Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health
Abstract
:1. Introduction
2. Glyphosate Use
3. Chemical Properties and Analytical Detection of Glyphosate
4. Contaminated Food as a Source of Glyphosate Ingestion
Reference | Analytical Method | Sample | Residue | Considerations |
---|---|---|---|---|
Otmar Zoller et al., 2018 [86]. | LC-MS/MS | Food | Glyphosate, AMPA (aminomethylphosphonic acid) | The LOQ for solid samples was 0.001 mg/kg for glyphosate and 0.0025 mg/kg for AMPA. For liquid samples the LOQ was 0.0005 mg/kg for glyphosate and ranged from 0.0005 to 0.001 mg/kg for AMPA. |
Sara Savini et al., 2019 [87]. | UHPLC-ESI-MS/MS | Processed fruits and vegetables | Glyphosate, AMPA (aminomethylphosphonic acid) | Glyphosate was detected in 15 samples (18%) with concentrations ranging from 0.003 to 0.01 mg/kg. Only two samples of canned vegetables surpassed the MRL of 0.1 mg/kg, measuring 0.3 and 0.2 mg/kg, respectively. AMPA residues were found in two samples (orange juice and canned vegetable), both at the LOQ of 0.003 mg/kg. |
Noëmie El Agrebi et al., 2020 [88]. | HPLC-ESI-MS/MS | Honey | Glyphosate, AMPA (aminomethylphosphonic acid) | In bee bread, 81.5% of the samples showed a residue concentration higher than the LOQ and 9.9% showed a concentration below the LOQ, indicating detection without quantification. In beeswax 26% of samples exceeded the LOQ versus 81.5% exceeded the LOQ. |
Cintia F.R. Mendonça et al., 2020 [89]. | HPLC | Water | Glyphosate, AMPA (aminomethylphosphonic acid) | The water samples exhibited glyphosate concentrations ranging from 0.31 to 1.65 μg/L. AMPA levels varied between 0.50 and 1.40 μg/L. Glyphosate was detected in 19.3% of samples and quantified in 17.7%, while AMPA was detected in 21.8% of samples and quantified in 1.6%. |
Maria C. Fontanella et al., 2022 [90]. | HPLC-ICP-MS/MS | White (WR) and brown (BR) rice | Glyphosate | The LOD was 0.0027 mg/kg for WR and 0.0136 mg/kg for BR, while the LOQ was 0.0092 mg/kg for WR and 0.0456 mg/kg for BR. |
Ana P.F de Souza et al., 2021 [91]. | HPLC | Honey | Glyphosate, AMPA (aminomethylphosphonic acid) | Six samples showed glyphosate levels above the EU maximum residue limit of 0.05 µg/g, and one sample showed AMPA at 0.10 µg/g. |
Maria C. Arregui et al., 2004 [92]. | HPLC | Soy | Glyphosate | In soybean leaves and stems, glyphosate residues range from 1.9 to 4.4 mg/kg, while in grains they range from 0.1 to 1.8 mg/kg. |
Abukari Wumbei et al., 2019 [93]. | LC-MS/MS | Yam | Glyphosate | Of the 68 samples examined, glyphosate was detected in 14, albeit at levels below the LOQ. |
Nicoleta Suciú et al., 2023 [94]. | UHPLC-ESI-MS/MS | Water | Glyphosate, AMPA (aminomethylphosphonic acid) | Glyphosate was found in 40% of groundwater samples. AMPA was detected in 55% of the samples, of which 56% presented values above the groundwater equilibrium level. |
Angela Santilio et al., 2019 [95]. | LC/MS/MS | Corn and rice | Glyphosate | Average recoveries for both matrices ranged between 70 and 105% at three fortification levels, including LOQ. The LOD was determined to be 0.002 mg/kg for rice and 0.004 mg/kg for corn. The LOQ was set at 0.01 mg/kg for both corn and rice. |
Nádia R. de Souza, 2018 [96]. | HPLC | Baby foods | Glyphosate, AMPA (aminomethylphosphonic acid) | Among samples containing levels above the LOQ, glyphosate residues ranged from 0.03 mg/kg to 1.08 mg/kg, while AMPA residues ranged from 0.02 mg/kg to 0.17 mg/kg. |
Xiu Y. Jing et al., 2021 [97]. | HPLC | Medlar (leaves, soil, groundwater and honey) | Glyphosate | A total of 76 samples were analyzed and residues of four (36.7%) compounds were detected in the samples. Glyphosate was the predominant pesticide detected in soil samples (ranging from 0.21 to 1.3 mg/kg). |
Mārtiņš Jansons et al., 2018 [98]. | LC-MS/MS | Beer | Glyphosate | The glyphosate concentration in beer was below LOD, ranging from 0.2 μg/kg to 150 μg/kg. Beers without country-of-origin indication on the label exhibited a significantly higher glyphosate content (p < 0.01). The average concentration was 1.8 μg/kg in locally produced beer and 6.7 μg/kg in beers of undisclosed origin. |
Stefan Ehling & Todime M Reddy, 2015 [99]. | HPLC-MS | Set of nutritional ingredients derived from soy, corn and sugar beet and also in cow’s milk and human breast milk | Glyphosate, AMPA (aminomethylphosphonic acid) | Glyphosate and AMPA were quantified at concentrations of 0.105 μg/g and 0.210 μg/g, respectively, in isolated soy protein. In soy protein concentrate, glyphosate and AMPA were quantified at concentrations of 0.850 μg/g and 2.71 μg/g, respectively. |
Narong Chamkasem, 2017 [100]. | LC-MS-MS | Grapes | Glyphosate | At concentrations of 100, 500, and 2000 ng/g (n = 5), the average recovery for all analytes ranged from 87 to 111%, with a relative standard deviation of less than 17%. |
Alistair K Brown & Annemieke Farenhorst, 2024 [101]. | UHPLC-ESI-MS/MS | Water | Glyphosate, AMPA (aminomethylphosphonic acid) | Tap and surface water samples were analyzed at concentrations of 2 and 20 μg/L. The LOD and LOQ ranged from 0.022/0.074 to 0.11/0.36 μg/L, with precision levels of 0.46–2.2% (intraday) and 1.3–7.3% (interday). In tap water, mean pesticide concentrations in μg/L were as follows: AMPA 0.11 (0.007), glufosinate and glyphosate below the LOD. In the Red River water, AMPA was 0.56 (0.045), glufosinate below the LOQ, and glyphosate 0.40 (0.072). Glufosinate concentrations were above the LOD but below the LOQ for smaller tributaries, with a concentration of 0.2 μg/L. |
Martin A. Amberger et al., 2023 [54]. | LC-ESI-MS/MS | Apple, mushrooms, grapefruit, flaxseed, red lentils, and wheat | Glyphosate, AMPA (aminomethylphosphonic acid) | LODs have been established for several samples, including apple, mushroom, grapefruit, flaxseed, red lentil, and wheat. These LODs ranged from 0.09 to 0.8 µg/kg for glyphosate, from 0.04 to 1 µg/kg for AMPA, and from 0.2 to 2 µg/kg for glufosinate. Recoveries ranged from 84% to 120%, while RSD ranged from 1% to 19% for glyphosate, AMPA, and glufosinate at all fortification levels in all matrices investigated. |
Selim A. Alarape et al., 2023 [102]. | HPLC | Fish | Glyphosate, AMPA (aminomethylphosphonic acid) | The presence of glyphosate residues was reported in all 75 fish tissue samples. |
5. Evidence concerning Human Contamination by Glyphosate and Risk Assessment
Autors | Analytical Method | Sample | Residue | Considerations |
---|---|---|---|---|
Feng Zhang et al., 2020 [37]. | GC-MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | Urinary glyphosate concentrations ranged from <0.020 to 17.202 mg/L, and AMPA concentrations ranged from <0.010 to 2.730 mg/L. |
Parvez et al., 2018 [118]. | LC-MS/MS | Urine | Glyphosate | A total of 93% of women had urine glyphosate concentrations exceeding the LOD of 0.1 µg/L, with a mean concentration of 3.40 µg/L. |
Eick Sierra-Diaz et al., 2019 [119]. | HPLC-MS/MS | Urine | Glyphosate | Glyphosate was identified in 73% and 100% of individuals tested from two distinct communities, with average urine glyphosate concentrations of 0.36 and 0.61 µg/L, respectively. |
Alison Connolly et al., 2018 [120]. | LC-MS/MS | Urine | Glyphosate | The median and maximum concentrations of glyphosate found in the ten samples were 0.87 and 1.35 µg/L, respectively. |
LeonardoTrasande et al., 2020 [121]. | LC-MS/MS | Urine | Glyphosate | Glyphosate was detectable in 30%, 12.5%, and 7.6% of infants/children in the <30 days, 10–19 months, and 3–8 years age categories, respectively. The average detectable concentration of glyphosate in urine was 0.278 µg/L, with concentrations ranging from 0.105 to 2.125 µg/L. |
Anja Stajnko et al., 2020 [122]. | GC-MS/MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | Glyphosate and AMPA were found in 27% and 50% of urine samples collected during the first sampling period, respectively. In the second sampling period, they were detected in 22% and 56% of the samples, respectively. |
Sebastian T Soukup et al., 2020 [116]. | LC-MS/MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | A total of 8.3% of participants (n = 25) had quantifiable concentrations (>0.2 µg/L) of glyphosate and/or AMPA in their urine. Glyphosate was not detected (<0.05 µg/L) in 66.5% of the samples, and AMPA was not detected (<0.09 µg/L) in the same percentage. |
Pablo Ruiz et al., 2021 [123]. | LC-MS/MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | The detection frequencies (DFs) generated rates of 54% for glyphosate and 60% for AMPA. The GMs of the EDIs were determined to be 0.31 and 0.37 μg/kg body weight/day for glyphosate and AMPA, respectively. |
Melissa J. Perry et al., 2019 [34]. | LC-MS/MS | Urine | Glyphosate | The average level of glyphosate detected was 4.04 μg/kg (equivalent to 4.04 ppb) in the seven positive samples, ranging from 1.3 to 12.0 μg/kg. |
Paulo Nova et al., 2020 [124]. | GC-MS and HPLC-MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | During the initial testing phase, 28% and 50% exhibited detectable levels of glyphosate and AMPA, respectively, with median values of 0.25 and 0.16 μg/L. In the second round, 73% and 97% revealed detectable levels of glyphosate and AMPA, respectively, with median values of 0.13 and 0.10 μg/L. |
Hiroshi Nomura et al., 2022 [125]. | LC-MS/MS | Urine | Glyphosate | Glyphosate was detectable in 41% of the 234 children studied. The 75th percentile and maximum urine glyphosate concentrations were recorded at 0.20 and 1.33 μg/L, respectively. |
Robin Mesnage et al., 2022 [126]. | LC-MS/MS | Urine and feces | Glyphosate | Glyphosate was detected in 53% of urine samples, but below the LOQ (<0.1 μg/L) in 10 cases (8%). |
Ana P. Balderrama-Carmona et al., 2020 [127]. | HPLC | Urine | AMPA | Urine samples (n = 30) revealed concentrations of up to 10.25 μg/L of picloram and 2.23 μg/L of AMPA, with no reports of positive samples for glyphosate. |
Raquel Lúcia et al., 2023 [117]. | LC-MS/MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | Glyphosate was detected in 89.9% of urine samples, while AMPA was found in 67.2%. |
Felipe Lozano-Kasten et al., 2021 [128]. | HPLC-MS | Urine | Glyphosate | All samples yielded positive results for glyphosate levels. Glyphosate is pervasive among children of all ages within the community, even in cases where they have not experienced direct exposure to it. |
Roy R. Gerona et al., 2022 [129]. | HPLC-MS | Urine | Glyphosate | Glyphosate was detected in 99% of pregnant women. High maternal levels during the first trimester correlated with lower body weight percentiles and increased risk of intensive care unit admission. |
Garth Campbell et al., 2022 [38]. | LC-MS/MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | Glyphosate has been found above the LOD (ranging from 0.20 to 1.25 μg/L) in 8% of the Australian population. Glyphosate (ranging from 0.85 to 153 μg/L) and AMPA (ranging from 0.50 to 3.35 μg/L) were detected in 96% and 33% of farmers, respectively. |
Imane Berni et al., 2023 [39]. | LC-MS/MS | Urine | Glyphosate, AMPA (aminomethylphosphonic acid) | Glyphosate and AMPA were detected in 73% and 75% of urine samples, respectively. |
Chronic Toxicity | Body Targets | Consequences of Exposure to Glyphosate | References |
---|---|---|---|
Target organ toxicity | Gastrointestinal, Heart, Liver, Kidneys | Celiac disease, Electrocardiogram abnormalities and arrhythmias, Oxidative stress Non-alcoholic fatty liver disease, steatohepatitis and liver dysfunction, Chronic kidney disease | Lola Rueda-Ruzafa et al. 2019 [138]. Steeve Gress et al. 2015 [139]. Ryan Brunetti et al. 2020 [140]. Robin Mesnage et al. 2015 [130]. Robin Mesnage et al. 2017 [141]. Hui Gao et al. 2019 [142]. |
Cytotoxicity | Human red blood cells | Morphological changes. | Islam Md. Meftaul et al. 2020 [132]. |
Neurotoxicity | Human neuronal cells. | The dysfunction of acetylcholinesterase disrupts the regulation of nerve impulse transmission, thereby contributing to the development of neurological disorders. | Van Bruggen A.H.C et al. 2017 [25]. |
Genotoxicity | Deoxyribonucleic acid (DNA), Human leukocytes. | Mammalian chromosomes are harmed, leading to epigenetic changes, including DNA methylation and the promotion of histone modification. | Kathryn Z Guyton et al. 2015 [143]. Marta Kwiatkowska et al. 2017 [144]. María F. Rossetti et al. 2021 [145]. |
Teratogenic effects | Ferns | Malformations | M. Antoniou et al. 2012 [146]. |
Endocrine disruption | Hormonal axis | Endocrine system disorders | Robin Mesnage et al. 2015 [130]. EFSA et al. 2016 [135]. |
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Đokić, M.; Nekić, T.; Varenina, I.; Varga, I.; Solomun Kolanović, B.; Sedak, M.; Čalopek, B.; Vratarić, D.; Bilandžić, N. Pesticides and Polychlorinated Biphenyls in Milk and Dairy Products in Croatia: A Health Risk Assessment. Foods 2024, 13, 1155. [Google Scholar] [CrossRef] [PubMed]
- Penagos-Tabares, F.; Sulyok, M.; Faas, J.; Krska, R.; Khiaosa-ard, R.; Zebeli, Q. Residues of Pesticides and Veterinary Drugs in Diets of Dairy Cattle from Conventional and Organic Farms in Austria. Environ. Pollut. 2023, 316, 120626. [Google Scholar] [CrossRef] [PubMed]
- Armenova, N.; Tsigoriyna, L.; Arsov, A.; Petrov, K.; Petrova, P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023, 12, 1163. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of Pesticide Pollution at the Global Scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- World Health Organization. The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019; World Health Organization: Geneva, Switzerland, 2020; ISBN 978-92-4-000566-2. [Google Scholar]
- Yeung, M.T.; Kerr, W.A.; Coomber, B.; Lantz, M.; McConnell, A. Why Maximum Residue Limits for Pesticides Are an Important International Issue. In Declining International Cooperation on Pesticide Regulation: Frittering Away Food Security; Yeung, M.T., Kerr, W.A., Coomber, B., Lantz, M., McConnell, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–9. ISBN 978-3-319-60552-4. [Google Scholar]
- Saito-Shida, S.; Nemoto, S.; Akiyama, H. Multiresidue Method for Determining Multiclass Acidic Pesticides in Agricultural Foods by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Methods 2021, 13, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Davoren, M.J.; Schiestl, R.H. Glyphosate-Based Herbicides and Cancer Risk: A Post-IARC Decision Review of Potential Mechanisms, Policy and Avenues of Research. Carcinogenesis 2018, 39, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, C.M. Trends in Glyphosate Herbicide Use in the United States and Globally. Environ. Sci. Eur. 2016, 28, 3. [Google Scholar] [CrossRef] [PubMed]
- Tarazona, J.V.; Court-Marques, D.; Tiramani, M.; Reich, H.; Pfeil, R.; Istace, F.; Crivellente, F. Glyphosate Toxicity and Carcinogenicity: A Review of the Scientific Basis of the European Union Assessment and Its Differences with IARC. Arch. Toxicol. 2017, 91, 2723–2743. [Google Scholar] [CrossRef]
- Chiesa, L.M.; Nobile, M.; Panseri, S.; Arioli, F. Detection of Glyphosate and Its Metabolites in Food of Animal Origin Based on Ion-Chromatography-High Resolution Mass Spectrometry (IC-HRMS). Food Addit. Contam. Part A 2019, 36, 592–600. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, U.; Sandhu, K.S. Effect of Handling and Processing on Pesticide Residues in Food—A Review. J. Food Sci. Technol. 2014, 51, 201–220. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Qu, J.; Zhu, Q.; Chen, X. Visual Detection of Glyphosate in Environmental Water Samples Using Cysteamine-Stabilized Gold Nanoparticles as Colorimetric Probe. Anal. Methods 2013, 5, 917–924. [Google Scholar] [CrossRef]
- Valle, A.L.; Mello, F.C.C.; Alves-Balvedi, R.P.; Rodrigues, L.P.; Goulart, L.R. Glyphosate Detection: Methods, Needs and Challenges. Environ. Chem. Lett. 2019, 17, 291–317. [Google Scholar] [CrossRef]
- Seyed Khademi, S.M.; Telgheder, U.; Valadbeigi, Y.; Ilbeigi, V.; Tabrizchi, M. Direct Detection of Glyphosate in Drinking Water Using Corona-Discharge Ion Mobility Spectrometry: A Theoretical and Experimental Study. Int. J. Mass Spectrom. 2019, 442, 29–34. [Google Scholar] [CrossRef]
- Aydin, Z.; Akın, Ş.; Çenet, E.N.; Keskinateş, M.; Akbulut, A.; Keleş, H.; Keleş, M. Two Novel Enzyme-Free Colorimetric Sensors for the Detection of Glyphosate in Real Samples. J. Food Compos. Anal. 2022, 112, 104674. [Google Scholar] [CrossRef]
- Pesticide Action Network Europe. Weed Management: Alternatives to the Use of Glyphosate. 2023. Available online: https://www.pan-europe.info/resources/reports/2023/03/weed-management-alternatives-use-glyphosate (accessed on 17 April 2024).
- Food and Agriculture Organization of the United Nations. Pesticides Use and Trade 1990–2021. 2023. Available online: https://www.fao.org/documents/card/en?details=cc6958en (accessed on 17 April 2024).
- IBAMA. Pesticide Marketing Reports. 2022. Available online: https://www.gov.br/ibama/pt-br/assuntos/quimicos-e-biologicos/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos (accessed on 17 April 2024).
- Bøhn, T.; Millstone, E. The Introduction of Thousands of Tonnes of Glyphosate in the Food Chain—An Evaluation of Glyphosate Tolerant Soybeans. Foods 2019, 8, 669. [Google Scholar] [CrossRef] [PubMed]
- Brookes, G.; Barfoot, P. Environmental Impacts of Genetically Modified (GM) Crop Use 1996–2016: Impacts on Pesticide Use and Carbon Emissions. GM Crops Food 2018, 9, 109–139. [Google Scholar] [CrossRef] [PubMed]
- Gaboardi, S.C.; Candiotto, L.Z.P.; Panis, C. Agribusiness in Brazil and Its Dependence on the Use of Pesticides. Hyg. Environ. Health Adv. 2023, 8, 100080. [Google Scholar] [CrossRef]
- Bombardi, L.M. A Geography of Agrotoxins Use in Brazil and Its Relations to the European Union; Portal de Livros Abertos da USP: São Paulo, Brazil, 2019; ISBN 978-85-7506-359-0. [Google Scholar]
- Soares, D.; Silva, L.; Duarte, S.; Pena, A.; Pereira, A. Glyphosate Use, Toxicity and Occurrence in Food. Foods 2021, 10, 2785. [Google Scholar] [CrossRef] [PubMed]
- Van Bruggen, A.H.C.; He, M.M.; Shin, K.; Mai, V.; Jeong, K.C.; Finckh, M.R.; Morris, J.G. Environmental and Health Effects of the Herbicide Glyphosate. Sci. Total Environ. 2018, 616–617, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Johal, G.S.; Huber, D.M. Glyphosate Effects on Diseases of Plants. Eur. J. Agron. 2009, 31, 144–152. [Google Scholar] [CrossRef]
- Barbosa da Costa, N.; Hébert, M.-P.; Fugère, V.; Terrat, Y.; Fussmann, G.F.; Gonzalez, A.; Shapiro, B.J. A Glyphosate-Based Herbicide Cross-Selects for Antibiotic Resistance Genes in Bacterioplankton Communities. mSystems 2022, 7, e01482-21. [Google Scholar] [CrossRef] [PubMed]
- Lanzarin, G.A.B.; Venâncio, C.A.S.; Monteiro, S.M.; Félix, L.M. Behavioural Toxicity of Environmental Relevant Concentrations of a Glyphosate Commercial Formulation—RoundUp® UltraMax—During Zebrafish Embryogenesis. Chemosphere 2020, 253, 126636. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.; Graef, F.; Pallut, B.; Hoffmann, J.; Brühl, C.A.; Wagner, N. How Does Changing Pesticide Usage Over Time Affect Migrating Amphibians: A Case Study on the Use of Glyphosate-Based Herbicides in German Agriculture Over 20 Years. Front. Environ. Sci. 2018, 6. [Google Scholar] [CrossRef]
- Palma, D.C.A.; Lourencetti, C.; Uecker, M.E.; Mello, P.R.B.; Pignati, W.A.; Dores, E.F.G.C. Simultaneous Determination of Different Classes of Pesticides in Breast Milk by Solid-Phase Dispersion and GC/ECD. J. Braz. Chem. Soc. 2014, 25, 1419–1430. [Google Scholar] [CrossRef]
- Camiccia, M.; Candiotto, L.Z.P.; Gaboardi, S.C.; Panis, C.; Kottiwitz, L.B.M. Determination of Glyphosate in Breast Milk of Lactating Women in a Rural Area from Paraná State, Brazil. Braz. J. Med. Biol. Res. 2022, 55, e12194. [Google Scholar] [CrossRef] [PubMed]
- Candiotto, L.Z.P.; Gaboardi, S.C.; Ferreira, M.O.; Teixeira, G.T.; Silva, J.C.d.; Ferreira, I.N.; Tedesco, E.H.; Panis, C. Avaliação diagnóstica da presença de resíduos de agrotóxicos em amostras de urina de moradores de uma “vila rural” do município de Francisco Beltrão/PR. Ambient. Rev. Geogr. E Ecol. Política 2022, 4, 227–261. [Google Scholar] [CrossRef]
- Rendon-von Osten, J.; Dzul-Caamal, R. Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. Int. J. Environ. Res. Public Health 2017, 14, 595. [Google Scholar] [CrossRef] [PubMed]
- Perry, M.J.; Mandrioli, D.; Belpoggi, F.; Manservisi, F.; Panzacchi, S.; Irwin, C. Historical Evidence of Glyphosate Exposure from a US Agricultural Cohort. Environ. Health 2019, 18, 42. [Google Scholar] [CrossRef]
- Mesnage, R.; Moesch, C.; Grand, R.L.G.; Lauthier, G.; Vendômois, J.S.d.; Gress, S.; Séralini, G.-E. Glyphosate Exposure in a Farmer’s Family. J. Environ. Prot. 2012, 3, 1001–1003. [Google Scholar] [CrossRef]
- Connolly, A.; Jones, K.; Galea, K.S.; Basinas, I.; Kenny, L.; McGowan, P.; Coggins, M. Exposure Assessment Using Human Biomonitoring for Glyphosate and Fluroxypyr Users in Amenity Horticulture. Int. J. Hyg. Environ. Health 2017, 220, 1064–1073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xu, Y.; Liu, X.; Pan, L.; Ding, E.; Dou, J.; Zhu, B. Concentration Distribution and Analysis of Urinary Glyphosate and Its Metabolites in Occupationally Exposed Workers in Eastern China. Int. J. Environ. Res. Public Health 2020, 17, 2943. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.; Mannetje, A.; Keer, S.; Eaglesham, G.; Wang, X.; Lin, C.-Y.; Hobson, P.; Toms, L.-M.; Douwes, J.; Thomas, K.V.; et al. Characterization of Glyphosate and AMPA Concentrations in the Urine of Australian and New Zealand Populations. Sci. Total Environ. 2022, 847, 157585. [Google Scholar] [CrossRef] [PubMed]
- Berni, I.; Menouni, A.; Creta, M.; El Ghazi, I.; Duca, R.-C.; Godderis, L.; El Jaafari, S. Exposure of Children to Glyphosate in Morocco: Urinary Levels and Predictors of Exposure. Environ. Res. 2023, 217, 114868. [Google Scholar] [CrossRef] [PubMed]
- Panis, C.; Candiotto, L.Z.P.; Gaboardi, S.C.; Gurzenda, S.; Cruz, J.; Castro, M.; Lemos, B. Widespread Pesticide Contamination of Drinking Water and Impact on Cancer Risk in Brazil. Environ. Int. 2022, 165, 107321. [Google Scholar] [CrossRef] [PubMed]
- IBAMA. Environmental Profile—Glyphosate Ammonium Salt. 2019. Available online: https://www.gov.br/ibama/pt-br/assuntos/quimicos-e-biologicos/agrotoxicos/arquivos/perfis-ambientais/2019/Perfil%20Ambiental%20-%20Glifosato%20Sal%20de%20Amnio%20-%2002_10_2019.pdf/view (accessed on 17 April 2024).
- Tomlin, C.D.S. (Ed.) The Pesticide Manual: A World Compendium, 12th ed.; British Crop Protection Council: Croydon, UK, 2000. Available online: http://trove.nla.gov.au/work/6273016 (accessed on 26 May 2024).
- IPCS. Glyphosate. International Chemical Safety Card (ICSC 0160); International Programme on Chemical Safety, World Health Organization: Geneva, Switzerland, 2005; Available online: http://www.inchem.org/documents/icsc/icsc/eics0160.htm (accessed on 21 May 2024).
- Valavanidis, A. Glyphosate, the Most Widely Used Herbicide. Health and Safety Issues. Why Scientists Differ in Their Evaluation of Its Adverse Health Effects. Sci. Rev. 2018, 1–40. Available online: https://www.researchgate.net/publication/323727351_Glyphosate_the_Most_Widely_Used_Herbicide_Health_and_safety_issues_Why_scientists_differ_in_their_evaluation_of_its_adverse_health_effects (accessed on 21 May 2024).
- PubChem National Institutes of Health (NIH). Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 18 April 2024).
- Dill, G.M.; Sammons, R.D.; Feng, P.C.C.; Kohn, F.; Kretzmer, K.; Mehrsheikh, A.; Bleeke, M.; Honegger, J.L.; Farmer, D.; Wright, D.; et al. Glyphosate: Discovery, Development, Applications, and Properties. In Glyphosate Resistance in Crops and Weeds; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 1–33. ISBN 978-0-470-63439-4. [Google Scholar]
- EPA. Reregistration Eligibility Decision (RED): Glyphosate. 1993. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/901A0500.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1991+Thru+1994&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C91thru94%5CTxt%5C00000018%5C901A0500.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 17 April 2024).
- Yamada, T.; Castro, P.R.C. Effects of Glyphosate on Plants—International Plant Nutrition Institute. 2014. Available online: https://www.yumpu.com/pt/document/view/23491188/efeitos-do-glifosato-nas-plantas-international-plant-nutrition-institute (accessed on 17 April 2024).
- Dick, R.E.; Quinn, J.P. Glyphosate-Degrading Isolates from Environmental Samples: Occurrence and Pathways of Degradation. Appl. Microbiol. Biotechnol. 1995, 43, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Borggaard, O.K.; Gimsing, A.L. Fate of Glyphosate in Soil and the Possibility of Leaching to Ground and Surface Waters: A Review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef] [PubMed]
- ANVISA. Toxicological Reevaluation of Glyphosate. 2015. Available online: https://www.gov.br/anvisa/pt-br/assuntos/regulamentacao/air/analises-de-impacto-regulatorio/2015/25351-056754_2013-17-reavaliacao-toxicologica-do-glifosato.pdf/view (accessed on 17 April 2024).
- Wong, J.W.; Wang, J.; Chow, W.; Carlson, R.; Jia, Z.; Zhang, K.; Hayward, D.G.; Chang, J.S. Perspectives on Liquid Chromatography–High-Resolution Mass Spectrometry for Pesticide Screening in Foods. J. Agric. Food Chem. 2018, 66, 9573–9581. [Google Scholar] [CrossRef] [PubMed]
- Muggli, T.M.; Schürch, S. Analysis of Pesticide Residues on Fruit Using Swab Spray Ionization Mass Spectrometry. Molecules 2023, 28, 6611. [Google Scholar] [CrossRef] [PubMed]
- Amberger, M.A.; Schröder, M.; Kuballa, J.; Jantzen, E. Direct Determination of Glyphosate, Aminomethylphosphonic Acid and Glufosinate in Food Samples with Ion Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry. J. Chromatogr. A 2023, 1687, 463631. [Google Scholar] [CrossRef] [PubMed]
- Herrera López, S.; Scholten, J.; Kiedrowska, B.; de Kok, A. Method Validation and Application of a Selective Multiresidue Analysis of Highly Polar Pesticides in Food Matrices Using Hydrophilic Interaction Liquid Chromatography and Mass Spectrometry. J. Chromatogr. A 2019, 1594, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Oulkar, D.P.; Hingmire, S.; Goon, A.; Jadhav, M.; Ugare, B.; Thekkumpurath, A.S.; Banerjee, K. Optimization and Validation of a Residue Analysis Method for Glyphosate, Glufosinate, and Their Metabolites in Plant Matrixes by Liquid Chromatography with Tandem Mass Spectrometry. J. AOAC Int. 2017, 100, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Ohara, T.; Yoshimoto, T.; Natori, Y.; Ishii, A. A Simple Method for the Determination of Glyphosate, Glufosinate and Their Metabolites in Biological Specimen by Liquid Chromatography/Tandem Mass Spectrometry: An Application for Forensic Toxicology. Nagoya J. Med. Sci. 2021, 83, 567–587. [Google Scholar] [CrossRef]
- Yoshioka, N.; Asano, M.; Kuse, A.; Mitsuhashi, T.; Nagasaki, Y.; Ueno, Y. Rapid Determination of Glyphosate, Glufosinate, Bialaphos, and Their Major Metabolites in Serum by Liquid Chromatography–Tandem Mass Spectrometry Using Hydrophilic Interaction Chromatography. J. Chromatogr. A 2011, 1218, 3675–3680. [Google Scholar] [CrossRef] [PubMed]
- Philipp Schledorn, M.K. Detection of Glyphosate Residues in Animals and Humans. J. Environ. Anal. Toxicol. 2014, 4. [Google Scholar] [CrossRef]
- Zhan, H.; Feng, Y.; Fan, X.; Chen, S. Recent Advances in Glyphosate Biodegradation. Appl. Microbiol. Biotechnol. 2018, 102, 5033–5043. [Google Scholar] [CrossRef] [PubMed]
- Viirlaid, E.; Ilisson, M.; Kopanchuk, S.; Mäeorg, U.; Rinken, A.; Rinken, T. Immunoassay for Rapid On-Site Detection of Glyphosate Herbicide. Environ. Monit. Assess. 2019, 191, 507. [Google Scholar] [CrossRef] [PubMed]
- Reynoso, E.C.; Torres, E.; Bettazzi, F.; Palchetti, I. Trends and Perspectives in Immunosensors for Determination of Currently-Used Pesticides: The Case of Glyphosate, Organophosphates, and Neonicotinoids. Biosensors 2019, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, Y.; Lu, Y.; Zhou, P.; Lu, L.; Lv, H.; Hai, X. Recent Advances in the Immunoassays Based on Nanozymes. Biosensors 2022, 12, 1119. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Li, D.; Xu, X.; Ying, Y.; Li, Y.; Ye, Z.; Wang, J. Immunosensors for Detection of Pesticide Residues. Biosens. Bioelectron. 2008, 23, 1577–1587. [Google Scholar] [CrossRef]
- Kocadal, K.; Battal, D.; Saygi, S.; Alkas, F.B. A Review on Advances and Perspectives of Glyphosate Determination: Challenges and Opportunities. Arch. Environ. Prot. 2022, 48, 89–98. [Google Scholar] [CrossRef]
- Mastovska, K.; Lehotay, S.J. Rapid Sample Preparation Method for LC−MS/MS or GC−MS Analysis of Acrylamide in Various Food Matrices. J. Agric. Food Chem. 2006, 54, 7001–7008. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, E.; Miyake, S.; Yogo, Y. Review of Enzyme-Linked Immunosorbent Assays (ELISAs) for Analyses of Neonicotinoid Insecticides in Agro-Environments. J. Agric. Food Chem. 2013, 61, 12459–12472. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Huang, X.; Liu, B.; Zou, W.; Wu, Y. Facile Colorimetric Nanozyme Sheet for the Rapid Detection of Glyphosate in Agricultural Products Based on Inhibiting Peroxidase-Like Catalytic Activity of Porous Co3O4 Nanoplates. J. Agric. Food Chem. 2021, 69, 3537–3547. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Xu, D.; Wang, G.; Geng, L.; Xu, R.; Wang, G.; Guo, Y.; Sun, X. Novel Colorimetric Aptasensor Based on MOF-Derived Materials and Its Applications for Organophosphorus Pesticides Determination. J. Hazard. Mater. 2022, 440, 129707. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Abd El-Aty, A.M.; Xu, L.; Zhao, J.; Li, J.; Lei, X.; Zhao, Y.; She, Y.; Jin, F.; Wang, J.; et al. Rapid Detection of Prometryn Residues in Agricultural Samples: Method Comparison of the Ic-ELISA and Colloidal Gold Immunochromatographic Test Strips. ACS Agric. Sci. Technol. 2024, 4, 345–355. [Google Scholar] [CrossRef]
- Jara, M.D.L.; Alvarez, L.A.C.; Guimarães, M.C.C.; Antunes, P.W.P.; de Oliveira, J.P. Lateral Flow Assay Applied to Pesticides Detection: Recent Trends and Progress. Environ. Sci. Pollut. Res. Int. 2022, 29, 46487–46508. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Zhang, H.; Zhang, N.; Zheng, X.; Li, W.; Qiu, X.; Yu, D. Development of a Portable Multiplexed Instrument for Multi-Proteins Detection in Human Urine Using Surface Plasmon Resonance. Sens. Actuators B Chem. 2022, 369, 132272. [Google Scholar] [CrossRef]
- Gopal, G.; Roy, N.; Mukherjee, A. Recent Developments in the Applications of GO/rGO-Based Biosensing Platforms for Pesticide Detection. Biosensors 2023, 13, 488. [Google Scholar] [CrossRef] [PubMed]
- Anvisa Pesticide Residue Analysis Program—Report 2017 and 2018. Available online: https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/agrotoxicos/publicacoes/programa-de-analise-de-residuos-de-agrotoxicos-relatorio-2017-e-2018.pdf/view (accessed on 17 April 2024).
- European Food Safety Authority (EFSA); Carrasco Cabrera, L.; Medina Pastor, P. The 2019 European Union Report on Pesticide Residues in Food. EFSA J. 2021, 19, e06491. [Google Scholar] [CrossRef] [PubMed]
- FDA Pesticide Residue Monitoring Report and Data for FY 2018; FDA: Washington, DC, USA, 2018.
- FDA Pesticide Residue Monitoring Report and Data for FY 2019; FDA: Washington, DC, USA, 2019.
- Canadian Food Inspection Agency (CFIA). Safeguarding with Science: Glyphosate Testing in 2015–2016. Available online: https://inspection.canada.ca/food-safety-for-industry/food-chemistry-and-microbiology/food-safety-testing-reports-and-journal-articles/executive-summary/glyphosate-testing/eng/1491846907641/1491846907985 (accessed on 17 April 2024).
- Przybyla, J.; Buser, M.C.; Abadin, H.G.; Pohl, H.R. Evaluation of ATSDR’s MRL and EPA’s RfCs/RfDs: Similarities, Differences, and Rationales. J. Toxicol. Pharmacol. 2020, 4, 1–13. [Google Scholar]
- Macías-Montes, A.; Zumbado, M.; Luzardo, O.P.; Rodríguez-Hernández, Á.; Acosta-Dacal, A.; Rial-Berriel, C.; Boada, L.D.; Henríquez-Hernández, L.A. Nutritional Evaluation and Risk Assessment of the Exposure to Essential and Toxic Elements in Dogs and Cats through the Consumption of Pelleted Dry Food: How Important Is the Quality of the Feed? Toxics 2021, 9, 133. [Google Scholar] [CrossRef] [PubMed]
- Demonte, L.D.; Michlig, N.; Gaggiotti, M.; Adam, C.G.; Beldoménico, H.R.; Repetti, M.R. Determination of Glyphosate, AMPA and Glufosinate in Dairy Farm Water from Argentina Using a Simplified UHPLC-MS/MS Method. Sci. Total Environ. 2018, 645, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Martin-Reina, J.; Dahiri, B.; Carbonero-Aguilar, P.; Soria-Dıaz, M.E.; González, A.G.; Bautista, J.; Moreno, I. Validation of a Simple Method for the Determination of Glyphosate and Aminomethylphosphonic Acid in Human Urine by UPLC-MS/MS. Microchem. J. 2021, 170, 106760. [Google Scholar] [CrossRef]
- Rocío-Bautista, P.; Moreno-González, D.; Martínez-Piernas, A.B.; García-Reyes, J.F.; Molina-Díaz, A. Novel Liquid Chromatography/Mass Spectrometry-Based Approaches for the Determination of Glyphosate and Related Compounds: A Review. Trends Environ. Anal. Chem. 2022, 36, e00186. [Google Scholar] [CrossRef]
- Lindon, J.C.; Tranter, G.E.; Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 376–384. ISBN 978-0-12-803224-4. [Google Scholar]
- Zoller, O.; Rhyn, P.; Rupp, H.; Zarn, J.A.; Geiser, C. Glyphosate Residues in Swiss Market Foods: Monitoring and Risk Evaluation. Food Addit. Contam. Part B 2018, 11, 83–91. [Google Scholar] [CrossRef]
- Savini, S.; Bandini, M.; Sannino, A. An Improved, Rapid, and Sensitive Ultra-High-Performance Liquid Chromatography-High-Resolution Orbitrap Mass Spectrometry Analysis for the Determination of Highly Polar Pesticides and Contaminants in Processed Fruits and Vegetables. J. Agric. Food Chem. 2019, 67, 2716–2722. [Google Scholar] [CrossRef] [PubMed]
- El Agrebi, N.; Tosi, S.; Wilmart, O.; Scippo, M.-L.; de Graaf, D.C.; Saegerman, C. Honeybee and Consumer’s Exposure and Risk Characterisation to Glyphosate-Based Herbicide (GBH) and Its Degradation Product (AMPA): Residues in Beebread, Wax, and Honey. Sci. Total Environ. 2020, 704, 135312. [Google Scholar] [CrossRef]
- Mendonça, C.F.R.; Boroski, M.; Cordeiro, G.A.; Toci, A.T. Glyphosate and AMPA Occurrence in Agricultural Watershed: The Case of Paraná Basin 3, Brazil. J. Environ. Sci. Health Part B 2020, 55, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Fontanella, M.C.; Lamastra, L.; Beone, G.M. Determination of Glyphosate in White and Brown Rice with HPLC-ICP-MS/MS. Molecules 2022, 27, 8049. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.P.F.; Rodrigues, N.R.; Reyes, F.G.R. Glyphosate and Aminomethylphosphonic Acid (AMPA) Residues in Brazilian Honey. Food Addit. Contam. Part B 2021, 14, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Arregui, M.C.; Lenardón, A.; Sanchez, D.; Maitre, M.I.; Scotta, R.; Enrique, S. Monitoring Glyphosate Residues in Transgenic Glyphosate-Resistant Soybean. Pest Manag. Sci. 2004, 60, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Wumbei, A.; Goeteyn, L.; Lopez, E.; Houbraken, M.; Spanoghe, P. Glyphosate in Yam from Ghana. Food Addit. Contam. Part B Surveill. 2019, 12, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Suciu, N.; Russo, E.; Calliera, M.; Luciani, G.P.; Trevisan, M.; Capri, E. Glyphosate, Glufosinate Ammonium, and AMPA Occurrences and Sources in Groundwater of Hilly Vineyards. Sci. Total Environ. 2023, 866, 161171. [Google Scholar] [CrossRef] [PubMed]
- Santilio, A.; Pompili, C.; Giambenedetti, A. Determination of Glyphosate Residue in Maize and Rice Using a Fast and Easy Method Involving Liquid Chromatography–Mass Spectrometry (LC/MS/MS). J. Environ. Sci. Health Part B 2019, 54, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.R.; de Souza, A.P.F. Occurrence of Glyphosate and AMPA Residues in Soy-Based Infant Formula Sold in Brazil. Food Addit. Contam. Part A 2018, 35, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Zhang, W.; Xie, J.; Wang, W.; Lu, T.; Dong, Q.; Yang, H. Monitoring and Risk Assessment of Pesticide Residue in Plant-Soil-Groundwater Systxem about Medlar Planting in Golmud. Environ. Sci. Pollut. Res. Int. 2021, 28, 26413–26426. [Google Scholar] [CrossRef] [PubMed]
- Jansons, M.; Pugajeva, I.; Bartkevičs, V. Occurrence of Glyphosate in Beer from the Latvian Market. Food Addit. Contam. Part A 2018, 35, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Ehling, S.; Reddy, T.M. Analysis of Glyphosate and Aminomethylphosphonic Acid in Nutritional Ingredients and Milk by Derivatization with Fluorenylmethyloxycarbonyl Chloride and Liquid Chromatography–Mass Spectrometry. J. Agric. Food Chem. 2015, 63, 10562–10568. [Google Scholar] [CrossRef] [PubMed]
- Chamkasem, N. Determination of Glyphosate, Maleic Hydrazide, Fosetyl Aluminum, and Ethephon in Grapes by Liquid Chromatography/Tandem Mass Spectrometry. J. Agric. Food Chem. 2017, 65, 7535–7541. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.K.; Farenhorst, A. Quantitation of Glyphosate, Glufosinate, and AMPA in Drinking Water and Surface Waters Using Direct Injection and Charged-Surface Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Chemosphere 2024, 349, 140924. [Google Scholar] [CrossRef] [PubMed]
- Alarape, S.A.; Fagbohun, A.F.; Ipadeola, O.A.; Adeigbo, A.A.; Adesola, R.O.; Adeyemo, O.K. Assessment of Glyphosate and Its Metabolites’ Residue Concentrations in Cultured African Catfish Offered for Sale in Selected Markets in Ibadan, Oyo State, Nigeria. Front. Toxicol. 2023, 5, 1250137. [Google Scholar] [CrossRef] [PubMed]
- da Silva, K.A.; Nicola, V.B.; Dudas, R.T.; Demetrio, W.C.; Maia, L.d.S.; Cunha, L.; Bartz, M.L.C.; Brown, G.G.; Pasini, A.; Kille, P.; et al. Pesticides in a Case Study on No-Tillage Farming Systems and Surrounding Forest Patches in Brazil. Sci. Rep. 2021, 11, 9839. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, J.F.d.; Acayaba, R.D.; Montagner, C.C. The chemistry in the human health risk assessment due pesticides exposure. Quím. Nova 2021, 44, 584–598. [Google Scholar] [CrossRef]
- Fucic, A.; Duca, R.C.; Galea, K.S.; Maric, T.; Garcia, K.; Bloom, M.S.; Andersen, H.R.; Vena, J.E. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. Int. J. Environ. Res. Public. Health 2021, 18, 6576. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, T.M.A.; Benvindo-Souza, M.; de Araújo Nascimento, F.; Woch, J.; dos Reis, F.G.; de Melo e Silva, D. Cancer and Occupational Exposure to Pesticides: A Bibliometric Study of the Past 10 Years. Environ. Sci. Pollut. Res. 2022, 29, 17464–17475. [Google Scholar] [CrossRef] [PubMed]
- EPA. Pesticides Industry Sales and Usage 2006 and 2007 Market Estimates. Available online: https://www.epa.gov/pesticides/pesticides-industry-sales-and-usage-2006-and-2007-market-estimates (accessed on 17 April 2024).
- IARC Monographs Volume 112: Evaluation of Five Organophosphate Insecticides and Herbicides. Available online: https://www.iarc.who.int/news-events/iarc-monographs-volume-112-evaluation-of-five-organophosphate-insecticides-and-herbicides (accessed on 17 April 2024).
- Schinasi, L.; Leon, M.E. Non-Hodgkin Lymphoma and Occupational Exposure to Agricultural Pesticide Chemical Groups and Active Ingredients: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2014, 11, 4449–4527. [Google Scholar] [CrossRef] [PubMed]
- Gusmão, L.C.d.; Ribeiro, J.C.J.; Custódio, M.M. Segurança alimentar e agrotóxicos: A situação do glifosato perante o princípio da precaução. Veredas Direito Direito Ambient. E Desenvolv. Sustentável 2018, 15, 95–125. [Google Scholar] [CrossRef]
- Thongprakaisang, S.; Thiantanawat, A.; Rangkadilok, N.; Suriyo, T.; Satayavivad, J. Glyphosate Induces Human Breast Cancer Cells Growth via Estrogen Receptors. Food Chem. Toxicol. 2013, 59, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The Evidence of Human Exposure to Glyphosate: A Review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to Glyphosate-Based Herbicides and Risk for Non-Hodgkin Lymphoma: A Meta-Analysis and Supporting Evidence. Mutat. Res. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Humans, I.W.G. On the E. of C.R. to Cancer in Experimental Animals. In Some Organophosphate Insecticides and Herbicides; International Agency for Research on Cancer: Lyon, France, 2017. [Google Scholar]
- Bitencourt de Morais Valentim, J.M.; Fagundes, T.R.; Okamoto Ferreira, M.; Lonardoni Micheletti, P.; Broto Oliveira, G.E.; Cremer Souza, M.; Geovana Leite Vacario, B.; Silva, J.C.d.; Scandolara, T.B.; Gaboardi, S.C.; et al. Monitoring Residues of Pesticides in Food in Brazil: A Multiscale Analysis of the Main Contaminants, Dietary Cancer Risk Estimative and Mechanisms Associated. Front. Public Health 2023, 11, 1130893. [Google Scholar] [CrossRef] [PubMed]
- Soukup, S.T.; Merz, B.; Bub, A.; Hoffmann, I.; Watzl, B.; Steinberg, P.; Kulling, S.E. Glyphosate and AMPA Levels in Human Urine Samples and Their Correlation with Food Consumption: Results of the Cross-Sectional KarMeN Study in Germany. Arch. Toxicol. 2020, 94, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Lucia, R.M.; Liao, X.; Huang, W.-L.; Forman, D.; Kim, A.; Ziogas, A.; Norden-Krichmar, T.M.; Goodman, D.; Alvarez, A.; Masunaka, I.; et al. Urinary Glyphosate and AMPA Levels in a Cross-Sectional Study of Postmenopausal Women: Associations with Organic Eating Behavior and Dietary Intake. Int. J. Hyg. Environ. Health 2023, 252, 114211. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Gerona, R.R.; Proctor, C.; Friesen, M.; Ashby, J.L.; Reiter, J.L.; Lui, Z.; Winchester, P.D. Glyphosate Exposure in Pregnancy and Shortened Gestational Length: A Prospective Indiana Birth Cohort Study. Environ. Health 2018, 17, 23. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Diaz, E.; Celis-de la Rosa, A.d.J.; Lozano-Kasten, F.; Trasande, L.; Peregrina-Lucano, A.A.; Sandoval-Pinto, E.; Gonzalez-Chavez, H. Urinary Pesticide Levels in Children and Adolescents Residing in Two Agricultural Communities in Mexico. Int. J. Environ. Res. Public. Health 2019, 16, 562. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A.; Leahy, M.; Jones, K.; Kenny, L.; Coggins, M.A. Glyphosate in Irish Adults—A Pilot Study in 2017. Environ. Res. 2018, 165, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Trasande, L.; India-Aldana, S.; Trachtman, H.; Kannan, K.; Morrison, D.; Christakis, D.A.; Whitlock, K.; Messito, M.J.; Gross, R.S.; Karthikraj, R.; et al. Glyphosate Exposures and Kidney Injury Biomarkers in Infants and Young Children. Environ. Pollut. Barking Essex 1987 2020, 256, 113334. [Google Scholar] [CrossRef] [PubMed]
- Stajnko, A.; Snoj Tratnik, J.; Kosjek, T.; Mazej, D.; Jagodic, M.; Eržen, I.; Horvat, M. Seasonal Glyphosate and AMPA Levels in Urine of Children and Adolescents Living in Rural Regions of Northeastern Slovenia. Environ. Int. 2020, 143, 105985. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, P.; Dualde, P.; Coscollà, C.; Fernández, S.F.; Carbonell, E.; Yusà, V. Biomonitoring of Glyphosate and AMPA in the Urine of Spanish Lactating Mothers. Sci. Total Environ. 2021, 801, 149688. [Google Scholar] [CrossRef] [PubMed]
- Nova, P.; Calheiros, C.S.C.; Silva, M. Glyphosate in Portuguese Adults—A Pilot Study. Environ. Toxicol. Pharmacol. 2020, 80, 103462. [Google Scholar] [CrossRef] [PubMed]
- Nomura, H.; Hamada, R.; Wada, K.; Saito, I.; Nishihara, N.; Kitahara, Y.; Watanabe, S.; Nakane, K.; Nagata, C.; Kondo, T.; et al. Temporal Trend and Cross-Sectional Characterization of Urinary Concentrations of Glyphosate in Japanese Children from 2006 to 2015. Int. J. Hyg. Environ. Health 2022, 242, 113963. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Bowyer, R.C.E.; El Balkhi, S.; Saint-Marcoux, F.; Gardere, A.; Ducarmon, Q.R.; Geelen, A.R.; Zwittink, R.D.; Tsoukalas, D.; Sarandi, E.; et al. Impacts of Dietary Exposure to Pesticides on Faecal Microbiome Metabolism in Adult Twins. Environ. Health 2022, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Balderrama-Carmona, A.P.; Valenzuela-Rincón, M.; Zamora-Álvarez, L.A.; Adan-Bante, N.P.; Leyva-Soto, L.A.; Silva-Beltrán, N.P.; Morán-Palacio, E.F. Herbicide Biomonitoring in Agricultural Workers in Valle Del Mayo, Sonora Mexico. Environ. Sci. Pollut. Res. Int. 2020, 27, 28480–28489. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Kasten, F.; Sierra-Diaz, E.; Chavez, H.G.; Peregrina Lucano, A.A.; Cremades, R.; Pinto, E.S. Seasonal Urinary Levels of Glyphosate in Children From Agricultural Communities. Dose-Response 2021, 19, 15593258211053184. [Google Scholar] [CrossRef] [PubMed]
- Gerona, R.R.; Reiter, J.L.; Zakharevich, I.; Proctor, C.; Ying, J.; Mesnage, R.; Antoniou, M.; Winchester, P.D. Glyphosate Exposure in Early Pregnancy and Reduced Fetal Growth: A Prospective Observational Study of High-Risk Pregnancies. Environ. Health 2022, 21, 95. [Google Scholar] [CrossRef]
- Mesnage, R.; Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Potential Toxic Effects of Glyphosate and Its Commercial Formulations below Regulatory Limits. Food Chem. Toxicol. 2015, 84, 133–153. [Google Scholar] [CrossRef]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over Use of Glyphosate-Based Herbicides and Risks Associated with Exposures: A Consensus Statement. Environ. Health 2016, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Meftaul, I.M.d.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Asaduzzaman, M.; Parven, A.; Megharaj, M. Controversies over Human Health and Ecological Impacts of Glyphosate: Is It to Be Banned in Modern Agriculture? Environ. Pollut. 2020, 263, 114372. [Google Scholar] [CrossRef] [PubMed]
- Samsel, A.; Seneff, S. Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases. Entropy 2013, 15, 1416–1463. [Google Scholar] [CrossRef]
- Moore, L.J.; Fuentes, L.; Rodgers, J.H.; Bowerman, W.W.; Yarrow, G.K.; Chao, W.Y.; Bridges, W.C. Relative Toxicity of the Components of the Original Formulation of Roundup® to Five North American Anurans. Ecotoxicol. Environ. Saf. 2012, 78, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Authority (EFSA), E.F.S. Conclusion on the Peer Review of the Pesticide Risk Assessment of the Active Substance Glyphosate. EFSA J. 2015, 13, 4302. [Google Scholar] [CrossRef]
- Williams, G.M.; Kroes, R.; Munro, I.C. Safety Evaluation and Risk Assessment of the Herbicide Roundup and Its Active Ingredient, Glyphosate, for Humans. Regul. Toxicol. Pharmacol. 2000, 31, 117–165. [Google Scholar] [CrossRef] [PubMed]
- FSCJ. Glyphosate (Pesticides). Food Saf. 2016, 4, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Rueda-Ruzafa, L.; Cruz, F.; Roman, P.; Cardona, D. Gut Microbiota and Neurological Effects of Glyphosate. NeuroToxicology 2019, 75, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gress, S.; Lemoine, S.; Séralini, G.-E.; Puddu, P.E. Glyphosate-Based Herbicides Potently Affect Cardiovascular System in Mammals: Review of the Literature. Cardiovasc. Toxicol. 2015, 15, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, R.; Maradey, J.A.; Dearmin, R.S.; Belford, P.M.; Bhave, P.D. Electrocardiographic Abnormalities Associated with Acute Glyphosate Toxicity. HeartRhythm Case Rep. 2019, 6, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Mesnage, R.; Renney, G.; Séralini, G.-E.; Ward, M.; Antoniou, M.N. Multiomics Reveal Non-Alcoholic Fatty Liver Disease in Rats Following Chronic Exposure to an Ultra-Low Dose of Roundup Herbicide. Sci. Rep. 2017, 7, 39328. [Google Scholar] [CrossRef]
- Gao, H.; Chen, J.; Ding, F.; Chou, X.; Zhang, X.; Wan, Y.; Hu, J.; Wu, Q. Activation of the N-Methyl-d-Aspartate Receptor Is Involved in Glyphosate-Induced Renal Proximal Tubule Cell Apoptosis. J. Appl. Toxicol. 2019, 39, 1096–1107. [Google Scholar] [CrossRef] [PubMed]
- Guyton, K.Z.; Loomis, D.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Scoccianti, C.; Mattock, H.; Straif, K. Carcinogenicity of Tetrachlorvinphos, Parathion, Malathion, Diazinon, and Glyphosate. Lancet Oncol. 2015, 16, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Kwiatkowska, M.; Reszka, E.; Woźniak, K.; Jabłońska, E.; Michałowicz, J.; Bukowska, B. DNA Damage and Methylation Induced by Glyphosate in Human Peripheral Blood Mononuclear Cells (In Vitro Study). Food Chem. Toxicol. 2017, 105, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, M.F.; Canesini, G.; Lorenz, V.; Milesi, M.M.; Varayoud, J.; Ramos, J.G. Epigenetic Changes Associated with Exposure to Glyphosate-Based Herbicides in Mammals. Front. Endocrinol. 2021, 12, 671991. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, M.; Habib, M.E.M.; Howard, C.V.; Jennings, R.C.; Leifert, C.; Nodari, R.O.; Robinson, C.J.; Fagan, J. Teratogenic Effects of Glyphosate-Based Herbicides: Divergence of Regulatory Decisions from Scientific Evidence. Environ. Anal. Toxicol. 2012, 2161-0525. [Google Scholar] [CrossRef]
- Connolly, A.; Jones, K.; Basinas, I.; Galea, K.S.; Kenny, L.; McGowan, P.; Coggins, M.A. Exploring the Half-Life of Glyphosate in Human Urine Samples. Int. J. Hyg. Environ. Health 2019, 222, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Sabarwal, A.; Kumar, K.; Singh, R.P. Hazardous Effects of Chemical Pesticides on Human Health–Cancer and Other Associated Disorders. Environ. Toxicol. Pharmacol. 2018, 63, 103–114. [Google Scholar] [CrossRef]
- Patel, D.M.; Jones, R.R.; Booth, B.J.; Olsson, A.C.; Kromhout, H.; Straif, K.; Vermeulen, R.; Tikellis, G.; Paltiel, O.; Golding, J.; et al. Parental Occupational Exposure to Pesticides, Animals and Organic Dust and Risk of Childhood Leukemia and Central Nervous System Tumors: Findings from the International Childhood Cancer Cohort Consortium (I4C). Int. J. Cancer 2020, 146, 943–952. [Google Scholar] [CrossRef] [PubMed]
- ECHA. Glyphosate Not Classified as a Carcinogen by ECHA. 2017. Available online: https://echa.europa.eu/-/glyphosate-not-classified-as-a-carcinogen-by-echa (accessed on 17 April 2024).
Common Name | Glyphosate—Ammonium Salt (Glyphosate-Ammonium) |
---|---|
IUPAC nomenclature | 2-(phosphonomethylamino) acetic acid |
Chemical name | Ammonium N-[(hydroxyphosphinato) methyl]glycine |
CAS No. | 114370-14-8 |
Synonymy | CP 67573 Glyphosate |
Chemical Group | Substituted Glycine |
Class of use | Herbicide |
Molar mass | 169.05 g/mol |
Molecular formula | C3H7NO5P. × NH3 |
Relevant impurities | N-nitrosoglyphosate: 0.001 g/kg formaldehyde: 1.3 g/kg |
Physical state, appearance, color, and odor | Crystalline solid, odorless, and colorless. |
Fusion point | It cannot be determined up to a temperature of 250 °C using the capillary method. The product decomposes before melting (~235 °C). |
Hydrolysis (1/2 life time and Conditions) | >30 days (pH 5; 7; 9; 25 °C) |
Photolysis (1/2 life time and Conditions) | 01 days (soil; pH 6.1; 22 ± 2 °C) |
Surface tension of solutions (1/2 life time and conditions) | 73.0 nN/m (20 °C) |
Density | 1655 g/mL (20 °C) |
Thermal and air stability | Stable under heating condition of 50 ± 5 °C. Stable at room temperature for 28 days. |
Volatility | Henry’s constant = 2.08 × 10−12 atm × m3 × mol−1 |
Solubility in water | 252.9 mg/mL (pH 3,6; 20 °C) >353 mg/mL (pH 7; 20 °C) >340 mg/mL (pH 9; 20 °C) |
Acetone Solubility | 0.078 g/L (20 °C) |
Ethyl acetate solubility | 0.012 g/L (20 °C) |
Dissociation constant in aqueous medium | pka 1 = 2.72 (25 °C) pka 2 = 5.63 (25 °C) pka 3 = 10.2 (25 °C) |
Complex formation constant with metals in aqueous medium | Low capacity for complex formation with copper, cadmium, and lead. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Morais Valentim, J.M.B.; Coradi, C.; Viana, N.P.; Fagundes, T.R.; Micheletti, P.L.; Gaboardi, S.C.; Fadel, B.; Pizzatti, L.; Candiotto, L.Z.P.; Panis, C. Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health. Foods 2024, 13, 1697. https://doi.org/10.3390/foods13111697
de Morais Valentim JMB, Coradi C, Viana NP, Fagundes TR, Micheletti PL, Gaboardi SC, Fadel B, Pizzatti L, Candiotto LZP, Panis C. Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health. Foods. 2024; 13(11):1697. https://doi.org/10.3390/foods13111697
Chicago/Turabian Stylede Morais Valentim, Juliana Maria Bitencourt, Carolina Coradi, Natália Prudêncio Viana, Tatiane Renata Fagundes, Pâmela Lonardoni Micheletti, Shaiane Carla Gaboardi, Bruna Fadel, Luciana Pizzatti, Luciano Zanetti Pessoa Candiotto, and Carolina Panis. 2024. "Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health" Foods 13, no. 11: 1697. https://doi.org/10.3390/foods13111697
APA Stylede Morais Valentim, J. M. B., Coradi, C., Viana, N. P., Fagundes, T. R., Micheletti, P. L., Gaboardi, S. C., Fadel, B., Pizzatti, L., Candiotto, L. Z. P., & Panis, C. (2024). Glyphosate as a Food Contaminant: Main Sources, Detection Levels, and Implications for Human and Public Health. Foods, 13(11), 1697. https://doi.org/10.3390/foods13111697