seguchi, M. Improvement of bread making properties by the addition of alginates. Food Sci. Technol. Res. 2016, 22, 145–151. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, Z.; Lei, W.; Zhong, G. Synergistic effects of acetylated distarch adipate and sesbania gum on gelatinization and retrogradation of wheat starch. Int. J. Biol. Macromol. 2020, 156, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Muzzarelli, R.A. Chitosan-based dietary foods. Carbohydr. Polym. 1996, 29, 309–316. [Google Scholar] [CrossRef]
- Shariatinia, Z.; Jalali, A.M. Chitosan-based hydrogels: Preparation, properties and applications. Int. J. Biol. Macromol. 2018, 115, 194–220. [Google Scholar] [CrossRef] [PubMed]
- No, H.; Meyers, S.; Prinyawiwatkul, W.; Xu, Z. Applications of chitosan for improvement of quality and shelf life of foods: A review. J. Food Sci. 2007, 72, R87–R100. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Rakcejeva, T.; Rusa, K.; Dukalska, L.; Kerch, G. Effect of chitosan and chitooligosaccharide lactate on free lipids and reducing sugars content and on wheat bread firming. Eur. Food Res. Technol. 2010, 232, 123–128. [Google Scholar] [CrossRef]
- Sharadanant, R.; Khan, K. Effect of Hydrophilic Gums on the Quality of Frozen Dough: II. Bread Characteristics. Cereal Chem. 2003, 80, 773–780. [Google Scholar] [CrossRef]
- Qureshi, D.; Pattanaik, S.; Mohanty, B.; Anis, A.; Kulikouskaya, V.; Hileuskaya, K.; Agabekov, V.; Sarkar, P.; Maji, S.; Pal, K. Preparation of novel poly (vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications. Polym. Bull. 2022, 79, 3253–3290. [Google Scholar] [CrossRef]
- Nguyen, T.T.B.; Hein, S.; Ng, C.; Stevens, W.F. Molecular stability of chitosan in acid solutions stored at various conditions. J. Appl. Polym. Sci. 2007, 107, 2588–2593. [Google Scholar] [CrossRef]
- Ahmad, S.; Naz, A.; Usman, M.; Amjad, A.; Pasha, I.; Farooq, U. Impediment effect of chemical agents (additives) on gluten development in cookie dough. J. Food Sci. Technol. 2021, 59, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.S.; Bharti, D.; Pradhan, B.K.; Sahu, D.; Dhal, S.; Kim, N.M.; Jarzębski, M.; Pal, K. Analysis of the Physical and Structure Characteristics of Reformulated Pizza Bread. Foods 2022, 11, 1979. [Google Scholar] [CrossRef] [PubMed]
- Dhal, S.; Anis, A.; Shaikh, H.M.; Alhamidi, A.; Pal, K. Effect of Mixing Time on Properties of Whole Wheat Flour-Based Cookie Doughs and Cookies. Foods 2023, 12, 941. [Google Scholar] [CrossRef]
- Jain, A.; Pradhan, B.K.; Mahapatra, P.; Ray, S.S.; Chakravarty, S.; Pal, K. Development of a low-cost food color monitoring system. Color Res. Appl. 2020, 46, 430–445. [Google Scholar] [CrossRef]
- Pathak, D.; Majumdar, J.; Raychaudhuri, U.; Chakraborty, R. Characterization of physicochemical properties in whole wheat bread after incorporation of ripe mango peel. J. Food Meas. Charact. 2016, 10, 554–561. [Google Scholar] [CrossRef]
- Humphries, J.M.; Graham, R.D.; Mares, D.J. Application of reflectance colour measurement to the estimation of carotene and lutein content in wheat and triticale. J. Cereal Sci. 2004, 40, 151–159. [Google Scholar] [CrossRef]
- Silva, H.A.; Paiva, E.G.; Lisboa, H.M.; Duarte, E.; Cavalcanti-Mata, M.; Gusmao, T.; de Gusmao, R. Role of chitosan and transglutaminase on the elaboration of gluten-free bread. J. Food Sci. Technol. 2020, 57, 1877–1886. [Google Scholar] [CrossRef] [PubMed]
- Kosaraju, S.L.; Weerakkody, R.; Augustin, M.A. Chitosan− glucose conjugates: Influence of extent of Maillard reaction on antioxidant properties. J. Agric. Food Chem. 2010, 58, 12449–12455. [Google Scholar] [CrossRef] [PubMed]
- Besbes, E.; Jury, V.; Monteau, J.-Y.; Le Bail, A. Characterizing the cellular structure of bread crumb and crust as affected by heating rate using X-ray microtomography. J. Food Eng. 2013, 115, 415–423. [Google Scholar] [CrossRef]
- Munteanu, G.-M.; Voicu, G.; Ferdeş, M.; Ştefan, E.-M.; Constantin, G.-A.; Tudor, P. Dynamics of fermentation process of bread dough prepared with different types of yeast. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2019, 20, 575–584. [Google Scholar]
- Dou, X.; Hao, Y.; Sun, Y.; Yang, P.; Liu, L.; He, Y.; Shi, Y.; Yang, C.; Chen, F. A novel baking additive: Preparation, characterization, and application of chitosan hydrochloride/carboxymethyl starch sodium nano-gel for wheat bread. Food Hydrocoll. 2024, 148, 109459. [Google Scholar] [CrossRef]
- Dabija, A.; Codină, G.G.; Fradinho, P. Effect of yellow pea flour addition on wheat flour dough and bread quality. Rom. Biotechnol. Lett. 2017, 22, 12888. [Google Scholar]
- Lafarga, T.; Gallagher, E.; Walsh, D.; Valverde, J.; Hayes, M. Chitosan-containing bread made using marine shellfishery byproducts: Functional, bioactive, and quality assessment of the end product. J. Agric. Food Chem. 2013, 61, 8790–8796. [Google Scholar] [CrossRef] [PubMed]
- Mollakhalili-Meybodi, N.; Sheidaei, Z.; Khorshidian, N.; Nematollahi, A.; Khanniri, E. Sensory attributes of wheat bread: A review of influential factors. J. Food Meas. Charact. 2022, 17, 2172–2181. [Google Scholar] [CrossRef]
- Shaw, G.S.; Pandey, P.M.; Yogalakshmi, Y.; Banerjee, I.; Al-Zahrani, S.M.; Anis, A.; Pal, K. Synthesis and Assessment of Novel Gelatin–Chitosan Lactate Cohydrogels for Controlled Delivery and Tissue Engineering Applications. Polym. Technol. Eng. 2017, 56, 1457–1467. [Google Scholar] [CrossRef]
- Kertész, Á.; Hlaváčová, Z.; Vozáry, E.; Staroňová, L. Relationship between moisture content and electrical impedance of carrot slices during drying. Int. Agrophys. 2015, 29, 61–66. [Google Scholar] [CrossRef]
- Wessels, R.; Wentzel, B.; Labuschagne, M. Solvent retention capacity and swelling index of glutenin in hard red wheat flour as possible indicators of rheological and baking quality characteristics. J. Cereal Sci. 2020, 93, 102983. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Karaś, M.; Kordowska-Wiater, M.; Skrzypek, T.; Kazimierczak, W. Inherently acidic films based on chitosan lactate-doped starches and pullulan as carries of nisin: A comparative study of controlled-release and antimicrobial properties. Food Chem. 2023, 404, 134760. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, S.; Sanabria, M.; Monteiro, M. Influence of the fermentation methods on the resistant starch formation by X-ray diffraction. SN Appl. Sci. 2021, 3, 191. [Google Scholar] [CrossRef]
- Sadat, A.; Joye, I.J. Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl. Sci. 2020, 10, 5918. [Google Scholar] [CrossRef]
- Tyagi, P.; Chauhan, A.K. Aparna Optimization and characterization of functional cookies with addition of Tinospora cordifolia as a source of bioactive phenolic antioxidants. LWT 2020, 130, 109639. [Google Scholar] [CrossRef]
- Walrafen, G.E.; Hokmabadi, M.S.; Yang, W.-H. Raman isosbestic points from liquid water. J. Chem. Phys. 1986, 85, 6964–6969. [Google Scholar] [CrossRef]
- De Ninno, A.; De Francesco, M. ATR-FTIR study of the isosbestic point in water solution of electrolytes. Chem. Phys. 2018, 513, 266–272. [Google Scholar] [CrossRef]
- Garcia-Valle, D.E.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Alvarez-Ramirez, J. Effects of mixing, sheeting, and cooking on the starch, protein, and water structures of durum wheat semolina and chickpea flour pasta. Food Chem. 2021, 360, 129993. [Google Scholar] [CrossRef] [PubMed]
- Pulatsu, E.; Su, J.-W.; Kenderes, S.M.; Lin, J.; Vardhanabhuti, B.; Lin, M. Effects of ingredients and pre-heating on the printing quality and dimensional stability in 3D printing of cookie dough. J. Food Eng. 2021, 294, 110412. [Google Scholar] [CrossRef]
- Yang, S.; Dhital, S.; Zhang, M.-N.; Wang, J.; Chen, Z.-G. Structural, gelatinization, and rheological properties of heat-moisture treated potato starch with added salt and its application in potato starch noodles. Food Hydrocoll. 2022, 131, 107802. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, M.-N.; Shan, C.-S.; Chen, Z.-G. Evaluation of cooking performance, structural properties, storage stability and shelf life prediction of high-moisture wet starch noodles. Food Chem. 2021, 357, 129744. [Google Scholar] [CrossRef] [PubMed]
- Kerch, G.; Zicans, J.; Meri, R.M. The effect of chitosan oligosaccharides on bread staling. J. Cereal Sci. 2010, 52, 491–495. [Google Scholar] [CrossRef]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Bharti, D.; Kim, D.; Sarkar, P.; Pal, K. Variations in microstructural and physicochemical properties of candelilla wax/rice bran oil–derived oleogels using sunflower lecithin and soya lecithin. Gels 2021, 7, 226. [Google Scholar] [CrossRef]
- Michalska, A.; Amigo-Benavent, M.; Zielinski, H.; del Castillo, M.D. Effect of bread making on formation of Maillard reaction products contributing to the overall antioxidant activity of rye bread. J. Cereal Sci. 2008, 48, 123–132. [Google Scholar] [CrossRef]
- Ndlala, F.N.; Onipe, O.O.; Mokhele, T.M.; Anyasi, T.A.; Jideani, A.I.O. Effect of wheat bran incorporation on the physical and sensory properties of a south african cereal fried dough. Foods 2019, 8, 559. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Sato, T. Comparison between the color properties of whiteness index and yellowness index on the CIELAB. J. Korean Dye. Process. Soc. 2013, 25, 241–246. [Google Scholar] [CrossRef]
- Popov-Raljić, J.V.; Mastilović, J.S.; Laličić-Petronijević, J.G.; Popov, V.S. Investigations of bread production with postponed staling applying instrumental measurements of bread crumb color. Sensors 2009, 9, 8613–8623. [Google Scholar] [CrossRef] [PubMed]
- Guiotto, E.N.; Tomás, M.C.; Haros, C.M. Development of highly nutritional breads with by-products of chia (Salvia hispanica L.) seeds. Foods 2020, 9, 819. [Google Scholar] [CrossRef] [PubMed]
- Udomkun, P.; Masso, C.; Swennen, R.; Romuli, S.; Innawong, B.; Kuate, A.F.; Akin-Idowu, P.E.; Alakonya, A.; Vanlauwe, B. Comparative study of physicochemical, nutritional, phytochemical, and sensory properties of bread with plantain and soy flours partly replacing wheat flour. Food Sci. Nutr. 2022, 10, 3085–3097. [Google Scholar] [CrossRef] [PubMed]
- Onipe, O.O.; Beswa, D.; Jideani, A.I.O. Confocal laser scanning microscopy and image analysis for elucidating crumb and crust microstructure of bran-enriched south african fried dough and batter. Foods 2020, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Helou, C.; Jacolot, P.; Niquet-Léridon, C.; Gadonna-Widehem, P.; Tessier, F.J. Maillard reaction products in bread: A novel semi-quantitative method for evaluating melanoidins in bread. Food Chem. 2016, 190, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Tóth, M.; Kaszab, T.; Meretei, A. Texture profile analysis and sensory evaluation of commercially available gluten-free bread samples. Eur. Food Res. Technol. 2022, 248, 1447–1455. [Google Scholar] [CrossRef]
- Peleg, M. The instrumental texture profile analysis revisited. J. Texture Stud. 2019, 50, 362–368. [Google Scholar] [CrossRef]
- Pyo, S.-H.; Moon, C.-R.; Park, S.-W.; Choi, J.-Y.; Park, J.-D.; Sung, J.M.; Choi, E.-J.; Son, Y.-J. Quality and staling characteristics of white bread fortified with lysozyme-hydrolyzed mealworm powder (Tenebrio molitor L.). Curr. Res. Food Sci. 2024, 8, 100685. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, Ö.; Yurt, B.; Baştürk, A.; Toker, Ö.S.; Yilmaz, M.T.; Karaman, S.; Dağlıoğlu, O. Pasting properties, texture profile and stress–relaxation behavior of wheat starch/dietary fiber systems. Food Res. Int. 2013, 53, 278–290. [Google Scholar] [CrossRef]
- Figueroa, J.D.C.; Hernández, Z.J.E.; Rayas-Duarte, P.; Peña, R.J. Stress relaxation and creep recovery tests performed on wheat kernels versus doughs: Influence of glutenins on rheological and quality properties. Cereal Foods World 2013, 58, 139–144. [Google Scholar] [CrossRef]
- Bhise, S.; Kaur, A. Baking quality, sensory properties and shelf life of bread with polyols. J. Food Sci. Technol. 2014, 51, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Wanjuu, C.; Abong, G.; Mbogo, D.; Heck, S.; Low, J.; Muzhingi, T. The physiochemical properties and shelf-life of orange-fleshed sweet potato puree composite bread. Food Sci. Nutr. 2018, 6, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Tarlak, F. The Use of Predictive Microbiology for the Prediction of the Shelf Life of Food Products. Foods 2023, 12, 4461. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Garrido-Maestu, A.; Jeong, K.C. Application, mode of action, and in vivo activity of chitosan and its micro-and nanoparticles as antimicrobial agents: A review. Carbohydr. Polym. 2017, 176, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives. Eur. Polym. J. 2020, 138, 109984. [Google Scholar] [CrossRef]
- Ali, M.A.; Hashish, M.H.; Fekry, M.M. Microbiological quality of some packed and unpacked bread products in Alexandria, Egypt. J. Egypt. Public Health Assoc. 2023, 98, 16. [Google Scholar] [CrossRef] [PubMed]
Formulations | Composition (g) | ||||||
---|---|---|---|---|---|---|---|
WWF | Water | Yeast | Sugar | Salt | CL | Rice Bran Oil | |
P0.0 | 220.00 | 220.00 | 7.00 | 29.00 | 2.00 | 0.0 | 22.00 |
P0.5 | 218.90 | 220.00 | 7.00 | 29.00 | 2.00 | 1.1 | 22.00 |
P1.0 | 217.80 | 220.00 | 7.00 | 29.00 | 2.00 | 2.2 | 22.00 |
P2.0 | 215.60 | 220.00 | 7.00 | 29.00 | 2.00 | 4.4 | 22.00 |
P3.0 | 213.40 | 220.00 | 7.00 | 29.00 | 2.00 | 6.6 | 22.00 |
Parameters | P0.0 | P0.5 | P1.0 | P2.0 | P3.0 |
---|---|---|---|---|---|
Appearance | 4.00 ± 0.70 a | 3.30 ± 1.26 a | 3.90 ± 0.70 a | 3.50 ± 1.02 a | 3.65 ± 1.23 a |
Aroma | 3.50 ± 1.10 a | 3.55 ± 0.92 a | 3.65 ± 0.79 a | 3.40 ± 0.86 a | 3.40 ± 0.86 a |
Color | 4.00 ± 1.09 a | 3.45 ± 1.28 a | 3.75 ± 0.82 a | 3.60 ± 1.15 a | 3.55 ± 0.97 a |
Softness | 3.15 ± 1.23 a | 3.25 ± 1.08 a | 3.30 ± 1.05 a | 3.30 ± 0.90 a | 3.30 ± 0.96 a |
Overall Impression | 3.75 ± 1.04 a | 3.30 ± 1.14 a | 3.70 ± 0.71 a | 3.55 ± 1.07 a | 3.55 ± 0.92 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Yadav, V.; Sahu, D.; Kumar, K.; Kim, D.; Yang, D.; Jayaraman, S.; Jarzębski, M.; Wieruszewski, M.; Pal, K. Exploring Chitosan Lactate as a Multifunctional Additive: Enhancing Quality and Extending Shelf Life of Whole Wheat Bread. Foods 2024, 13, 1590. https://doi.org/10.3390/foods13101590
Singh P, Yadav V, Sahu D, Kumar K, Kim D, Yang D, Jayaraman S, Jarzębski M, Wieruszewski M, Pal K. Exploring Chitosan Lactate as a Multifunctional Additive: Enhancing Quality and Extending Shelf Life of Whole Wheat Bread. Foods. 2024; 13(10):1590. https://doi.org/10.3390/foods13101590
Chicago/Turabian StyleSingh, Pratik, Vikas Yadav, Deblu Sahu, Krishan Kumar, Doman Kim, Deng Yang, Sivaraman Jayaraman, Maciej Jarzębski, Marek Wieruszewski, and Kunal Pal. 2024. "Exploring Chitosan Lactate as a Multifunctional Additive: Enhancing Quality and Extending Shelf Life of Whole Wheat Bread" Foods 13, no. 10: 1590. https://doi.org/10.3390/foods13101590
APA StyleSingh, P., Yadav, V., Sahu, D., Kumar, K., Kim, D., Yang, D., Jayaraman, S., Jarzębski, M., Wieruszewski, M., & Pal, K. (2024). Exploring Chitosan Lactate as a Multifunctional Additive: Enhancing Quality and Extending Shelf Life of Whole Wheat Bread. Foods, 13(10), 1590. https://doi.org/10.3390/foods13101590