Determination of Luteolin and Apigenin in Herbal Teas by Online In-Tube Solid-Phase Microextraction Coupled with LC–MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standard Solutions
2.2. LC–MS/MS Analysis
2.3. In-Tube SPME
2.4. Method Validation Study
2.5. Sampling and Preparation of Herbal Tea Samples
2.6. Recovery Test of Luteolin and Apigenin Added to Herbal Tea Samples
3. Results and Discussion
3.1. Optimization of IT-SPME of Luteolin and Apigenin
3.2. LC–MS/MS Analysis of Luteolin and Apigenin
3.3. Validation of the Developed Method
3.4. Application to the Analysis of Herbal Tea Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, E.; Maia, B.; Ferriani, A.; Teixeira, S. Flavonoids: Classification, Biosynthesis and Chemical Ecology; Intech Open: Brazil, indiana, 2017. [Google Scholar] [CrossRef]
- Tapas, A.; Sakarkar, D.M.; Kakde, R. Flavonoids as Nutraceuticals: A Review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B.; Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry 2000, 55, 481–504. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Chagas, M.D.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxid. Med. Cell. Longev. 2022, 2022, 9966750. [Google Scholar] [CrossRef] [PubMed]
- Spiegel, M.; Andruniów, T.; Sroka, Z. Flavones’ and Flavonols’ Antiradical Structure-Activity Relationship—A Quantum Chemical Study. Antioxidants 2020, 9, 461. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.A.; Piao, M.J.; Ryu, Y.S.; Hyun, Y.J.; Park, J.E.; Shilnikova, K.; Zhen, A.X.; Kang, H.K.; Koh, Y.S.; Jeong, Y.J.; et al. Luteolin induces apoptotic cell death via antioxidant activity in human colon cancer cells. Int. J. Oncol. 2017, 51, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Owumi, S.E.; Lewu, D.O.; Arunsi, U.O.; Oyelere, A.K. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum. Exp. Toxicol. 2021, 40, 1656–1672. [Google Scholar] [CrossRef]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [Google Scholar] [CrossRef]
- Naraki, K.; Rezaee, R.; Karimi, G. A review on the protective effects of naringenin against natural and chemical toxic agents. Phytother. Res. 2021, 35, 4075–4091. [Google Scholar] [CrossRef] [PubMed]
- Kariagina, A.; Doseff, A.I. Anti-Inflammatory Mechanisms of Dietary Flavones: Tapping into Nature to Control Chronic Inflammation in Obesity and Cancer. Int. J. Mol. Sci. 2022, 23, 15753. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.; Ribeiro, D.; Silva, P.M.A.; Nazareth, N.; Monteiro, M.; Palmeira, A.; Saraiva, L.; Pinto, M.; Bousbaa, H.; Cidade, H. New Alkoxy Flavone Derivatives Targeting Caspases: Synthesis and Antitumor Activity Evaluation. Molecules 2018, 24, 129. [Google Scholar] [CrossRef]
- Osonga, F.J.; Akgul, A.; Miller, R.M.; Eshun, G.B.; Yazgan, I.; Akgul, A.; Sadik, O.A. Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids. ACS Omega 2019, 4, 12865–12871. [Google Scholar] [CrossRef] [PubMed]
- Xi, M.; Hou, Y.; Wang, R.; Ji, M.; Cai, Y.; Ao, J.; Shen, H.; Li, M.; Wang, J.; Luo, A. Potential Application of Luteolin as an Active Antibacterial Composition in the Development of Hand Sanitizer Products. Molecules 2022, 27, 7342. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Kim, W.J.; Hyun, J.M.; Lee, J.S.; Kwon, J.G.; Seo, C.; Song, M.J.; Choi, C.W.; Hong, S.S.; Park, K.; et al. Salvia lebeian Extract Inhibits Xanthine Oxidase Activity In Vitro and Reduces Serum Uric Acid in an Animal Model of Hyperuricemia. Planta Med. 2017, 83, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Dolati, K.; Rakhshandeh, H.; Golestani, M.; Forouzanfar, F.; Sadeghnia, R.; Sadeghnia, H.R. Inhibitory effects of Apium graveolens on xanthine oxidase activity and serum uric acid levels in hyperuricemic mice. Prev. Nutr. Food Sci. 2018, 23, 127–133. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Yan, H.; Jiang, X.; Hu, W.; Han, N.; Wang, D. Anti-gouty arthritis and anti-hyperuricemia properties of celery seed extracts in rodent models. Mol. Med. Rep. 2019, 20, 4623–4633. [Google Scholar] [CrossRef]
- Han, D.; Row, K.H. Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. J. Sci. Food Agric. 2011, 91, 2888–2892. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, M.M.; Chen, P.L.; Cao, Y.Y.; Tan, X.L. Optimization of ultrasonic-assisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. J. Food Sci. 2011, 76, C680–C685. [Google Scholar] [CrossRef]
- Kawamura, H.; Mishima, K.; Sharmin, T.; Ito, S.; Kawakami, R.; Kato, T.; Misumi, M.; Suetsugu, T.; Orii, H.; Kawano, H.; et al. Ultrasonically enhanced extraction of luteolin and apigenin from the leaves of Perilla frutescens (L.) Britt. using liquid carbon dioxide and ethanol. Ultrason. Sonochem. 2016, 29, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hang, N.T.; Uyen, T.T.T.; Phuong, N.V. Green extraction of apigenin and luteolin from celery seed using deep eutectic solvent. J. Pharm. Biomed. Anal. 2021, 207, 114406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, M.; Jiang, B.; Yu, J.; Hao, Q.; Liu, W.; Hu, Z.; Zhang, Y.; Song, C. Extraction optimization, structural characterization and potential alleviation of hyperuricemia by flavone glycosides from celery seeds. Food Funct. 2022, 13, 9832–9846. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, R.; Juan, M.E.; Planas, J.M. Table olive polyphenols: A simultaneous determination by liquid chromatography-mass spectrometry. J. Chromatogr. A 2020, 4, 460434. [Google Scholar] [CrossRef] [PubMed]
- Malongane, F.; McGaw, L.J.; Nyoni, H.; Mudau, F.N. Metabolic profiling of four South African herbal teas using high resolution liquid chromatography-mass spectrometry and nuclear magnetic resonance. Food Chem. 2018, 257, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Mahdhi, A.; Ghazghazi, H.; El Aloui, M.; Ben Salem, R.; Rigane, G. Identification and quantification of phenolic and fatty acid profiles in Pinus halepensis mill. seeds by LC-ESI-MS and GC: Effect of drying methods on chemical composition. Food Sci. Nutr. 2021, 9, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Michalaki, A.; Karantonis, H.C.; Kritikou, A.S.; Thomaidis, N.S.; Dasenaki, M.E. Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity Evaluation from Oregano (Origanum vulgare ssp. hirtum) Using Response Surface Methodology and Identification of Specific Phenolic Compounds with HPLC-PDA and Q-TOF-MS/MS. Molecules 2023, 28, 2033. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Chandra, P.; Arya, K.R.; Kumar, B. Development and validation of an ultra high performance liquid chromatography electrospray ionization tandem mass spectrometry method for the simultaneous determination of selected flavonoids in Ginkgo biloba. J. Sep. Sci. 2014, 37, 3610–3618. [Google Scholar] [CrossRef]
- Gizawy, H.A.E.H.E.; Hussein, M.A.; Abdel-Sattar, E. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum. Pharm. Biol. 2019, 57, 485–497. [Google Scholar] [CrossRef]
- Sagi, S.; Avula, B.; Wang, Y.H.; Zhao, J.; Khan, I.A. Quantitative determination of seven chemical constituents and chemo-type differentiation of chamomiles using high-performance thin-layer chromatography. J. Sep. Sci. 2014, 37, 2797–2804. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Zu, Y.; Zhao, X. Microwave-assisted simultaneous extraction of luteolin and apigenin from tree peony pod and evaluation of its antioxidant activity. Sci. World J. 2014, 2014, 506971. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.H.; Paek, J.H.; Lim, S.S. Simultaneous Ultra Performance Liquid Chromatography Determination and Antioxidant Activity of Linarin, Luteolin, Chlorogenic Acid and Apigenin in Different Parts of Compositae Species. Molecules 2016, 21, 1609. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 2000, 880, 35–62. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H. New trends in sample preparation for analysis of plant-derived medicines. Curr. Org. Chem. 2010, 14, 1698–1713. [Google Scholar] [CrossRef]
- Kataoka, H. In-tube solid-phase microextraction: Current trends and future perspectives. J. Chromatogr. A 2021, 11, 461787. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, H.; Itano, M.; Ishizaki, A.; Saito, K. Determination of patulin in fruit juice and dried fruit samples by in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 3746–3750. [Google Scholar] [CrossRef] [PubMed]
- Nonaka, Y.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of aflatoxins in food samples by automated on-line in-tube solid-phase microextraction coupled with liquid chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 4416–4422. [Google Scholar] [CrossRef]
- Ishizaki, A.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. Determination of polycyclic aromatic hydrocarbons in food samples by automated on-line in-tube solid-phase microextraction coupled with high performance liquid chromatography-fluorescence detection. J. Chromatogr. A 2010, 1217, 5555–5563. [Google Scholar] [CrossRef]
- ICH Harmonised Guideline, ICH Q2(R2) Validation of Analytical Procedures, in International Conference for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. 2022. Available online: https://database.ich.org/sites/default/files/ICH_Q2-R2_Document_Step2_Guideline_2022_0324.pdf (accessed on 1 September 2023).
- Poswal, F.S.; Russell, G.; Mackonochie, M.; MacLennan, E.; Adukwu, E.C.; Rolfe, V. Herbal Teas and their Health Benefits: A Scoping Review. Plant Foods Hum. Nutr. 2019, 74, 266–276. [Google Scholar] [CrossRef]
- Xie, L.; Deng, Z.; Zhang, J.; Dong, H.; Wang, W.; Xing, B.; Liu, X. Comparison of flavonoid O-glycoside, C-glycoside and their aglycones on antioxidant capacity and metabolism during in vitro digestion and in vivo. Foods 2022, 11, 882. [Google Scholar] [CrossRef]
- Crozier, A.; Burns, J.; Aziz, A.A.; Stewart, A.J.; Rabiasz, H.S.; Jenkins, G.I.; Edwards, C.A.; Lean, M.E. Antioxidant flavonols from fruits, vegetables and beverages: Measurements and bioavailability. Biol. Res. 2000, 33, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Takeda, S.; Hitoe, S.; Shimoda, H. Luteolin-rich chrysanthemum flower extract suppresses baseline serum uric acid in Japanese subjects with mild hyperuricemia. Integr. Mol. Med. 2017, 4. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef] [PubMed]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
Compound | Retention Time (min) | Q1 | Q3 | FVa | CEb | |
---|---|---|---|---|---|---|
Quantifier | Qualifier | |||||
Luteolin | 3.0 | 285.0 | 133.0 | 150.9 | 170 | 37 |
Apigenin | 3.6 | 269.0 | 117.0 | 151.0 | 130 | 41 |
Apigenin-d5 | 3.6 | 274.1 | 120.0 | - | 130 | 45 |
Compound | Linearity | LOD b (pg mL−1) | Concentration (pg mL−1) | Precision (RSD c %) (n = 6) | Accuracy (%) (n = 6) | ||||
---|---|---|---|---|---|---|---|---|---|
Range (pg mL−1) | Linearity a (R2) | Direct Injection | IT-SPME | Intra-Day | Inter-Day | Intra-Day | Inter-Day | ||
Luteolin | 2–2000 | 0.9995 | 25 | 0.35 | 10 | 2.0 | 2.4 | 91.2 | 92.2 |
100 | 2.3 | 3.5 | 94.3 | 96.1 | |||||
1000 | 1.1 | 2.8 | 95.0 | 96.9 | |||||
Apigenin | 2–2000 | 0.9999 | 63 | 0.79 | 10 | 2.2 | 2.5 | 106.9 | 107.5 |
100 | 2.9 | 3.6 | 108.0 | 108.2 | |||||
1000 | 2.6 | 3.6 | 106.1 | 108.8 |
Compound | LOQ (ng mL−1) | Content (µg mL−1) | Recovery (%) | |
---|---|---|---|---|
Spiked | Mean ± SD (n = 3) | |||
Luteolin | 1.2 | 0 | 0.2 ± 0.0 | - |
10 | 8.4 ± 0.5 | 82 | ||
100 | 86.1 ± 2.1 | 86 | ||
1000 | 1032 ± 40 | 103 | ||
Apigenin | 2.6 | 0 | 0.4 ± 0.0 | - |
10 | 8.5 ± 0.5 | 81 | ||
100 | 97.4 ± 2.7 | 97 | ||
1000 | 1081 ± 71 | 108 |
Herbal Tea | Content (µg mL−1)/Mean ± SD (n = 3) | |
---|---|---|
Luteolin | Apigenin | |
Peppermint | 375.4 ± 21.6 | 30.4 ± 1.7 |
Linden | 3.5 ± 0.5 | 1.1 ± 0.1 |
Rosehip | 0.1 ± 0.0 | ND |
Lemongrass | 26.9 ± 1.0 | 0.6 ± 0.0 |
Echinacea | 0.2 ± 0.0 | ND |
Rosemary | 0.2 ± 0.0 | 0.4 ± 0.0 |
Sage | 99.4 ± 2.7 | 37.0 ± 1.3 |
German chamomile | 8.4 ± 0.9 | 110.0 ± 4.5 |
Elder flower | 1.3 ± 0.2 | 1.4 ± 0.3 |
Nettle | 0.9 ± 0.1 | 0.4 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishizaki, A.; Miura, A.; Kataoka, H. Determination of Luteolin and Apigenin in Herbal Teas by Online In-Tube Solid-Phase Microextraction Coupled with LC–MS/MS. Foods 2024, 13, 1687. https://doi.org/10.3390/foods13111687
Ishizaki A, Miura A, Kataoka H. Determination of Luteolin and Apigenin in Herbal Teas by Online In-Tube Solid-Phase Microextraction Coupled with LC–MS/MS. Foods. 2024; 13(11):1687. https://doi.org/10.3390/foods13111687
Chicago/Turabian StyleIshizaki, Atsushi, Akiko Miura, and Hiroyuki Kataoka. 2024. "Determination of Luteolin and Apigenin in Herbal Teas by Online In-Tube Solid-Phase Microextraction Coupled with LC–MS/MS" Foods 13, no. 11: 1687. https://doi.org/10.3390/foods13111687
APA StyleIshizaki, A., Miura, A., & Kataoka, H. (2024). Determination of Luteolin and Apigenin in Herbal Teas by Online In-Tube Solid-Phase Microextraction Coupled with LC–MS/MS. Foods, 13(11), 1687. https://doi.org/10.3390/foods13111687