Sensory Attributes Driving Preference for Wild Rocket (Diplotaxis tenuifolia) Leaves Tasted as a Single Ingredient and as a Part of a Recipe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rocket Leaves Samples
2.2. Chemical Determinations
2.2.1. Dry Matter and Soluble Solids Content
2.2.2. Sugar Content
2.2.3. Volatile Organic Compounds (VOCs)
2.2.4. Glucosinolates
2.3. Sensory Analysis
2.4. Consumer Evaluations
2.4.1. Rocket Sample Preparation and Presentation
2.4.2. Consumers Recruiting and Acceptability Test
2.5. Statistical Analyses
3. Results
3.1. Sensory Analysis
3.2. Chemical Determinations
3.2.1. Glucosinolates
3.2.2. VOCs
3.3. Consumers Test
3.3.1. Consumers Sample
3.3.2. Hedonic Assessment
3.3.3. Purchase and Consumption Habits, Preferences for Rocket Leaves Shape
4. Discussion
4.1. Chemical and Sensory Characteristics
4.2. Consumers’ Preferences
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bell, L.; Wagstaff, C. Rocket Science: A Review of Phytochemical & Health-Related Research in Eruca & Diplotaxis Species. Food Chem. X 2019, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.; Lignou, S.; Wagstaff, C. High Glucosinolate Content in Rocket Leaves (Diplotaxis tenuifolia and Eruca sativa) after Multiple Harvests Is Associated with Increased Bitterness, Pungency, and Reduced Consumer Liking. Foods 2020, 9, 1799. [Google Scholar] [CrossRef] [PubMed]
- Raffo, A.; Aguzzi, A.; Baiamonte, I.; Buonocore, P.; Ferrari Nicoli, S.; Gambelli, L.; Moneta, E.; Nardo, N.; Peparaio, M.; Ruggeri, S.; et al. Comparison of Nutritional and Sensory Quality of Processed and Unprocessed Wild Rocket Leaves during Cold Storage. Eur. Food Res. Technol. 2022, 248, 2737–2752. [Google Scholar] [CrossRef]
- Bell, L.; Methven, L.; Wagstaff, C. The Influence of Phytochemical Composition and Resulting Sensory Attributes on Preference for Salad Rocket (Eruca sativa) Accessions by Consumers of Varying TAS2R38 Diplotype. Food Chem. 2017, 222, 6–17. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.; Methven, L.; Signore, A.; Oruna-Concha, M.J.; Wagstaff, C. Analysis of Seven Salad Rocket (Eruca sativa) Accessions: The Relationships between Sensory Attributes and Volatile and Non-Volatile Compounds. Food Chem. 2017, 218, 181–191. [Google Scholar] [CrossRef] [PubMed]
- D’Antuono, L.F.; Elementi, S.; Neri, R. Exploring New Potential Health-promoting Vegetables: Glucosinolates and Sensory Attributes of Rocket Salads and Related Diplotaxis and Eruca Species. J. Sci. Food Agric. 2009, 89, 713–722. [Google Scholar] [CrossRef]
- Pasini, F.; Verardo, V.; Cerretani, L.; Caboni, M.F.; D’Antuono, L.F. Rocket Salad (Diplotaxis and Eruca spp.) Sensory Analysis and Relation with Glucosinolate and Phenolic Content. J. Sci. Food Agric. 2011, 91, 2858–2864. [Google Scholar] [CrossRef]
- Spadafora, N.D.; Amaro, A.L.; Pereira, M.J.; Müller, C.T.; Pintado, M.; Rogers, H.J. Multi-Trait Analysis of Post-Harvest Storage in Rocket Salad (Diplotaxis tenuifolia) Links Sensorial, Volatile and Nutritional Data. Food Chem. 2016, 211, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Løkke, M.M.; Seefeldt, H.F.; Edelenbos, M. Freshness and Sensory Quality of Packaged Wild Rocket. Postharvest Biol. Technol. 2012, 73, 99–106. [Google Scholar] [CrossRef]
- Bell, L.; Yahya, H.N.; Oloyede, O.O.; Methven, L.; Wagstaff, C. Changes in Rocket Salad Phytochemicals within the Commercial Supply Chain: Glucosinolates, Isothiocyanates, Amino Acids and Bacterial Load Increase Significantly after Processing. Food Chem. 2017, 221, 521–534. [Google Scholar] [CrossRef]
- Raffo, A.; Senatore, M.; Moneta, E.; Paoletti, F.; Peparaio, M.; Saggia Civitelli, E. Impact of Different Temperature Abuse Scenarios on Sensory Quality and Off-odour Formation in Ready-to-eat Salad Leaves. Int. J. Food Sci. Technol. 2021, 56, 2345–2356. [Google Scholar] [CrossRef]
- Török, Á.; Yeh, C.-H.; Menozzi, D.; Balogh, P.; Czine, P. European Consumers’ Preferences for Fresh Fruit and Vegetables—A Cross-Country Analysis. J. Agric. Food Res. 2023, 14, 100883. [Google Scholar] [CrossRef]
- Torrico, D.D.; Fuentes, S.; Gonzalez Viejo, C.; Ashman, H.; Dunshea, F.R. Cross-Cultural Effects of Food Product Familiarity on Sensory Acceptability and Non-Invasive Physiological Responses of Consumers. Food Res. Int. 2019, 115, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Wills, R.B.H.; Coogan, R.C. Cultural differences in degree of liking of Asian white radish (Raphanus sativus L.). J. Sens. Stud. 2003, 18, 83–87. [Google Scholar] [CrossRef]
- European Commission. Publication of an application for registration of a name pursuant to Article 50(2)(a) of Regulation (EU) No 1151/2012 of the European Parliament and of the Council on quality schemes for agricultural products and foodstuffs. Off. J. Eur. Union C 2020, 254, 17–20. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020XC0803(02)&rid=21 (accessed on 2 May 2024).
- Raffo, A.; Masci, M.; Moneta, E.; Nicoli, S.; Sánchez Del Pulgar, J.; Paoletti, F. Characterization of Volatiles and Identification of Odor-Active Compounds of Rocket Leaves. Food Chem. 2018, 240, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- ISO 9167:2019; Rapeseed and Rapeseed Meals—Determination of Glucosinolates Content—Method Using High-Performance Liquid Chromatography. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/72207.html (accessed on 15 March 2024).
- Wathelet, J.-P.; Iori, R.; Leoni, O.; Rollin, P.; Quinsac, A.; Palmieri, S. Guidelines for glucosinolate analysis in green tissues used for biofumigation. Agroindustria 2004, 3, 257–266. [Google Scholar]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/76667.html (accessed on 2 May 2024).
- ISO 11132:2021; Sensory Analysis—Methodology—Guidelines for the Measurement of the Performance of a Quantitative Descriptive Sensory Panel. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/76669.html (accessed on 2 May 2024).
- Bell, L.; Oloyede, O.O.; Lignou, S.; Wagstaff, C.; Methven, L. Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Mol. Nutr. Food Res. 2018, 62, 1700990. [Google Scholar] [CrossRef] [PubMed]
- Fechner, J.; Kaufmann, M.; Herz, C.; Eisenschmidt, D.; Lamy, E.; Kroh, L.W.; Hanschen, F.S. The Major Glucosinolate Hydrolysis Product in Rocket (Eruca sativa L.), Sativin, Is 1,3-Thiazepane-2-Thione: Elucidation of Structure, Bioactivity, and Stability Compared to Other Rocket Isothiocyanates. Food Chem. 2018, 261, 57–65. [Google Scholar] [CrossRef]
- Raffo, A.; Moneta, E.; Ferrari Nicoli, S.; Paoletti, F. GC-Olfactometric Characterisation of off-Odours in Commercially Packaged Rocket Leaves. Food Packag. Shelf Life 2020, 25, 100540. [Google Scholar] [CrossRef]
- Dinnella, C.; Torri, L.; Caporale, G.; Monteleone, E. An Exploratory Study of Sensory Attributes and Consumer Traits Underlying Liking for and Perceptions of Freshness for Ready to Eat Mixed Salad Leaves in Italy. Food Res. Int. 2014, 59, 108–116. [Google Scholar] [CrossRef]
- Bell, L.; Wagstaff, C. Enhancement Of Glucosinolate and Isothiocyanate Profiles in Brassicaceae Crops: Addressing Challenges in Breeding for Cultivation, Storage, and Consumer-Related Traits. J. Agric. Food Chem. 2017, 65, 9379–9403. [Google Scholar] [CrossRef] [PubMed]
Sensory Attribute | Rocket Cultivar | ANOVA p | |||
---|---|---|---|---|---|
Denver | Marte | Cultivar | Session | Cultivar × Session | |
Evaluation of the intact leaves | |||||
Colour intensity | 5.7 b 1 | 7.5 a | <0.001 | 0.616 | 0.963 |
Colour uniformity | 5.3 b | 6.7 a | <0.001 | 0.236 | 0.377 |
Leaf shape | 7.1 b | 8.8 a | <0.001 | 0.515 | 0.789 |
Integrity (of leaves) | 7.0 a | 7.5 a | 0.095 | 0.385 | 0.979 |
Turgidity (of leaves) | 4.9 b | 5.7 a | 0.011 | 0.421 | 0.297 |
Clam-like off odour | 1.3 a | 0.6 b | 0.048 | 0.655 | 0.865 |
Rotten leaves off-odour | 0.4 a | 0.1 a | 0.095 | 0.267 | 0.419 |
Evaluation after breaking the leaves by hands | |||||
Typical rocket odour | 6.3 a | 6.5 a | 0.577 | 0.515 | 0.475 |
Cut grass odour | 3.8 a | 4.3 a | 0.350 | 0.711 | 0.780 |
Evaluation after tasting | |||||
Bitter taste | 4.8 b | 6.6 a | <0.001 | 0.805 | 0.071 |
Hotness | 4.5 b | 7.1 a | <0.001 | 0.189 | 0.988 |
Pungency | 3.6 b | 6.1 a | <0.001 | 0.838 | 0.641 |
Typical rocket flavour | 6.3 b | 7.4 a | <0.001 | 0.221 | 0.531 |
Fresh green flavour | 4.6 a | 5.1 a | 0.123 | 0.190 | 0.711 |
Rotten leaves off-flavour | 0.4 a | 0.2 a | 0.454 | 0.284 | 0.848 |
Crispness | 5.0 a | 5.6 a | 0.114 | 0.106 | 0.917 |
Chewing consistency | 4.8 b | 5.5 a | 0.042 | 0.550 | 0.683 |
Juiciness | 4.0 a | 3.8 a | 0.627 | 0.783 | 0.602 |
Parameter | Rocket Cultivar | Student’s t-Test p | |
---|---|---|---|
Denver | Marte | ||
Dry matter (%) | 7.85 (0.03) | 8.83 (0.08) | <0.001 |
Soluble solids (° Brix) | 5.4 (0.1) | 6.0 (0.2) | 0.010 |
Sugars (mg/g f.w.) | |||
Fructose | 0.31 (0.05) | 0.43 (0.09) | 0.118 |
Glucose | 2.38 (0.40) | 2.19 (0.46) | 0.630 |
Total sugars | 2.69 (0.46) | 2.63 (0.56) | 0.882 |
Glucosinolates (mg/100 g f.w.) | |||
Glucoraphanin | 2.52 (0.29) | 3.11 (0.07) | 0.007 |
Glucoerucin | 0.93 (0.11) | 0.54 (0.05) | <0.001 |
Dimeric 4-mercaptobutyl glucosinolate | 11.84 (0.55) | 17.58 (0.47) | <0.001 |
4-Hydroxyglucobrassicin | 0.09 (0.02) | 0.06 (0.00) | 0.019 |
Glucobrassicin | 0.02 (0.02) | 0.04 (0.04) | 0.447 |
Total glucosinolates | 15.39 (0.78) | 21.32 (0.56) | <0.001 |
Compound | Rocket Cultivar | Student’s t-Test p | |
---|---|---|---|
Denver | Marte | ||
2-Ethylfuran | 0.042 (0.010) | 0.034 (0.003) | 0.266 |
1-Penten-3-one | 0.020 (0.001) | 0.016 (0.000) | 0.002 |
Hexanal | 0.021 (0.001) | 0.019 (0.002) | 0.208 |
Tetrahydrothiophene | 0.18 (0.04) | 0.11 (0.01) | 0.030 |
E-3-Hexenal | 0.28 (0.03) | 0.24 (0.02) | 0.084 |
Z-3-Hexenal | 2.10 (0.14) | 2.00 (0.20) | 0.503 |
Z-2-Hexenal | 0.34 (0.02) | 0.31 (0.03) | 0.192 |
E-2-Hexenal | 0.47 (0.03) | 0.39 (0.04) | 0.042 |
2-Octanone | 0.056 (0.003) | 0.053 (0.001) | 0.118 |
Z-2-Penten-1-ol | 0.014 (0.000) | 0.013 (0.000) | <0.001 |
6-Methyl-5-hepten-2-one | 0.003 (0.000) | 0.008 (0.004) | 0.088 |
5-Methyl-hexanenitrile | 0.013 (0.002) | 0.008 (0.000) | 0.008 |
3-Hexen-1-ol | 0.17 (0.00) | 0.13 (0.00) | <0.001 |
Nonanal | 0.003 (0.000) | 0.004 (0.001) | 0.100 |
2,4-hexadienal | 0.10 (0.02) | 0.07 (0.00) | 0.060 |
2,4-hexadienal | 0.23 (0.04) | 0.16 (0.01) | 0.046 |
3-Butenyl isothiocyanate | 0.63 (0.04) | 0.39 (0.06) | 0.004 |
2,4-heptadienal | 0.008 (0.001) | 0.010 (0.002) | 0.177 |
Camphor | 0.104 (0.000) | 0.099 (0.001) | 0.001 |
4-Methylpentyl isothiocyanate | 0.17 (0.02) | 0.10 (0.01) | 0.003 |
5-Methylsulfanylpentanenitrile | 0.21 (0.00) | 0.11 (0.01) | <0.001 |
3-(Methylsulfanyl)propyl isothiocyanate | 0.62 (0.00) | 0.79 (0.06) | 0.008 |
4-(Methylsulfanyl)butyl isothiocyanate (erucin) | 23.50 (0.18) | 12.28 (0.67) | <0.001 |
Nonanoic acid | 0.003 (0.002) | 0.003 (0.000) | 0.784 |
Sum of C6 aldehydes | 3.20 (0.21) | 2.93 (0.28) | 0.254 |
Sum of glucosinolate hydrolysis products | 25.15 (0.18) | 13.68 (0.69) | <0.001 |
Rocket Cultivar | Overall (n = 100) | CL 1 (n = 29) | CL 2 (n = 30) | CL 3 (n = 15) | CL 4 (n = 16) | CL 5 (n = 10) | ||
---|---|---|---|---|---|---|---|---|
Single ingredient | Denver | 6.7 b 1 | 7.4 a | 7.7 c | 4.5 b | 5.6 b | 6.6 a | |
Single ingredient | Marte | 5.5 c | 4.9 b | 7.2 bc | 3.1 c | 7.4 a | 2.7 c | |
Recipe | Denver | 7.5 a | 7.3 a | 7.9 ab | 7.7 a | 7.8 a | 5.8 ab | |
Recipe | Marte | 7.3 a | 7.6 a | 8.5 a | 6.9 a | 7.0 a | 4.4 bc | |
Sample | F | 28.817 | 47.959 | 10.342 | 31.447 | 13.394 | 11.915 | |
ANOVA | p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
F | p | |||||||
Subject | 2.922 | <0.001 | ||||||
Preparation | 23.633 | <0.001 | ||||||
Rocket | 89.620 | <0.001 | ||||||
Preparation × Rocket | 14.729 | <0.001 |
Single Ingredient | Recipe | Cochran’s Q (p) 1 | |||
---|---|---|---|---|---|
Denver | Marte | Denver | Marte | ||
Liked attributes | |||||
Hotness | 38 b 2 | 35 b | 15 a | 24 ab | <0.001 |
Bitter taste | 36 ab | 21 a | 27 ab | 39 b | 0.007 |
Aroma | 40 a | 26 a | 72 b | 59 b | <0.001 |
Texture | 61 | 65 | 73 | 73 | 0.083 |
Leaf shape | 38 b | 48 b | 0 a | 0 a | <0.001 |
Disliked attributes | |||||
Hotness | 14 a | 43 b | 5 a | 9 a | <0.001 |
Bitter taste | 25 b | 42 c | 8 a | 11 ab | <0001 |
Aroma | 14 ab | 24 b | 4 a | 12 a | <0.001 |
Texture | 11 | 9 | 11 | 12 | 0.920 |
Leaf shape | 13 b | 9 b | 0 a | 0 a | <0.001 |
All (n = 100) | Cluster 1 (n = 29) | Cluster 2 (n = 30) | Cluster 3 (n = 15) | Cluster 4 (n = 16) | Cluster 5 (n = 10) | χ2 Test (p) 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | n | % | n | % | n | % | n | % | n | % | ||
Usual purchase | ||||||||||||
Unpackaged | 31 | 10 | 34.5 | 8 | 26.7 * 2 | 5 | 33.3 | 6 | 37.5 | 3 | 30 | |
Packaged | 86 | 26 | 89.7 | 27 | 90.0 | 12 | 80.0 | 14 | 87.5 | 7 | 70 | |
Packaged with other salads | 28 | 8 | 27.6 | 11 | 36.7 | 5 | 33.3 | 3 | 18.8 * | 1 | 10 * | 0.039 |
Usual consumption | ||||||||||||
Single ingredient salad | 39 | 12 | 41.4 | 11 | 36.7 | 4 | 26.7 * | 8 | 50.0 § 3 | 4 | 40 | |
Mixed with other salads | 66 | 19 | 65.5 | 23 | 76.7 | 10 | 66.7 | 8 | 50.0 | 6 | 60 | |
As an ingredient in a cold dish | 83 | 26 | 89.7 | 24 | 80.0 | 13 | 86.7 | 12 | 75.0 | 8 | 80 | |
As an ingredient in a cooked dish | 62 | 22 | 75.9 | 20 | 66.7 | 11 | 73.3 § | 8 | 50.0 | 2 | 20 * | <0.001 |
Preference for | ||||||||||||
Round-shaped leaf | 34 | 8 | 27.6 * | 11 | 36.7 | 8 | 53.3 § | 2 | 12.5 * | 5 | 50 § | |
Serrated-shaped leaf | 66 | 21 | 72.4 | 19 | 63.3 | 7 | 46.7 * | 14 | 87.5 § | 5 | 50 * | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raffo, A.; Baiamonte, I.; De Nicola, G.R.; Melini, V.; Moneta, E.; Nardo, N.; Peparaio, M.; Saggia Civitelli, E.; Sinesio, F. Sensory Attributes Driving Preference for Wild Rocket (Diplotaxis tenuifolia) Leaves Tasted as a Single Ingredient and as a Part of a Recipe. Foods 2024, 13, 1699. https://doi.org/10.3390/foods13111699
Raffo A, Baiamonte I, De Nicola GR, Melini V, Moneta E, Nardo N, Peparaio M, Saggia Civitelli E, Sinesio F. Sensory Attributes Driving Preference for Wild Rocket (Diplotaxis tenuifolia) Leaves Tasted as a Single Ingredient and as a Part of a Recipe. Foods. 2024; 13(11):1699. https://doi.org/10.3390/foods13111699
Chicago/Turabian StyleRaffo, Antonio, Irene Baiamonte, Gina Rosalinda De Nicola, Valentina Melini, Elisabetta Moneta, Nicoletta Nardo, Marina Peparaio, Eleonora Saggia Civitelli, and Fiorella Sinesio. 2024. "Sensory Attributes Driving Preference for Wild Rocket (Diplotaxis tenuifolia) Leaves Tasted as a Single Ingredient and as a Part of a Recipe" Foods 13, no. 11: 1699. https://doi.org/10.3390/foods13111699
APA StyleRaffo, A., Baiamonte, I., De Nicola, G. R., Melini, V., Moneta, E., Nardo, N., Peparaio, M., Saggia Civitelli, E., & Sinesio, F. (2024). Sensory Attributes Driving Preference for Wild Rocket (Diplotaxis tenuifolia) Leaves Tasted as a Single Ingredient and as a Part of a Recipe. Foods, 13(11), 1699. https://doi.org/10.3390/foods13111699