Vitamin K2 in Health and Disease: A Clinical Perspective
Abstract
:1. Introduction
2. Etiology of Decreased Vitamin K2 Synthesis and Absorption
2.1. The Imbalance of Intestinal Flora
2.2. Physiological and Genetic Factors
2.3. Drug Interactions
3. Potential Therapeutic Benefits
3.1. Osteoporosis
3.2. Osteoarthritis (OA) and Rheumatoid Arthritis (RA)
3.3. Cardiovascular Disease (CVD)
3.4. Chronic Kidney Disease (CKD)
3.5. Diabetes and the Metabolic Syndrome
3.6. Neurodegenerative Diseases
3.7. Cancer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dam, H. The Antihaemorrhagic Vitamin of The Chick. Biochem. J. 1935, 29, 1273–1285. [Google Scholar] [CrossRef]
- Zhao, C.; Wan, Y.; Tang, G.; Jin, Q.; Zhang, H.; Xu, Z. Comparison of Different Fermentation Processes for the Vitamin K2 (Menaquinone-7) Production by a Novel Bacillus Velezensis ND Strain. Process Biochemi. 2021, 102, 33–41. [Google Scholar] [CrossRef]
- Halder, M.; Petsophonsakul, P.; Akbulut, A.C.; Pavlic, A.; Bohan, F.; Anderson, E.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K: Double Bonds beyond Coagulation Insights into Differences between Vitamin K1 and K2 in Health and Disease. Int. J. Mol. Sci. 2019, 20, 896. [Google Scholar] [CrossRef] [PubMed]
- Lal, N.; Berenjian, A. Cis and Trans Isomers of The Vitamin Menaquinone-7: Which One is Biologically Significant? Appl. Microbiol. Biotechnol. 2020, 104, 2765–2776. [Google Scholar] [CrossRef]
- Shearer, M.J.; Newman, P. Metabolism and Cell Biology of Vitamin K. Thromb. Haemost. 2008, 100, 530–547. [Google Scholar]
- Booth, S.L. Vitamin K: Food Composition and Dietary Intakes. Food Nutr. Res. 2012, 56, 5505. [Google Scholar] [CrossRef] [PubMed]
- Marles, R.J.; Roe, A.L.; Oketch-Rabah, H.A. US Pharmacopeial Convention Safety Evaluation of Menaquinone-7, a Form of Vitamin K. Nutr. Rev. 2017, 75, 553–578. [Google Scholar] [CrossRef]
- Vermeer, C.; Raes, J.; van ‘t Hoofd, C.; Knapen, M.H.J.; Xanthoulea, S. Menaquinone Content of Cheese. Nutrients 2018, 10, 446. [Google Scholar] [CrossRef]
- Akbulut, A.C.; Pavlic, A.; Petsophonsakul, P.; Halder, M.; Maresz, K.; Kramann, R.; Schurgers, L. Vitamin K2 Needs an RDI Separate from Vitamin K1. Nutrients 2020, 12, 1852. [Google Scholar] [CrossRef]
- Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a Diet Supplement with Impact in Human Health: Current Evidence in Age-Related Diseases. Nutrients 2020, 12, 138. [Google Scholar] [CrossRef]
- Komai, M.; Shirakawa, H. Vitamin K Metabolism. Menaquinone-4 (MK-4) Formation from Ingested VK Analogues and Its Potent Relation to Bone Function. Clin. Calcium 2007, 17, 1663–1672. [Google Scholar]
- Yan, Q.; Zhang, T.; O’Connor, C.; Barlow, J.W.; Walsh, J.; Scalabrino, G.; Xu, F.; Sheridan, H. The Biological Responses of Vitamin K2: A Comprehensive Review. Food Sci. Nutr. 2023, 11, 1634–1656. [Google Scholar] [CrossRef] [PubMed]
- Mladěnka, P.; Macáková, K.; Kujovská Krčmová, L.; Javorská, L.; Mrštná, K.; Carazo, A.; Protti, M.; Remião, F.; Nováková, L. Vitamin K—Sources, Physiological Role, Kinetics, Deficiency, Detection, Therapeutic Use, and Toxicity. Nutr. Rev. 2022, 80, 677–698. [Google Scholar] [CrossRef]
- Liu, Y.; van Bennekom, E.O.; Zhang, Y.; Abee, T.; Smid, E.J. Long-Chain Vitamin K2 Production in Lactococcus Lactis Is Influenced by Temperature, Carbon Source, Aeration and Mode Of Energy Metabolism. Microb. Cell Factories 2019, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Qiao, K.; Wu, H.; Zhang, Y. The Impact of Food Additives on the Abundance and Composition of Gut Microbiota. Molecules 2023, 28, 631. [Google Scholar] [CrossRef] [PubMed]
- Gama, J.; Neves, B.; Pereira, A. Chronic Effects of Dietary Pesticides on the Gut Microbiome and Neurodevelopment. Front. Microbiol. 2022, 13, 931440. [Google Scholar] [CrossRef] [PubMed]
- Fenn, K.; Strandwitz, P.; Stewart, E.J.; Dimise, E.; Rubin, S.; Gurubacharya, S.; Clardy, J.; Lewis, K. Quinones are growth factors for the human gut microbiota. Microbiome 2017, 5, 161. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Mafra, D.; Shiels, P.G.; Hackeng, T.M.; Stenvinkel, P.; Schurgers, L.J. Vitamin K and Hallmarks of Ageing: Focus on Diet and Gut Microbiome. Nutrients 2023, 15, 2727. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.L.; Karl, J.P.; Oliverio, A.M.; Fu, X.; Soares, J.W.; Wolfe, B.E.; Hernandez, C.J.; Mason, J.B.; Booth, S.L. Dietary Vitamin K is Remodeled by Gut Microbiota and Influences Community Composition. Gut Microbes 2021, 13, 1–16. [Google Scholar] [CrossRef]
- Ebid, A.I.; Abdeen, H.A.; Muhammed Maher, R.; Mohamed-Abdel-Motaleb, S.M. Cefoperazone-Sulbactam-Induced Coagulopathy in Critically Ill Egyptian Patients: Role of Vitamin K Prophylactic Doses. Hospital Pharmacy 2014. [Google Scholar] [CrossRef]
- Kaesler, N.; Schreibing, F.; Speer, T.; Puente-Secades, S.d.l.; Rapp, N.; Drechsler, C.; Kabgani, N.; Kuppe, C.; Boor, P.; Jankowski, V.; et al. Altered Vitamin K Biodistribution and Metabolism in Experimental and Human Chronic Kidney Disease. Kidney Int. 2022, 101, 338–348. [Google Scholar] [CrossRef]
- Simes, D.C.; Viegas, C.S.B.; Araújo, N.; Marreiros, C. Vitamin K as a Powerful Micronutrient in Aging and Age-Related Diseases: Pros and Cons from Clinical Studies. Int. J. Mol. Sci. 2019, 20, 4150. [Google Scholar] [CrossRef]
- Kozioł-Kozakowska, A.; Maresz, K. The Impact of Vitamin K2 (Menaquionones) in Children’s Health and Diseases: A Review of the Literature. Children 2022, 9, 78. [Google Scholar] [CrossRef]
- Holden, R.M.; Booth, S.L.; Tuttle, A.; James, P.D.; Morton, A.R.; Hopman, W.M.; Nolan, R.L.; Garland, J.S. Sequence Variation in Vitamin K Epoxide Reductase Gene Is Associated with Survival and Progressive Coronary Calcification In Chronic Kidney Disease. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1591–1596. [Google Scholar] [CrossRef]
- Haraikawa, M.; Tsugawa, N.; Sogabe, N.; Tanabe, R.; Kawamura, Y.; Okano, T.; Hosoi, T.; Goseki-Sone, M. Effects of Gamma-Glutamyl Carboxylase Gene Polymorphism (R325Q) on The association between Dietary Vitamin K Intake and Gamma-Carboxylation of Osteocalcin in Young Adults. Asia Pac. J. Clin. Nutr. 2013, 22, 646–654. [Google Scholar] [CrossRef]
- Theuwissen, E.; Teunissen, K.J.; Spronk, H.M.; Hamulyák, K.; Ten Cate, H.; Shearer, M.J.; Vermeer, C.; Schurgers, L.J. Effect of Low-Dose Supplements of Menaquinone-7 (vitamin K2) on The Stability of Oral Anticoagulant Treatment: Dose-Response Relationship in Healthy Volunteers. J. Thromb. Haemost. 2013, 11, 1085–1092. [Google Scholar] [CrossRef]
- Vroonhof, K.; van Rijn, H.J.; van Hattum, J. Vitamin K Deficiency and Bleeding after Long-Term Use of Cholestyramine. Neth. J. Med. 2003, 61, 19–21. [Google Scholar]
- Takagi, K.; Masuda, K.; Yamazaki, M.; Kiyohara, C.; Itoh, S.; Wasaki, M.; Inoue, H. Metal Ion and Vitamin Adsorption Profiles of Phosphate Binder Ion-Exchange Resins. Clin. Nephrol. 2010, 73, 30–35. [Google Scholar] [CrossRef]
- McDuffie, J.R.; Calis, K.A.; Booth, S.L.; Uwaifo, G.I.; Yanovski, J.A. Effects of Orlistat on Fat-Soluble Vitamins in Obese Adolescents. Pharmacotherapy 2002, 22, 814–822. [Google Scholar] [CrossRef]
- Harshman, S.G.; Shea, M.K.; Fu, X.; Grusak, M.A.; Smith, D.; Lamon-Fava, S.; Kuliopulos, A.; Greenberg, A.; Booth, S.L. Atorvastatin Decreases Renal Menaquinone-4 Formation in C57BL/6 Male Mice. J. Nutr. 2019, 149, 416–421. [Google Scholar] [CrossRef]
- Okuyama, H.; Langsjoen, P.H.; Hamazaki, T.; Ogushi, Y.; Hama, R.; Kobayashi, T.; Uchino, H. Statins Stimulate Atherosclerosis and Heart Failure: Pharmacological Mechanisms. Expert Rev. Clin. Pharmacol. 2015, 8, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Neradova, A.; Schumacher, S.P.; Hubeek, I.; Lux, P.; Schurgers, L.J.; Vervloet, M.G. Phosphate Binders Affect Vitamin K Concentration by Undesired Binding, an in vitro Study. BMC Nephrol. 2017, 18, 149. [Google Scholar] [CrossRef]
- Jansz, T.T.; Neradova, A.; van Ballegooijen, A.J.; Verhaar, M.C.; Vervloet, M.G.; Schurgers, L.J.; van Jaarsveld, B.C. The Role of Kidney Transplantation and Phosphate Binder Use in Vitamin K Status. PLoS ONE 2018, 13, e0203157. [Google Scholar] [CrossRef]
- Bover, J.; Navarro-González, J.F.; daSilva, I. New Information on Phosphate Binder Interactions with Vitamin K. Nefrologia 2020, 40, 369–370. [Google Scholar] [CrossRef]
- Pasco, J.A.; Seeman, E.; Henry, M.J.; Merriman, E.N.; Nicholson, G.C.; Kotowicz, M.A. The Population Burden of Fractures Originates in Women with Osteopenia, not Osteoporosis. Osteoporos. Int. 2006, 17, 1404–1409. [Google Scholar] [CrossRef]
- Czeczuk, A.; Huk-Wieliczuk, E.; Michalska, A.; Bylina, D.; Sołtan, J.; Zofia, D. The Effect of Menopause on Bone Tissue in Former Swimmers and in Non-Athletes. Adv. Clin. Exp. Med. 2012, 21, 645–652. [Google Scholar]
- Ayub, N.; Faraj, M.; Ghatan, S.; Reijers, J.A.A.; Napoli, N.; Oei, L. The Treatment Gap in Osteoporosis. J. Clin. Med. 2021, 10, 3002. [Google Scholar] [CrossRef]
- Bolland, M.J.; Avenell, A.; Baron, J.A.; Grey, A.; MacLennan, G.S.; Gamble, G.D.; Reid, I.R. Effect of Calcium Supplements on Risk of Myocardial Infarction and Cardiovascular Events: Meta-Analysis. Bmj 2010, 341, c3691. [Google Scholar] [CrossRef]
- Fujita, Y.; Iki, M.; Tamaki, J.; Kouda, K.; Yura, A.; Kadowaki, E.; Sato, Y.; Moon, J.S.; Tomioka, K.; Okamoto, N.; et al. Association between Vitamin K Intake from Fermented Soybeans, Natto, and Bone Mineral Density in Elderly Japanese Men: The Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) study. Osteoporos. Int. 2012, 23, 705–714. [Google Scholar] [CrossRef]
- van Ballegooijen, A.J.; Pilz, S.; Tomaschitz, A.; Grübler, M.R.; Verheyen, N. The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review. Int. J. Endocrinol. 2017, 2017, 7454376. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Hu, C.; Tao, X.; Wan, Y.; Tao, F. Effect of Vitamin K on Bone Mineral Density: A Meta-Analysis of Randomized Controlled Trials. J. Bone Miner. Metab. 2012, 30, 60–68. [Google Scholar] [CrossRef]
- Capozzi, A.; Scambia, G.; Lello, S. Calcium, vitamin D, vitamin K2, and magnesium supplementation and skeletal health. Maturitas 2020, 140, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.B.; Wan, S.L.; Lu, Y.J.; Ning, L.; Liu, C.; Fan, S.W. Does Vitamin K2 Play a Role in The Prevention and Treatment of Osteoporosis for Postmenopausal Women: A Meta-Analysis of Randomized Controlled Trials. Osteoporos. Int. 2015, 26, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Jaghsi, S.; Hammoud, T.; Haddad, S. Relation between Circulating Vitamin K1 and Osteoporosis in the Lumbar Spine in Syrian Post-Menopausal Women. Open Rheumatol. J. 2018, 12, 1–9. [Google Scholar] [CrossRef]
- Salma; Ahmad, S.S.; Karim, S.; Ibrahim, I.M.; Alkreathy, H.M.; Alsieni, M.; Khan, M.A. Effect of Vitamin K on Bone Mineral Density and Fracture Risk in Adults: Systematic Review and Meta-Analysis. Biomedicines 2022, 10, 1048. [Google Scholar] [CrossRef] [PubMed]
- Inaba, N.; Sato, T.; Yamashita, T. Low-Dose Daily Intake of Vitamin K(2) (Menaquinone-7) Improves Osteocalcin γ-Carboxylation: A Double-Blind, Randomized Controlled Trials. J. Nutr. Sci. Vitaminol. 2015, 61, 471–480. [Google Scholar] [CrossRef]
- Brugè, F.; Bacchetti, T.; Principi, F.; Littarru, G.P.; Tiano, L. Olive Oil Supplemented with Menaquinone-7 Significantly Affects Osteocalcin Carboxylation. Br. J. Nutr. 2011, 106, 1058–1062. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tsuji, S.; Fukushima, Y.; Nakase, T.; Hamada, M.; Tomita, T.; Yoshikawa, H. Clinical Results of Alendronate Monotherapy and Combined Therapy with Menatetrenone (VitK2) in Postmenopausal RA Patients. Mod. Rheumatol. 2013, 23, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Q.; Bai, B.-L.; Weng, S.-J.; Wu, Z.-Y.; Xie, Z.-J.; Feng, Z.-H.; Cheng, L.; Boodhun, V.; Yang, L. Effects of Combined Human Parathyroid Hormone (1–34) and Menaquinone-4 Treatment on The Interface of Hydroxyapatite-Coated Titanium Implants in The Femur of Osteoporotic Rats. J. Bone Miner. Metab. 2018, 36, 691–699. [Google Scholar] [CrossRef]
- Bonaccorsi, G.; Piva, I.; Greco, P.; Cervellati, C. Oxidative Stress as a Possible Pathogenic Cofactor of Post-Menopausal Osteoporosis: Existing Evidence in Support of The Axis Oestrogen Deficiency-Redox Imbalance-Bone Loss. Indian J. Med. Res. 2018, 147, 341–351. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nawata, H.; Soen, S.; Fujiwara, S.; Nakayama, H.; Tanaka, I.; Ozono, K.; Sagawa, A.; Takayanagi, R.; Tanaka, H.; et al. Guidelines on The Management and Treatment of Glucocorticoid-Induced Osteoporosis of The Japanese Society for Bone and Mineral Research: 2014 Update. J. Bone Miner. Metab. 2014, 32, 337–350. [Google Scholar] [CrossRef]
- Orimo, H.; Nakamura, T.; Hosoi, T.; Iki, M.; Uenishi, K.; Endo, N.; Ohta, H.; Shiraki, M.; Sugimoto, T.; Suzuki, T.; et al. Japanese 2011 Guidelines for Prevention and Treatment of Osteoporosis--Executive Summary. Arch. Osteoporos. 2012, 7, 3–20. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Turck, D.; Bresson, J.-L.; Burlingame, B.; Dean, T.; Fairweather-Tait, S.; Heinonen, M.; Hirsch-Ernst, K.I.; Mangelsdorf, I.; McArdle, H.J.; et al. Dietary Reference Values for Vitamin K. EFSA J. 2017, 15, e04780. [Google Scholar] [CrossRef] [PubMed]
- Loeser, R.F.; Berenbaum, F.; Kloppenburg, M. Vitamin K and Osteoarthritis: Is There a Link? Ann. Rheum. Dis. 2021, 80, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Oka, H.; Akune, T.; Muraki, S.; En-yo, Y.; Yoshida, M.; Saika, A.; Sasaki, S.; Nakamura, K.; Kawaguchi, H.; Yoshimura, N. Association of Low Dietary Vitamin K Intake with Radiographic Knee Osteoarthritis in The Japanese Elderly Population: Dietary Survey in a Population-Based Cohort of the ROAD Study. J. Orthop. Sci. 2009, 14, 687–692. [Google Scholar] [CrossRef]
- Neogi, T.; Booth, S.L.; Zhang, Y.Q.; Jacques, P.F.; Terkeltaub, R.; Aliabadi, P.; Felson, D.T. Low Vitamin K Status Is Associated with Osteoarthritis in The Hand and Knee. Arthritis Rheum. 2006, 54, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Ebina, K.; Shi, K.; Hirao, M.; Kaneshiro, S.; Morimoto, T.; Koizumi, K.; Yoshikawa, H.; Hashimoto, J. Vitamin K2 Administration Is Associated with Decreased Disease Activity in Patients with Rheumatoid Arthritis. Mod. Rheumatol. 2013, 23, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wu, H.; Tahara, K.; Chen, S.; Wang, X.; Tanaka, S.; Sugiyama, K.; Sawada, T.; Hirano, T. Effects of Vitamin K(2) Combined with Methotrexate Against Mitogen-Activated Peripheral Blood Mononuclear Cells of Healthy Subjects and Rheumatoid Arthritis Patients. Fundam. Clin. Pharmacol. 2021, 35, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, M.S.; Alkady, E.A.M.; Ahmed, S. Menaquinone-7 as a Novel Pharmacological Therapy in The Treatment of Rheumatoid Arthritis: A Clinical Study. Eur. J. Pharmacol. 2015, 761, 273–278. [Google Scholar] [CrossRef]
- Ohsaki, Y.; Shirakawa, H.; Hiwatashi, K.; Furukawa, Y.; Mizutani, T.; Komai, M. Vitamin K Suppresses Lipopolysaccharide-Induced Inflammation in the Rat. Biosci. Biotechnol. Biochem. 2006, 70, 926–932. [Google Scholar] [CrossRef]
- Ohsaki, Y.; Shirakawa, H.; Miura, A.; Giriwono, P.; Sato, S.; Ohashi, A.; Iribe, M.; Goto, T.; Komai, M. Vitamin K Suppresses the Lipopolysaccharide-Induced Expression of Inflammatory Cytokines in Cultured Macrophage-Like Cells via the Inhibition of the Activation of Nuclear Factor αB through the Repression of IKKα/β Phosphorylation. J. Nutr. Biochem. 2010, 21, 1120–1126. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K. Vitamins K1 and K2: The Emerging Group of Vitamins Required for Human Health. J. Nutr. Metab. 2017, 2017, 6254836. [Google Scholar] [CrossRef]
- Gast, G.C.M.; de Roos, N.M.; Sluijs, I.; Bots, M.L.; Beulens, J.W.J.; Geleijnse, J.M.; Witteman, J.C.; Grobbee, D.E.; Peeters, P.H.M.; van der Schouw, Y.T. A High Menaquinone Intake Reduces The Incidence of Coronary Heart Disease. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 504–510. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.; van der Meer, I.M.; Hofman, A.; Witteman, J.C. Dietary Intake of Menaquinone Is Associated with a Reduced Risk of Coronary Heart Disease: The Rotterdam Study. J. Nutr. 2004, 134, 3100–3105. [Google Scholar] [CrossRef]
- Bellinge, J.W.; Dalgaard, F.; Murray, K.; Connolly, E.; Blekkenhorst, L.C.; Bondonno, C.P.; Lewis, J.R.; Sim, M.; Croft, K.D.; Gislason, G.; et al. Vitamin K Intake and Atherosclerotic Cardiovascular Disease in the Danish Diet Cancer and Health Study. J. Am. Heart Assoc. 2021, 10, e020551. [Google Scholar] [CrossRef]
- Puzantian, H.; Akers, S.R.; Oldland, G.; Javaid, K.; Miller, R.; Ge, Y.; Ansari, B.; Lee, J.; Suri, A.; Hasmath, Z.; et al. Circulating Dephospho-Uncarboxylated Matrix Gla-Protein Is Associated with Kidney Dysfunction and Arterial Stiffness. Am. J. Hypertens. 2018, 31, 988–994. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular Disease in Dialysis Patients. Nephrol. Dial. Transplant. 2018, 33, iii28–iii34. [Google Scholar] [CrossRef]
- Caluwé, R.; Vandecasteele, S.; Van Vlem, B.; Vermeer, C.; De Vriese, A.S. Vitamin K2 Supplementation in Haemodialysis Patients: A Randomized Dose-Finding Study. Nephrol. Dial. Transplant. 2014, 29, 1385–1390. [Google Scholar] [CrossRef]
- Caluwé, R. Effect on Vascular Calcification of Replacing Warfarin by Rivaroxaban with or without VitK2 in Hemodialysis Patients. Available online: https://clinicaltrials.gov/study/NCT02610933#study-record-dates (accessed on 3 December 2023).
- De Vriese, A.S.; Caluwé, R.; Pyfferoen, L.; De Bacquer, D.; De Boeck, K.; Delanote, J.; De Surgeloose, D.; Van Hoenacker, P.; Van Vlem, B.; Verbeke, F. Multicenter Randomized Controlled Trial of Vitamin K Antagonist Replacement by Rivaroxaban with or without Vitamin K2 in Hemodialysis Patients with Atrial Fibrillation: The Valkyrie Study. J. Am. Soc. Nephrol. 2020, 31, 186–196. [Google Scholar] [CrossRef]
- Eelderink, C.; Kremer, D.; Riphagen, I.J.; Knobbe, T.J.; Schurgers, L.J.; Pasch, A.; Mulder, D.J.; Corpeleijn, E.; Navis, G.; Bakker, S.J.L.; et al. Effect of Vitamin K Supplementation on Serum Calcification Propensity and Arterial Stiffness In Vitamin K-Deficient Kidney Transplant Recipients: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Am. J. Transplant 2023, 23, 520–530. [Google Scholar] [CrossRef]
- Naiyarakseree, N.; Phannajit, J.; Naiyarakseree, W.; Mahatanan, N.; Asavapujanamanee, P.; Lekhyananda, S.; Vanichakarn, S.; Avihingsanon, Y.; Praditpornsilpa, K.; Eiam-Ong, S.; et al. Effect of Menaquinone-7 Supplementation on Arterial Stiffness in Chronic Hemodialysis Patients: A Multicenter Randomized Controlled Trial. Nutrients 2023, 15, 2422. [Google Scholar] [CrossRef] [PubMed]
- Meer, R.; Romero Prats, M.L.; Vervloet, M.G.; van der Schouw, Y.T.; de Jong, P.A.; Beulens, J.W.J. The Effect of Six-Month Oral Vitamin K Supplementation on Calcification Propensity Time in Individuals with Type 2 Diabetes Mellitus: A Post HOC Analysis of A randomised, Double-Blind, Placebo-Controlled Trial. Atherosclerosis 2023, 117307. [Google Scholar] [CrossRef] [PubMed]
- Diederichsen, A.C.P.; Lindholt, J.S.; Möller, S.; Øvrehus, K.A.; Auscher, S.; Lambrechtsen, J.; Hosbond, S.E.; Alan, D.H.; Urbonaviciene, G.; Becker, S.W.; et al. Vitamin K2 and D in Patients with Aortic Valve Calcification: A Randomized Double-Blinded Clinical Trial. Circulation 2022, 145, 1387–1397. [Google Scholar] [CrossRef] [PubMed]
- Peeters, F.; van Mourik, M.J.W.; Meex, S.J.R.; Bucerius, J.; Schalla, S.M.; Gerretsen, S.C.; Mihl, C.; Dweck, M.R.; Schurgers, L.J.; Wildberger, J.E.; et al. Bicuspid Aortic Valve Stenosis and the Effect of Vitamin K2 on Calcification Using (18)F-Sodium Fluoride Positron Emission Tomography/Magnetic Resonance: The BASIK2 Rationale and Trial Design. Nutrients 2018, 10, 386. [Google Scholar] [CrossRef] [PubMed]
- Center, M.U.M. The Effects of Vitamin K2 Supplementation on the Progression of Coronary Artery Calcification (VitaK-CAC). Available online: https://clinicaltrials.gov/study/NCT01002157 (accessed on 3 December 2023).
- Maastricht, A.Z. Effects of VitamIN K2 and D3 supplementaTion on PET/MRI in Carotid Artery Disease (INTRICATE). Available online: https://clinicaltrials.gov/ct2/show/NCT04010578 (accessed on 21 January 2023).
- Kampmann, F.B.; Thysen, S.M.; Nielsen, C.F.B.; Kofoed, K.F.; Køber, L.; Pham, M.H.C.; Vaag, A.; Jørgensen, N.R.; Petersen, J.; Jacobsen, R.K.; et al. Study Protocol of The Intervitamink Trial: A Danish Population-Based Randomised Double-Blinded Placebo-Controlled Trial of The Effects of Vitamin K (Menaquinone-7) Supplementation on Cardiovascular, Metabolic and Bone Health. BMJ Open 2023, 13, e071885. [Google Scholar] [CrossRef] [PubMed]
- Boxma, P.Y.; van den Berg, E.; Geleijnse, J.M.; Laverman, G.D.; Schurgers, L.J.; Vermeer, C.; Kema, I.P.; Muskiet, F.A.; Navis, G.; Bakker, S.J.; et al. Vitamin K Intake and Plasma Desphospho-Uncarboxylated Matrix Gla-Protein Levels in Kidney Transplant Recipients. PLoS ONE 2012, 7, e47991. [Google Scholar] [CrossRef] [PubMed]
- Roumeliotis, S.; Dounousi, E.; Eleftheriadis, T.; Liakopoulos, V. Association of The Inactive Circulating Matrix Gla Protein with Vitamin K Intake, Calcification, Mortality, and Cardiovascular Disease: A Review. Int. J. Mol. Sci. 2019, 20, 628. [Google Scholar] [CrossRef] [PubMed]
- Elliott, M.J.; Booth, S.L.; Hopman, W.M.; Holden, R.M. Assessment of Potential Biomarkers of Subclinical Vitamin K Deficiency in Patients with End-Stage Kidney Disease. Can. J. Kidney Health Dis. 2014, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Miyata, K.N.; Nast, C.C.; Dai, T.; Dukkipati, R.; LaPage, J.A.; Troost, J.P.; Schurgers, L.J.; Kretzler, M.; Adler, S.G. Renal Matrix Gla Protein Expression Increases Progressively with CKD and Predicts Renal Outcome. Exp. Mol. Pathol. 2018, 105, 120–129. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Barreto, D.V.; Barreto, F.C.; Liabeuf, S.; Renard, C.; Magdeleyns, E.J.; Vermeer, C.; Choukroun, G.; Massy, Z.A. The Circulating Inactive Form of Matrix Gla Protein is a Surrogate Marker for Vascular Calcification in Chronic Kidney Disease: A Preliminary Report. Clin. J. Am. Soc. Nephrol. 2010, 5, 568–575. [Google Scholar] [CrossRef]
- Jaminon, A.M.G.; Dai, L.; Qureshi, A.R.; Evenepoel, P.; Ripsweden, J.; Söderberg, M.; Witasp, A.; Olauson, H.; Schurgers, L.J.; Stenvinkel, P. Matrix Gla Protein Is an Independent Predictor of Both Intimal and Medial Vascular Calcification in Chronic Kidney Disease. Sci. Rep. 2020, 10, 6586. [Google Scholar] [CrossRef] [PubMed]
- Kaesler, N.; Magdeleyns, E.; Herfs, M.; Schettgen, T.; Brandenburg, V.; Fliser, D.; Vermeer, C.; Floege, J.; Schlieper, G.; Krüger, T. Impaired Vitamin K Recycling in Uremia Is Rescued by Vitamin K Supplementation. Kidney Int. 2014, 86, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Opdebeeck, B.; Maudsley, S.; Azmi, A.; De Maré, A.; De Leger, W.; Meijers, B.; Verhulst, A.; Evenepoel, P.; D’Haese, P.C.; Neven, E. Indoxyl Sulfate and p-Cresyl Sulfate Promote Vascular Calcification and Associate with Glucose Intolerance. J. Am. Soc. Nephrol. 2019, 30, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Dalmeijer, G.W.; van der Schouw, Y.T.; Vermeer, C.; Magdeleyns, E.J.; Schurgers, L.J.; Beulens, J.W. Circulating Matrix Gla Protein is Associated with Coronary Artery Calcification and Vitamin K Status in Healthy Women. J. Nutr. Biochem. 2013, 24, 624–628. [Google Scholar] [CrossRef]
- Aoun, M.; Makki, M.; Azar, H.; Matta, H.; Chelala, D.N. High Dephosphorylated-Uncarboxylated MGP in Hemodialysis Patients: Risk Factors and Response to Vitamin K(2), a Pre-post Intervention Clinical Trial. BMC Nephrol. 2017, 18, 191. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Dubois, B.E.; Lukas, P.; Peters, P.; Krzesinski, J.M.; Pottel, H.; Cavalier, E. Impact of Stopping Vitamin K Antagonist Therapy on Concentrations of Dephospho-Uncarboxylated Matrix Gla Protein. Clin. Chem. Lab. Med. 2015, 53, e191–e193. [Google Scholar] [CrossRef] [PubMed]
- Kurnatowska, I.; Grzelak, P.; Masajtis-Zagajewska, A.; Kaczmarska, M.; Stefańczyk, L.; Vermeer, C.; Maresz, K.; Nowicki, M. Plasma Desphospho-Uncarboxylated Matrix Gla Protein as a Marker of Kidney Damage and Cardiovascular Risk in Advanced Stage of Chronic Kidney Disease. Kidney Blood Press. Res. 2016, 41, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Nigwekar, S.U.; Bloch, D.B.; Nazarian, R.M.; Vermeer, C.; Booth, S.L.; Xu, D.; Thadhani, R.I.; Malhotra, R. Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis. J. Am. Soc. Nephrol. 2017, 28, 1717–1722. [Google Scholar] [CrossRef]
- Wei, F.-F.; Drummen, N.E.A.; Schutte, A.E.; Thijs, L.; Jacobs, L.; Petit, T.; Yang, W.-Y.; Smith, W.; Zhang, Z.-Y.; Gu, Y.-M.; et al. Vitamin K Dependent Protection of Renal Function in Multi-ethnic Population Studies. EBioMedicine 2016, 4, 162–169. [Google Scholar] [CrossRef]
- Wei, F.-F.; Trenson, S.; Monney, P.; Yang, W.-Y.; Pruijm, M.; Zhang, Z.-Y.; Bouatou, Y.; Huang, Q.-F.; Ponte, B.; Martin, P.-Y.; et al. Epidemiological and Histological Findings Implicate Matrix Gla Protein in Diastolic Left Ventricular Dysfunction. PLoS ONE 2018, 13, e0193967. [Google Scholar] [CrossRef]
- Witham, M.D.; Lees, J.S.; White, M.; Band, M.; Bell, S.; Chantler, D.J.; Ford, I.; Fulton, R.L.; Kennedy, G.; Littleford, R.C.; et al. Vitamin K Supplementation to Improve Vascular Stiffness in CKD: The K4Kidneys Randomized Controlled Trial. J. Am. Soc. Nephrol. 2020, 31, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Geng, C.; Huang, L.; Pu, L.; Feng, Y. Effects of Vitamin K Supplementation on Vascular Calcification in Chronic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022, 9, 1001826. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, J.p.; Duan, L.; Li, S. Effect of Vitamin K2 on Type 2 Diabetes Mellitus: A Review. Diabetes Res. Clin. Pract. 2018, 136, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.J.; Yu, J.; Choi, H.; An, J.H.; Kim, S.W.; Park, K.S.; Jang, H.C.; Kim, S.Y.; Shin, C.S. Vitamin K2 Supplementation Improves Insulin Sensitivity via Osteocalcin Metabolism: A Placebo-Controlled Trial. Diabetes Care 2011, 34, e147. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.; van der A, D.L.; Grobbee, D.E.; Sluijs, I.; Spijkerman, A.M.; van der Schouw, Y.T. Dietary Phylloquinone and Menaquinones Intakes and Risk of Type 2 Diabetes. Diabetes Care 2010, 33, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Varsha, M.K.; Thiagarajan, R.; Manikandan, R.; Dhanasekaran, G. Vitamin K1 Alleviates Streptozotocin-Induced Type 1 Diabetes by Mitigating Free Radical Stress, as Well as Inhibiting NF-kB Activation and iNOS Expression in Rat Pancreas. Nutrition 2015, 31, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.; Youssef, G.A.; Al-Saeed, H.F. Protective Role of Vitamin K Against Impaired Glucose Homeostasis in Ovariectomized Exercised and Nonexercised Rats. Nat. Sci. 2014, 12, 1–9. [Google Scholar] [CrossRef]
- Sogabe, N.; Maruyama, R.; Baba, O.; Hosoi, T.; Goseki-Sone, M. Effects of Long-Term Vitamin K1 (Phylloquinone) or Vitamin K2 (Menaquinone-4) Supplementation on Body Composition and Serum Parameters in Rats. Bone 2011, 48, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Asemi, Z.; Raygan, F.; Bahmani, F.; Rezavandi, Z.; Talari, H.R.; Rafiee, M.; Poladchang, S.; Darooghegi Mofrad, M.; Taheri, S.; Mohammadi, A.A.; et al. The Effects of Vitamin D, K and Calcium Co-Supplementation on Carotid Intima-Media Thickness and Metabolic Status in Overweight Type 2 Diabetic Patients with CHD. Br. J. Nutr. 2016, 116, 286–293. [Google Scholar] [CrossRef]
- Rahimi Sakak, F.; Moslehi, N.; Abdi, H.; Mirmiran, P. Effects of Vitamin K2 Supplementation on Atherogenic Status of Individuals with Type 2 Diabetes: A Randomized Controlled Trial. BMC Complement. Med. Ther. 2021, 21, 134. [Google Scholar] [CrossRef]
- Helmy, M.Y.; Elsaid, N.H.; Gwad, M.M.A. The Association of Vitamin K2 Level with the Glycaemic Status in Type 2 Diabetic Patients: A Case-Control Study. Indian J. Endocrinol. Metab. 2022, 26, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, L.; Wei, C.; Wang, X.; Li, R.; Xu, X.; Zhang, Y.; Geng, G.; Dang, K.; Ming, Z.; et al. Vitamin K2 Supplementation Improves Impaired Glycemic Homeostasis and Insulin Sensitivity for Type 2 Diabetes through Gut Microbiome and Fecal Metabolites. BMC Med. 2023, 21, 174. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.J.; Fernandez, M.L. Dietary Strategies to Reduce Metabolic Syndrome. Rev. Endocr. Metab. Disord. 2013, 14, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Dam, V.; Dalmeijer, G.W.; Vermeer, C.; Drummen, N.E.; Knapen, M.H.; van der Schouw, Y.T.; Beulens, J.W. Association between Vitamin K and the Metabolic Syndrome: A 10-Year Follow-Up Study in Adults. J. Clin. Endocrinol. Metab. 2015, 100, 2472–2479. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Jackson, R.T. Dietary Phylloquinone Intakes and Metabolic Syndrome in US Young Adults. J. Am. Coll. Nutr. 2009, 28, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Rasekhi, H.; Karandish, M.; Jalali, M.T.; Mohammad-shahi, M.; Zarei, M.; Saki, A.; Shahbazian, H. The Effect of Vitamin K1 Supplementation on Sensitivity and Insulin Resistance via Osteocalcin in Prediabetic Women: A Double-Blind Randomized Controlled Clinical Trial. Eur. J. Clin. Nutr. 2015, 69, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; Gundberg, C.M.; Meigs, J.B.; Dallal, G.E.; Saltzman, E.; Yoshida, M.; Jacques, P.F.; Booth, S.L. Gamma-Carboxylation of Osteocalcin and Insulin Resistance in Older Men and Women. Am. J. Clin. Nutr. 2009, 90, 1230–1235. [Google Scholar] [CrossRef]
- Knapen, M.H.; Schurgers, L.J.; Shearer, M.J.; Newman, P.; Theuwissen, E.; Vermeer, C. Association of Vitamin K Status with Adiponectin and Body Composition in Healthy Subjects: Uncarboxylated Osteocalcin Is Not Associated with Fat Mass and Body Weight. Br. J. Nutr. 2012, 108, 1017–1024. [Google Scholar] [CrossRef]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine Regulation of Energy Metabolism by The Skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef]
- Iki, M.; Tamaki, J.; Fujita, Y.; Kouda, K.; Yura, A.; Kadowaki, E.; Sato, Y.; Moon, J.S.; Tomioka, K.; Okamoto, N.; et al. Serum Undercarboxylated Osteocalcin Levels are Inversely Associated with Glycemic Status and Insulin Resistance in an Elderly Japanese Male Population: Fujiwara-kyo Osteoporosis Risk in Men (FORMEN) Study. Osteoporos. Int. 2012, 23, 761–770. [Google Scholar] [CrossRef]
- Su, X.; Wang, W.; Fang, C.; Ni, C.; Zhou, J.; Wang, X.; Zhang, L.; Xu, X.; Cao, R.; Lang, H.; et al. Vitamin K2 Alleviates Insulin Resistance in Skeletal Muscle by Improving Mitochondrial Function Via SIRT1 Signaling. Antioxid. Redox Signal. 2021, 34, 99–117. [Google Scholar] [CrossRef]
- Han, Z.; Tian, R.; Ren, P.; Zhou, W.; Wang, P.; Luo, M.; Jin, S.; Jiang, Q. Parkinson’s Disease and Alzheimer’s Disease: A Mendelian Randomization Study. BMC Med. Genet. 2018, 19, 215. [Google Scholar] [CrossRef]
- Alisi, L.; Cao, R.; De Angelis, C.; Cafolla, A.; Caramia, F.; Cartocci, G.; Librando, A.; Fiorelli, M. The Relationships between Vitamin K and Cognition: A Review of Current Evidence. Front. Neurol. 2019, 10, 239. [Google Scholar] [CrossRef]
- Emekli-Alturfan, E.; Alturfan, A.A. The Emerging Relationship between Vitamin K and Neurodegenerative Diseases: A Review of Current Evidence. Mol. Biol. Rep. 2023, 50, 815–828. [Google Scholar] [CrossRef]
- Ferland, G. Vitamin K and the Nervous System: An Overview of its Actions. Adv. Nutr. 2012, 3, 204–212. [Google Scholar] [CrossRef]
- Presse, N.; Shatenstein, B.; Kergoat, M.J.; Ferland, G. Low Vitamin K Intakes in Community-Dwelling Elders at an Early Stage of Alzheimer’s Disease. J. Am. Diet Assoc. 2008, 108, 2095–2099. [Google Scholar] [CrossRef]
- van den Heuvel, E.G.H.M.; van Schoor, N.M.; Vermeer, C.; Zwijsen, R.M.L.; den Heijer, M.; Comijs, H.C. Vitamin K Status Is Not Associated with Cognitive Decline in Middle Aged Adults. J. Nutr. Health Aging 2015, 19, 908–912. [Google Scholar] [CrossRef]
- Yu, Y.X.; Yu, X.D.; Cheng, Q.Z.; Tang, L.; Shen, M.Q. The Association of Serum Vitamin K2 Levels with Parkinson’s Disease: From Basic Case-Control Study to Big Data Mining Analysis. Aging 2020, 12, 16410–16419. [Google Scholar] [CrossRef]
- Ferland, G.; Feart, C.; Presse, N.; Lorrain, S.; Bazin, F.; Helmer, C.; Berr, C.; Annweiler, C.; Rouaud, O.; Dartigues, J.F.; et al. Vitamin K Antagonists and Cognitive Function in Older Adults: The Three-City Cohort Study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1356–1362. [Google Scholar] [CrossRef]
- Brangier, A.; Ferland, G.; Rolland, Y.; Gautier, J.; Féart, C.; Annweiler, C. Vitamin K Antagonists and Cognitive Decline in Older Adults: A 24-Month Follow-Up. Nutrients 2018, 10, 666. [Google Scholar] [CrossRef]
- Brangier, A.; Celle, S.; Roche, F.; Beauchet, O.; Ferland, G.; Annweiler, C. Use of Vitamin K Antagonists and Brain Morphological Changes in Older Adults: An Exposed/Unexposed Voxel-Based Morphometric Study. Dement. Geriatr. Cogn. Disord. 2018, 45, 18–26. [Google Scholar] [CrossRef]
- Annweiler, C.; Ferland, G.; Barberger-Gateau, P.; Brangier, A.; Rolland, Y.; Beauchet, O. Vitamin K Antagonists and Cognitive Impairment: Results from a Cross-Sectional Pilot Study among Geriatric Patients. J. Gerontol. A Biol. Sci. Med. Sci. 2015, 70, 97–101. [Google Scholar] [CrossRef]
- Mostaza, J.M.; Jiménez, M.J.R.; Laiglesia, F.J.R.; Peromingo, J.A.D.; Robles, M.B.; Sierra, E.G.; Bilbao, A.S.; Suárez, C. Clinical Characteristics and Type Of Antithrombotic Treatment in A Spanish Cohort of Elderly Patients with Atrial Fibrillation According to Dependency, Frailty and Cognitive Impairment. J. Geriatr. Cardiol. 2018, 15, 268–274. [Google Scholar] [CrossRef]
- Zhang, C.; Gu, Z.C.; Shen, L.; Pan, M.M.; Yan, Y.D.; Pu, J.; Liu, X.Y.; Lin, H.W. Non-vitamin K Antagonist Oral Anticoagulants and Cognitive Impairment in Atrial Fibrillation: Insights from the Meta-Analysis of Over 90,000 Patients of Randomized Controlled Trials and Real-World Studies. Front. Aging Neurosci. 2018, 10, 258. [Google Scholar] [CrossRef]
- Tamadon-Nejad, S.; Ouliass, B.; Rochford, J.; Ferland, G. Vitamin K Deficiency Induced by Warfarin Is Associated with Cognitive and Behavioral Perturbations, and Alterations in Brain Sphingolipids in Rats. Front. Aging Neurosci. 2018, 10, 213. [Google Scholar] [CrossRef]
- Alisi, L.; Cafolla, C.; Gentili, A.; Tartaglione, S.; Curini, R.; Cafolla, A. Vitamin K Concentration and Cognitive Status in Elderly Patients on Anticoagulant Therapy: A Pilot Study. J. Aging Res. 2020, 2020, 9695324. [Google Scholar] [CrossRef]
- Bellan, M.; Pirisi, M.; Sainaghi, P.P. The Gas6/TAM System and Multiple Sclerosis. Int. J. Mol. Sci. 2016, 17, 1807. [Google Scholar] [CrossRef]
- Lasemi, R.; Kundi, M.; Moghadam, N.B.; Moshammer, H.; Hainfellner, J.A. Vitamin K2 in Multiple Sclerosis Patients. Wien. Klin. Wochenschr. 2018, 130, 307–313. [Google Scholar] [CrossRef]
- Gancheva, S.M.; Zhelyazkova-Savova, M.D. Vitamin K2 Improves Anxiety and Depression but not Cognition in Rats with Metabolic Syndrome: A Role of Blood Glucose? Folia Med. 2016, 58, 264–272. [Google Scholar] [CrossRef]
- Jeannin, A.C.; Salem, J.E.; Massy, Z.; Aubert, C.E.; Vermeer, C.; Amouyal, C.; Phan, F.; Halbron, M.; Funck-Brentano, C.; Hartemann, A.; et al. Inactive Matrix Gla Protein Plasma Levels are Associated with Peripheral Neuropathy in Type 2 Diabetes. PLoS ONE 2020, 15, e0229145. [Google Scholar] [CrossRef]
- Mehta, D.; Dound, Y.; Jadhav, S.; Bhave, A.; Devale, M.; Vaidya, A. A Novel Potential Role of Vitamin K2-7 in Relieving Peripheral Neuropathy. J. Pharmacol. Pharmacother. 2018, 9, 180. [Google Scholar] [CrossRef]
- Sim, M.; Smith, C.; Bondonno, N.P.; Radavelli-Bagatini, S.; Blekkenhorst, L.C.; Dalla Via, J.; McCormick, R.; Zhu, K.; Hodgson, J.M.; Prince, R.L.; et al. Higher Dietary Vitamin K Intake is Associated with Better Physical Function and Lower Long-Term Injurious Falls Risk in Community-Dwelling Older Women. J. Nutr. Health Aging 2023, 27, 38–45. [Google Scholar] [CrossRef]
- Xv, F.; Chen, J.; Duan, L.; Li, S. Research Progress on the Anticancer Effects of Vitamin K2. Oncol. Lett. 2018, 15, 8926–8934. [Google Scholar] [CrossRef]
- Yokoyama, T.; Miyazawa, K.; Naito, M.; Toyotake, J.; Tauchi, T.; Itoh, M.; Yuo, A.; Hayashi, Y.; Georgescu, M.M.; Kondo, Y.; et al. Vitamin K2 Induces Autophagy and Apoptosis Simultaneously in Leukemia Cells. Autophagy 2008, 4, 629–640. [Google Scholar] [CrossRef]
- Enomoto, M.; Tsuchida, A.; Miyazawa, K.; Yokoyama, T.; Kawakita, H.; Tokita, H.; Naito, M.; Itoh, M.; Ohyashiki, K.; Aoki, T. Vitamin K2-Induced Cell Growth Inhibition via Autophagy Formation in Cholangiocellular Carcinoma Cell Lines. Int. J. Mol. Med. 2007, 20, 801–808. [Google Scholar] [CrossRef]
- Ganbat, D.; Jugder, B.E.; Ganbat, L.; Tomoeda, M.; Dungubat, E.; Takahashi, Y.; Mori, I.; Shiomi, T.; Tomita, Y. The Efficacy of Vitamin K, A Member Of Naphthoquinones in the Treatment of Cancer: A Systematic Review and Meta-Analysis. Curr. Cancer Drug Targets 2021, 21, 495–513. [Google Scholar] [CrossRef]
- Nimptsch, K.; Rohrmann, S.; Kaaks, R.; Linseisen, J. Dietary Vitamin K Intake in Relation to Cancer Incidence and Mortality: Results from The Heidelberg Cohort of The European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am. J. Clin. Nutr. 2010, 91, 1348–1358. [Google Scholar] [CrossRef]
- Dasari, S.; Samy, A.L.P.A.; Kajdacsy-Balla, A.; Bosland, M.C.; Munirathinam, G. Vitamin K2, a Menaquinone Present in Dairy Products Targets Castration-Resistant Prostate Cancer Cell-Line by Activating Apoptosis Signaling. Food Chem. Toxicol. 2018, 115, 218–227. [Google Scholar] [CrossRef]
- Miyazawa, S.; Moriya, S.; Kokuba, H.; Hino, H.; Takano, N.; Miyazawa, K. Vitamin K(2) Induces Non-Apoptotic Cell Death Along with Autophagosome Formation in Breast Cancer Cell Lines. Breast Cancer 2020, 27, 225–235. [Google Scholar] [CrossRef]
- Wang, K.; Wu, Q.; Li, Z.; Reger, M.K.; Xiong, Y.; Zhong, G.; Li, Q.; Zhang, X.; Li, H.; Foukakis, T.; et al. Vitamin K Intake and Breast Cancer Incidence and Death: Results from A Prospective Cohort Study. Clin. Nutr. 2021, 40, 3370–3378. [Google Scholar] [CrossRef]
- Miyazawa, K.; Nishimaki, J.; Ohyashiki, K.; Enomoto, S.; Kuriya, S.; Fukuda, R.; Hotta, T.; Teramura, M.; Mizoguchi, H.; Uchiyama, T.; et al. Vitamin K2 Therapy for Myelodysplastic Syndromes (MDS) and Post-MDS Acute Myeloid Leukemia: Information through a Questionnaire Survey of Multi-Center Pilot Studies in Japan. Leukemia 2000, 14, 1156–1157. [Google Scholar] [CrossRef]
- Takami, A.; Nakao, S.; Ontachi, Y.; Yamauchi, H.; Matsuda, T. Successful Therapy of Myelodysplastic Syndrome with Menatetrenone, a Vitamin K2 Analog. Int. J. Hematol. 1999, 69, 24–26. [Google Scholar]
- Fujita, H.; Tomiyama, J.; Tanaka, T. Vitamin K2 Combined with All-Trans Retinoic Acid Induced Complete Remission of Relapsing Acute Promyelocytic Leukaemia. Br. J. Haematol. 1998, 103, 584–585. [Google Scholar] [CrossRef]
- Miyazawa, K.; Yaguchi, M.; Funato, K.; Gotoh, A.; Kawanishi, Y.; Nishizawa, Y.; Yuo, A.; Ohyashiki, K. Apoptosis/Differentiation-Inducing Effects of Vitamin K2 on HL-60 Cells: Dichotomous Nature of Vitamin K2 in Leukemia Cells. Leukemia 2001, 15, 1111–1117. [Google Scholar] [CrossRef]
- Maniwa, Y.; Kasukabe, T.; Kumakura, S. Vitamin K2 and Cotylenin A Synergistically Induce Monocytic Differentiation and Growth arrest Along with The Suppression of c-MYC Expression and Induction of Cyclin G2 Expression in Human Leukemia HL-60 Cells. Int. J. Oncol. 2015, 47, 473–480. [Google Scholar] [CrossRef]
- Sada, E.; Abe, Y.; Ohba, R.; Tachikawa, Y.; Nagasawa, E.; Shiratsuchi, M.; Takayanagi, R. Vitamin K2 Modulates Differentiation and Apoptosis of Both Myeloid and Erythroid Lineages. Eur. J. Haematol. 2010, 85, 538–548. [Google Scholar] [CrossRef]
- Fujishiro, A.; Iwasa, M.; Fujii, S.; Maekawa, T.; Andoh, A.; Tohyama, K.; Takaori-Kondo, A.; Miura, Y. Menatetrenone Facilitates Hematopoietic Cell Generation in a Manner That is Dependent on Human Bone Marrow Mesenchymal Stromal/Stem Cells. Int. J. Hematol. 2020, 112, 316–330. [Google Scholar] [CrossRef]
- Karasawa, S.; Azuma, M.; Kasama, T.; Sakamoto, S.; Kabe, Y.; Imai, T.; Yamaguchi, Y.; Miyazawa, K.; Handa, H. Vitamin K2 Covalently Binds to Bak and Induces Bak-Mediated Apoptosis. Mol. Pharmacol. 2013, 83, 613–620. [Google Scholar] [CrossRef]
- Xu, W.; Wu, H.; Chen, S.; Wang, X.; Tanaka, S.; Sugiyama, K.; Yamada, H.; Hirano, T. Cytotoxic Effects Of Vitamins K1, K2, and K3 Against Human T Lymphoblastoid Leukemia Cells through Apoptosis Induction and Cell Cycle Arrest. Chem. Biol. Drug Des. 2020, 96, 1134–1147. [Google Scholar] [CrossRef]
- Tsujioka, T.; Miura, Y.; Otsuki, T.; Nishimura, Y.; Hyodoh, F.; Wada, H.; Sugihara, T. The Mechanisms of Vitamin K2-Induced Apoptosis of Myeloma Cells. Haematologica 2006, 91, 613–619. [Google Scholar]
- Shibayama-Imazu, T.; Sonoda, I.; Sakairi, S.; Aiuchi, T.; Ann, W.W.; Nakajo, S.; Itabe, H.; Nakaya, K. Production of Superoxide and Dissipation of Mitochondrial Transmembrane Potential by Vitamin K2 Trigger Apoptosis in Human Ovarian Cancer TYK-nu cells. Apoptosis 2006, 11, 1535–1543. [Google Scholar] [CrossRef]
- Iguchi, T.; Miyazawa, K.; Asada, M.; Gotoh, A.; Mizutani, S.; Ohyashiki, K. Combined Treatment of Leukemia Cells with Vitamin K2 and 1alpha,25-Dihydroxy Vitamin D3 Enhances Monocytic Differentiation Along with Becoming Resistant to Apoptosis by Induction of Cytoplasmic p21CIP1. Int. J. Oncol. 2005, 27, 893–900. [Google Scholar]
- Kojima, K.; Tamano, M.; Akima, T.; Hashimoto, T.; Kuniyoshi, T.; Maeda, C.; Majima, Y.; Kusano, K.; Murohisa, T.; Iijima, M.; et al. Effect of Vitamin K2 on The Development of Hepatocellular Carcinoma in Type C Cirrhosis. Hepatogastroenterology 2010, 57, 1264–1267. [Google Scholar]
- Mizuta, T.; Ozaki, I.; Eguchi, Y.; Yasutake, T.; Kawazoe, S.; Fujimoto, K.; Yamamoto, K. The Effect of Menatetrenone, a Vitamin K2 Analog, on Disease Recurrence and Survival In Patients with Hepatocellular Carcinoma after Curative Treatment: A Pilot Study. Cancer 2006, 106, 867–872. [Google Scholar] [CrossRef]
- Kakizaki, S.; Sohara, N.; Sato, K.; Suzuki, H.; Yanagisawa, M.; Nakajima, H.; Takagi, H.; Naganuma, A.; Otsuka, T.; Takahashi, H.; et al. Preventive Effects of Vitamin K on Recurrent Disease in Patients with Hepatocellular Carcinoma Arising from Hepatitis C Viral Infection. J. Gastroenterol. Hepatol. 2007, 22, 518–522. [Google Scholar] [CrossRef]
- Ishizuka, M.; Kubota, K.; Shimoda, M.; Kita, J.; Kato, M.; Park, K.H.; Shiraki, T. Effect of Menatetrenone, a Vitamin K2 Analog, on Recurrence of Hepatocellular Carcinoma after Surgical Resection: A Prospective Randomized Controlled Trial. Anticancer Res. 2012, 32, 5415–5420. [Google Scholar]
- Yoshida, H.; Shiratori, Y.; Kudo, M.; Shiina, S.; Mizuta, T.; Kojiro, M.; Yamamoto, K.; Koike, Y.; Saito, K.; Koyanagi, N.; et al. Effect of Vitamin K2 on The Recurrence of Hepatocellular Carcinoma. Hepatology 2011, 54, 532–540. [Google Scholar] [CrossRef]
- Otsuka, T.; Hagiwara, S.; Tojima, H.; Yoshida, H.; Takahashi, T.; Nagasaka, K.; Tomioka, S.; Ando, T.; Takeuchi, K.; Kori, T.; et al. Hepatocellular Carcinoma with Peritoneal Dissemination Which Was Regressed During Vitamin K2 and Vitamin E Administration. Intern. Med. 2007, 46, 711–715. [Google Scholar] [CrossRef]
- Zhang, H.; Ozaki, I.; Hamajima, H.; Iwane, S.; Takahashi, H.; Kawaguchi, Y.; Eguchi, Y.; Yamamoto, K.; Mizuta, T. Vitamin K2 Augments 5-Fluorouracil-Induced Growth Inhibition of Human Hepatocellular Carcinoma Cells by Inhibiting NF-κB Activation. Oncol. Rep. 2011, 25, 159–166. [Google Scholar]
- Zhang, Y.; Zhang, B.; Zhang, A.; Zhao, Y.; Zhao, J.; Liu, J.; Gao, J.; Fang, D.; Rao, Z. Synergistic Growth Inhibition by Sorafenib and Vitamin K2 in Human Hepatocellular Carcinoma Cells. Clinics 2012, 67, 1093–1099. [Google Scholar] [CrossRef]
- Haruna, Y.; Yakushijin, T.; Kawamoto, S. Efficacy and Safety of Sorafenib Plus Vitamin K Treatment for Hepatocellular Carcinoma: A Phase II, Randomized Study. Cancer Med. 2021, 10, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.W.; Li, Q.J.; Cheng, L.; Yang, P.F.; Sun, W.P.; Peng, Y.; Hu, J.J.; Wu, J.J.; Gong, J.P.; Zhong, G.C. Dietary Vitamin K Intake and the Risk of Pancreatic Cancer: A Prospective Study of 101,695 American Adults. Am. J. Epidemiol. 2021, 190, 2029–2041. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Yu, Y.; Guan, R.; Xu, Z.; Liang, H.; Hong, L. Vitamin K2 Induces Mitochondria-Related Apoptosis in Human Bladder Cancer Cells via ROS and JNK/p38 MAPK Signal Pathways. PLoS ONE 2016, 11, e0161886. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Mei, C.; Yang, L.; Zheng, J.; Lu, H.; Xia, Y.; Hsu, S.; Liang, H.; Hong, L. Vitamin K2 Promotes PI3K/AKT/HIF-1α-Mediated Glycolysis that Leads to AMPK-Dependent Autophagic Cell Death in Bladder Cancer Cells. Sci. Rep. 2020, 10, 7714. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; O’Connor, C.; Sheridan, H.; Barlow, J.W. Vitamin K2 in Health and Disease: A Clinical Perspective. Foods 2024, 13, 1646. https://doi.org/10.3390/foods13111646
Zhang T, O’Connor C, Sheridan H, Barlow JW. Vitamin K2 in Health and Disease: A Clinical Perspective. Foods. 2024; 13(11):1646. https://doi.org/10.3390/foods13111646
Chicago/Turabian StyleZhang, Tao, Christine O’Connor, Helen Sheridan, and James W. Barlow. 2024. "Vitamin K2 in Health and Disease: A Clinical Perspective" Foods 13, no. 11: 1646. https://doi.org/10.3390/foods13111646
APA StyleZhang, T., O’Connor, C., Sheridan, H., & Barlow, J. W. (2024). Vitamin K2 in Health and Disease: A Clinical Perspective. Foods, 13(11), 1646. https://doi.org/10.3390/foods13111646