Recent Advances in Sample Preparation and Chromatographic/Mass Spectrometric Techniques for Detecting Polycyclic Aromatic Hydrocarbons in Edible Oils: 2010 to Present
Abstract
:1. Introduction
2. Sample Preparation Methods
2.1. Saponification
2.2. Gel Permeation Chromatography
2.3. Liquid-Phase-Based Extraction Methods
2.4. Adsorbent-Based Extraction Methods
2.5. QuEChERS
3. Detection Techniques
3.1. Mass Spectrometry
3.2. Gas Chromatography and Gas-Chromatography–Mass-Spectrometry
3.3. Liquid Chromatography and Liquid-Chromatography–Mass-Spectrometry
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ifegwu, O.C.; Anyakora, C. Polycyclic Aromatic Hydrocarbons: Part I. Exposure. Adv. Clin. Chem. 2015, 72, 277–304. [Google Scholar] [CrossRef] [PubMed]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction–solid-phase extraction–gas chromatography–mass spectrometry. Food Control 2018, 94, 268–275. [Google Scholar] [CrossRef]
- Sess-Tchotch, D.-A.; Kedjebo, K.B.D.; Faulet, B.M.; Fontana-Tachon, A.; Alter, P.; Durand, N.; Grabulos, J.; Montet, D.; Guehi, T.S. Analytical Method Validation and Rapid Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Cocoa Butter Using HPLC-FLD. Food Anal. Meth. 2018, 11, 3138–3146. [Google Scholar] [CrossRef]
- Silva, S.A.d.; Torres, E.A.F.d.S.; Almeida, A.P.d.; Sampaio, G.R. Polycyclic aromatic hydrocarbons content and fatty acids profile in coconut, safflower, evening primrose and linseed oils. Food Chem. 2018, 245, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Cassimiro Belo, R.F.; Nunes, C.M.; Vieira dos Santos, E.; Augusti, D.V.; Pissinatti, R. Single laboratory validation of a SPE method for the determination of PAHs in edible oils by GC-MS. Anal. Methods 2012, 4, 4068–4076. [Google Scholar] [CrossRef]
- Veyrand, B.; Sirot, V.; Durand, S.; Pollono, C.; Matchand, P.; Dervilly-Pinel, G.; Tard, A.; Leblanc, J.C.; Le Bizec, B. Human dietary exposure to polycyclic aromatic hydrocarbons: Results of the second French Total Diet Study. Environ. Int. 2013, 54, 11–17. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. Oilseeds: World Markets and Trade; United States Department of Agriculture-Foreign Agricultural Service: Washington, DC, USA, 2019.
- Yousefi, M.; Shemshadi, G.; Khorshidian, N.; Ghasemzadeh-Mohammadi, V.; Fakhri, Y.; Hosseini, H.; Mousavi Khaneghah, A. Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food Chem. Toxicol. 2018, 118, 480–489. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Bartkiene, E.; Bartkevics, V.; Berzina, Z.; Klementaviciute, J.; Sidlauskiene, S.; Isariene, A.; Zeimiene, V.; Lele, V.; Mozuriene, E. Fatty acid profile and safety aspects of the edible oil prepared by artisans’ at small-scale agricultural companies. Food Sci. Nutr. 2021, 9, 5402–5414. [Google Scholar] [CrossRef]
- Chemical agents and related occupations. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100, pp. 9–562.
- U.S. Environmental Protection Agency. Compendium Method TO 13A—Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography; US Environmental Protection Agency: Cincinnati, OH, USA, 1999.
- European Coal and Steel Community. Opinion of the Scientific Committee on Food on the Risks to Human Health of Polycyclic Aromatic Hydrocarbons in Food; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO); WHO Experts Committee on Food Additives (JECFA). Summary and Conclusions. In Proceedings of the Sixty-Fourth Meeting of the Joint FAO/WHO Experts Committee on Food Additives (JECFA), Rome, Italy, 8–17 February 2005. JECFA/64/SC; 2005. [Google Scholar]
- European Food Safety Authority (EFSA). Polycyclic aromatic hydrocarbons in food-scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 6, 724. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No 835/2011 of 19 August 2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuffs. Off. J. Eur. Union 2011, 215, 1–5. [Google Scholar]
- Sánchez-Arévalo, C.M.; Olmo-García, L.; Fernández-Sánchez, J.F.; Carrasco-Pancorbo, A. Polycyclic aromatic hydrocarbons in edible oils: An overview on sample preparation, determination strategies, and relative abundance of prevalent compounds. Compr. Rev. Food. Sci. Food Saf. 2020, 19, 3528–3573. [Google Scholar] [CrossRef] [PubMed]
- Ingle, R.G.; Zeng, S.; Jiang, H.; Fang, W.-J. Current developments of bioanalytical sample preparation techniques in pharmaceuticals. J. Pharm. Anal. 2022, 12, 517–529. [Google Scholar] [CrossRef]
- Eyring, P.; Preiswerk, T.; Frandsen, H.L.; Duedahl-Olesen, L. Automated micro-solid-phase extraction clean-up of polycyclic aromatic hydrocarbons in food oils for analysis by gas chromatography–orbital ion trap mass spectrometry. J. Sep. Sci. 2020, 44, 600–608. [Google Scholar] [CrossRef]
- Sun, L.; Tian, W.; Fang, Y.; Yang, W.; Hu, Q.; Pei, F. Rapid and simultaneous extraction of phthalates, polychlorinated biphenyls and polycyclic aromatic hydrocarbons from edible oil for GC–MS determination. J. Food Compos. Anal. 2022, 114, 104827. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L.; Shi, L.; Yi, T.; Wen, Y.; Wang, J.; Liu, S. Determination of benzo[a]pyrene in edible oils using phase-transfer-catalyst-assisted saponification and supramolecular solvent microextraction coupled to HPLC with fluorescence detection. J. Sep. Sci. 2016, 40, 480–487. [Google Scholar] [CrossRef]
- Ma, J.K.; Li, K.; Li, X.; Elbadry, S.; Raslan, A.A.; Li, Y.; Mulla, Z.S.; Tahoun, A.B.M.B.; El-Ghareeb, W.R.; Huang, X.C. Levels of polycyclic aromatic hydrocarbons in edible and fried vegetable oil: A health risk assessment study. Environ. Sci. Pollut. Res. 2021, 28, 59784–59791. [Google Scholar] [CrossRef]
- Li, X.; Sun, C.-L.; Xu, Y.; Shan, S.-H.; Zheng, H.; Guo, X.-L.; Hu, J.-N. Construction of novel magnetic nanoparticles for enrichment of benzo(α)pyrene from edible oils followed by HPLC determination. Food Chem. 2022, 386, 132838. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wu, P.; Zhou, P.; Luo, P. Levels and Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Vegetable Oils and Frying Oils by Using the Margin of Exposure (MOE) and the Incremental Lifetime Cancer Risk (ILCR) Approach in China. Foods 2023, 12, 811. [Google Scholar] [CrossRef]
- David, F.; Devos, C.; Dumont, E.; Yang, Z.; Sandra, P.; Huertas-Pérez, J.F. Determination of pesticides in fatty matrices using gel permeation clean-up followed by GC-MS/MS and LC-MS/MS analysis: A comparison of low- and high-pressure gel permeation columns. Talanta 2017, 165, 201–210. [Google Scholar] [CrossRef]
- Wang, J.-H.; Guo, C. Ultrasonication extraction and gel permeation chromatography clean-up for the determination of polycyclic aromatic hydrocarbons in edible oil by an isotope dilution gas chromatography–mass spectrometry. J. Chromatogr. A 2010, 1217, 4732–4737. [Google Scholar] [CrossRef] [PubMed]
- Cotugno, P.; Massari, F.; Aresta, A.; Zambonin, C.; Ragni, R.; Monks, K.; Avagyan, L.; Böttcher, J. Advanced Gel Permeation Chromatography system with increased loading capacity: Polycyclic aromatic hydrocarbons detection in olive oil as a case of study. J. Chromatogr. A 2021, 1639, 461920. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yu, W. Liquid–liquid extraction of polycyclic aromatic hydrocarbons in four different edible oils from China. Food Chem. 2012, 134, 597–601. [Google Scholar] [CrossRef]
- Mo, R.; Zhang, Y.; Ni, Z.; Tang, F. Determination of benzo[a]pyrene in camellia oil via vortex-assisted extraction using the UPLC-FLD method. Food Sci. Biotechnol. 2017, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shen, M.; Liu, X.; Liang, L.; Wu, Y.; Zhang, J.; Xu, X.; Liu, G. The loss and fate of BaA, Chr, BbF, and BaP (PAH4) tracked by stable isotope during frying. Food Chem. 2022, 374, 131769. [Google Scholar] [CrossRef]
- Amzad Hossain, M.; Salehuddin, S.M. Polycyclic aromatic hydrocarbons (PAHs) in edible oils by gas chromatography coupled with mass spectroscopy. Arab. J. Chem. 2012, 5, 391–396. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, Y.; Wang, D.; Wang, Y.; Hou, J. Impact of seed-roasting treatment on polycyclic aromatic hydrocarbons, 3-MCPD esters, heterocyclic amines and volatile components formation in sunflower oil. LWT-Food Sci. Technol. 2023, 185, 115121. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, W.-J.; Deng, Z.-F.; Wang, H.-B.; Peng, B.; Ma, X.; Lan, C.; Zhang, S.-S. Determination of benzo[α]pyrene in edible oil using tetraoxocalix[2]arene[2]triazine bonded silica SPE sorbent. Food Addit. Contam. Part A-Chem. 2018, 35, 1356–1365. [Google Scholar] [CrossRef]
- Wang, J.-P.; Wang, Y.; Guo, X.; Wang, P.; Zhao, T.; Wang, J. Matrix assisted laser desorption/ionization time-of-flight mass spectrometric determination of benzo[a]pyrene using a MIL-101(Fe) matrix. Microchim. Acta 2018, 185, 175. [Google Scholar] [CrossRef]
- Jing, Q.; Chen, L.; Zhao, Q.; Zhou, P.; Li, Y.; Wang, H.; Wang, X. Effervescence-assisted dual microextraction of PAHs in edible oils using lighter-than-water phosphonium-based ionic liquids and switchable hydrophilic/hydrophobic fatty acids. Anal. Bioanal. Chem. 2021, 413, 1983–1997. [Google Scholar] [CrossRef]
- Meng, Z.; Fan, S.; Yuan, X.; Li, Q.; Huang, Y.; Niu, L.; Shi, G.; Zhang, Y. Rapid Screening of 22 Polycyclic Aromatic Hydrocarbons Residues in Vegetable Oils by Gas Chromatography-Electrostatic Field Orbitrap High Resolution Mass Spectrometry. Front. Nutr. 2022, 9, 949025. [Google Scholar] [CrossRef]
- Adib, F.; Afshar Mogaddam, M.R.; Nemati, M.; Farajzadeh, M.A.; Mohebbi, A.; Alizadeh Nabil, A.A. Surfactant-enhanced air-agitation liquid–liquid microextraction of polycyclic aromatic hydrocarbons from edible oil using magnetic deep eutectic solvent prior to HPLC determination. Anal. Methods 2023, 15, 5655–5665. [Google Scholar] [CrossRef]
- Zhou, R.-Z.; Jiang, J.; Mao, T.; Zhao, Y.-S.; Lu, Y. Multiresidue analysis of environmental pollutants in edible vegetable oils by gas chromatography–tandem mass spectrometry. Food Chem. 2016, 207, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.-K.; Liu, Y.-L.; Liu, H.-M.; Zhang, M.-M. One-step solvent extraction followed by liquid chromatography–atmospheric pressure photoionization tandem mass spectrometry for the determination of polycyclic aromatic hydrocarbons in edible oils. Anal. Bioanal. Chem. 2015, 407, 3605–3616. [Google Scholar] [CrossRef] [PubMed]
- Amlashi, N.E.; Hadjmohammadi, M.R. Utilization of water-contained surfactant-based ultrasound-assisted microextraction followed by liquid chromatography for determination of polycyclic aromatic hydrocarbons and benzene in commercial oil sample. J. Iran Chem. Soc. 2016, 13, 1197–1204. [Google Scholar] [CrossRef]
- Taghvaee, Z.; Piravivanak, Z.; Rezaei, K.; Faraji, M. Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Olive and Refined Pomace Olive Oils with Modified Low Temperature and Ultrasound-Assisted Liquid–Liquid Extraction Method Followed by the HPLC/FLD. Food Anal. Meth. 2015, 9, 1220–1227. [Google Scholar] [CrossRef]
- Mohammadi, A.; Malek-Mohammadi Jahani, S.; Kamankesh, M.; Jazaeri, S.; Eivani, M.; Esmaeili, S.; Abdi, S. Determination of Polycyclic Aromatic Hydrocarbons in Edible Oil Using Fast and Sensitive Microwave-assisted Extraction and Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography-Mass Spectrometry. Polycycl. Aromat. Compd. 2018, 40, 705–713. [Google Scholar] [CrossRef]
- Yamini, Y.; Rezazadeh, M.; Seidi, S. Liquid-phase microextraction—The different principles and configurations. Trac-Trends Anal. Chem. 2019, 112, 264–272. [Google Scholar] [CrossRef]
- Tay, K.S.J.; See, H.H. Recent Advances in Dispersive Liquid-Liquid Microextraction for Pharmaceutical Analysis. Crit. Rev. Anal. Chem. 2024, 54, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Mansour, F.R.; Danielson, N.D. Solidification of floating organic droplet in dispersive liquid-liquid microextraction as a green analytical tool. Talanta 2017, 170, 22–35. [Google Scholar] [CrossRef]
- Farrokhzadeh, S.; Razmi, H. Use of chicken feet yellow membrane as a biosorbent in miniaturized solid phase extraction for determination of polycyclic aromatic hydrocarbons in several real samples. Microchem. J. 2018, 142, 403–410. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, X.; Huang, J.; Zhao, C.; Qi, J.; Jin, Q.; Wang, X. Correlations between polycyclic aromatic hydrocarbons and polar components in edible oils during deep frying of peanuts. Food Control 2018, 87, 109–116. [Google Scholar] [CrossRef]
- Shi, L.; Zheng, L.; Liu, R.; Chang, M.; Huang, J.; Jin, Q.; Wang, X. Quantification of polycyclic aromatic hydrocarbons and phthalic acid esters in deodorizer distillates obtained from soybean, rapeseed, corn and rice bran oils. Food Chem. 2019, 275, 206–213. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Shi, L.; Guo, Y.; Wei, L.; Zhang, H.; Wang, X.; Jin, Q. Physicochemical properties and health risk assessment of polycyclic aromatic hydrocarbons of fragrant rapeseed oils in China. J. Sci. Food Agric. 2020, 100, 3351–3359. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, C.; Pang, Y.; Xie, W.; Shen, X. Dispersive solid-phase extraction using the metal–organic framework MIL-101(Cr) for determination of benzo(a)pyrene in edible oil. Anal. Methods 2019, 11, 3467–3473. [Google Scholar] [CrossRef]
- Shi, X.; Li, N.; Wu, D.; Hu, N.; Sun, J.; Zhou, X.; Suo, Y.; Li, G.; Wu, Y. Magnetic covalent organic framework material: Synthesis and application as a sorbent for polycyclic aromatic hydrocarbons. Anal. Methods 2018, 10, 5014–5024. [Google Scholar] [CrossRef]
- Wang, Q.; Lian, J.; Hua, Z.; Yang, Y.; Li, Y.; Hao, X.; Cao, Y.; Zeng, X. Hybrid nanomaterial based on magnetic multiwalled carbon nanotube-octadecylphosphonic acid modified zirconia for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from edible oils. Anal. Methods 2018, 10, 5516–5523. [Google Scholar] [CrossRef]
- Zacs, D.; Rozentale, I.; Reinholds, I.; Bartkevics, V. Multi-Walled Carbon Nanotubes as Effective Sorbents for Rapid Analysis of Polycyclic Aromatic Hydrocarbons in Edible Oils Using Dispersive Solid-Phase Extraction (d-SPE) and Gas Chromatography—Tandem Mass Spectrometry (GC-MS/MS). Food Anal. Methods 2018, 11, 2508–2517. [Google Scholar] [CrossRef]
- Hasanli, F.; Bahmaei, M.; Mohammadiazar, S.; Sharif, A.A.M. Electroless deposition of silver nanofractals on copper wire by galvanic displacement as a simple technique for preparation of porous solid-phase microextraction fibers. J. Sep. Sci. 2019, 42, 3110–3118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Wu, X.; Chen, D.; Zhu, H.; Fang, C.; Zhang, H.; Chen, W.; Zhan, B.; Song, C. Simultaneous Determination of 24 Polycyclic Aromatic Hydrocarbons in Oils by Gas Chromatography-Mass Spectrometry Using an Improved Clean-up Procedure. Food Anal. Methods 2019, 12, 1957–1963. [Google Scholar] [CrossRef]
- Ju, H.; Kim, B.; Kim, J.; Baek, S.-Y. Development of candidate reference method for accurate determination of four polycyclic aromatic hydrocarbons in olive oil via gas chromatography/high-resolution mass spectrometry using 13C-labeled internal standards. Food Chem. 2020, 309, 125639. [Google Scholar] [CrossRef] [PubMed]
- Barp, L.; Moret, S.; Purcaro, G. Monitoring and Occurrence of Heavy PAHs in Pomace Oil Supply Chain Using a Double-Step Solid-Phase Purification and HPLC-FLD Determination. Foods 2022, 11, 2737. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; He, S.-Y.; Wang, F.-H.; Zheng, H.-B.; Meng, Z. Determination of polycyclic aromatic hydrocarbons in edible oil by magnetic solid phase extraction based on a mesoporous molybdenum disulfide/graphite prior to gas chromatography-mass spectrometry. Microchem. J. 2022, 183, 108146. [Google Scholar] [CrossRef]
- Liu, Y.; Chai, Z.; Haixia, Y. Identification of pressed and extracted vegetable oils by headspace GC-MS. Heliyon 2023, 9, e18532. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chu, Q.; Ma, Q.; Chen, H.; Dang, X.; Liu, X. Fabrication and application of Zn5 functionalized copolymer monolithic column for pipette tip micro-solid phase extraction of 4 polycyclic aromatic hydrocarbons in edible oil. Food Chem. 2023, 413, 135605. [Google Scholar] [CrossRef] [PubMed]
- Stenerson, K.K.; Shimelis, O.; Halpenny, M.R.; Espenschied, K.; Ye, M.M. Analysis of Polynuclear Aromatic Hydrocarbons in Olive Oil after Solid-Phase Extraction Using a Dual-Layer Sorbent Cartridge Followed by High-Performance Liquid Chromatography with Fluorescence Detection. J. Agric. Food Chem. 2015, 63, 4933–4939. [Google Scholar] [CrossRef]
- Ji, W.; Zhang, M.; Duan, W.; Wang, X.; Zhao, H.; Guo, L. Phytic acid-stabilized super-amphiphilic Fe3O4-graphene oxide for extraction of polycyclic aromatic hydrocarbons from vegetable oils. Food Chem. 2017, 235, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wei, F.; Luo, Y.-B.; Ding, J.; Xiao, N.; Feng, Y.-Q. Rapid Magnetic Solid-Phase Extraction Based on Magnetic Multiwalled Carbon Nanotubes for the Determination of Polycyclic Aromatic Hydrocarbons in Edible Oils. J. Agric. Food Chem. 2011, 59, 12794–12800. [Google Scholar] [CrossRef] [PubMed]
- Dost, K.; İdeli, C. Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV–Vis detection. Food Chem. 2012, 133, 193–199. [Google Scholar] [CrossRef]
- Wang, G.-H.; Lei, Y.-Q.; Song, H.-C. Exploration of a coordination polymer as a novel sorbent for the solid-phase extraction of benzo[a]pyrene in edible oils. Anal. Methods 2012, 4, 647–651. [Google Scholar] [CrossRef]
- Drabova, L.; Tomaniova, M.; Kalachova, K.; Kocourek, V.; Hajslova, J.; Pulkrabova, J. Application of solid phase extraction and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for fast analysis of polycyclic aromatic hydrocarbons in vegetable oils. Food Control 2013, 33, 489–497. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Park, J.-S.; Chang, M.-S.; Kim, M.-S.; Lee, S.-M.; Kim, J.-H.; Chae, Y.-Z. A simple method for the determination of polycyclic aromatic hydrocarbons (pah) in edible oil employing solid phase extraction (SPE) cartridge purification. Food Sci. Biotechnol. 2013, 22, 241–248. [Google Scholar] [CrossRef]
- Payanan, T.; Leepipatpiboon, N.; Varanusupakul, P. Low-temperature cleanup with solid-phase extraction for the determination of polycyclic aromatic hydrocarbons in edible oils by reversed phase liquid chromatography with fluorescence detection. Food Chem. 2013, 141, 2720–2726. [Google Scholar] [CrossRef] [PubMed]
- Purcaro, G.; Picardo, M.; Barp, L.; Moret, S.; Conte, L.S. Direct-immersion solid-phase microextraction coupled to fast gas chromatography mass spectrometry as a purification step for polycyclic aromatic hydrocarbons determination in olive oil. J. Chromatogr. A 2013, 1307, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-J.; Chen, X.-B.; Fang, L.; Li, C.-L.; Zhao, D.-Y. Determination of Light–Medium–Heavy Polycyclic Aromatic Hydrocarbons in Vegetable Oils by Solid-Phase Extraction and High-Performance Liquid Chromatography with Diode Array and Fluorescence Detection. J. Agric. Food Chem. 2013, 61, 1804–1809. [Google Scholar] [CrossRef]
- Oh, M.-S.; Lee, S.-H.; Moon, M.H.; Lee, D.S.; Park, H.-M. Simultaneous analysis of phthalates, adipate and polycyclic aromatic hydrocarbons in edible oils using isotope dilution-gas chromatography–mass spectrometry. Food Addit. Contam. Part B-Surveill. 2014, 7, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.C.; Lau, J.S.Y. Single laboratory validation of an environmentally friendly single extraction and cleanup method for quantitative determination of four priority polycyclic aromatic hydrocarbons in edible oils and fats. Anal. Methods 2015, 7, 7631–7638. [Google Scholar] [CrossRef]
- Akdoğan, A.; Buttinger, G.; Wenzl, T. Single-laboratory validation of a saponification method for the determination of four polycyclic aromatic hydrocarbons in edible oils by HPLC-fluorescence detection. Food Addit. Contam. Part A-Chem. 2016, 33, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Elaridi, J.; Fakhro, M.; Yamani, O.; Dimassi, H.; Othman, H.; Attieh, Z. GC–MS analysis of polycyclic aromatic hydrocarbons in bottled olive oil marketed in Lebanon. Tox. Res. 2020, 36, 211–220. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, L.; Ma, F.; Li, P. Simultaneous Determination of Aflatoxins and Benzo(a)pyrene in Vegetable Oils Using Humic Acid-Bonded Silica SPE HPLC–PHRED–FLD. Toxins 2022, 14, 352. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Zhang, Z.-H.; Wu, X.-L.; Chen, W.-G.; Zhu, Y.; Fang, C.-F.; Zhao, Y.-G. Three-dimensional ionic liquid functionalized magnetic graphene oxide nanocomposite for the magnetic dispersive solid phase extraction of 16 polycyclic aromatic hydrocarbons in vegetable oils. J. Chromatogr. A 2017, 1489, 29–38. [Google Scholar] [CrossRef]
- Zachara, A.; Gałkowska, D.; Juszczak, L. Method Validation and Determination of Polycyclic Aromatic Hydrocarbons in Vegetable Oils by HPLC-FLD. Food Anal. Meth. 2016, 10, 1078–1086. [Google Scholar] [CrossRef]
- Zheng, H.-B.; Ding, J.; Zheng, S.-J.; Zhu, G.-T.; Yuan, B.-F.; Feng, Y.-Q. Facile synthesis of magnetic carbon nitride nanosheets and its application in magnetic solid phase extraction for polycyclic aromatic hydrocarbons in edible oil samples. Talanta 2016, 148, 46–53. [Google Scholar] [CrossRef]
- Zheng, J.; Kuang, Y.; Zhou, S.; Gong, X.; Ouyang, G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal. Chem. 2023, 95, 218–237. [Google Scholar] [CrossRef]
- Woźniczka, K.; Konieczyński, P.; Plenis, A.; Bączek, T.; Roszkowska, A. SPME as a green sample-preparation technique for the monitoring of phytocannabinoids and endocannabinoids in complex matrices. J. Pharm. Anal. 2023, 13, 1117–1134. [Google Scholar] [CrossRef]
- Zhou, W.; Wieczorek, M.N.; Jiang, R.W.; Pawliszyn, J. Comparison of different approaches for direct coupling of solid-phase microextraction to mass spectrometry for drugs of abuse analysis in plasma. J. Pharm. Anal. 2023, 13, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; Nazal, M.K.; Ihsanullah, I. Novel materials for dispersive (micro) solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples: A review. Anal. Chim. Acta 2021, 1141, 246–262. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M.; Otárola-Jiménez, J. Magnetic solid-phase extraction using carbon nanotubes as sorbents: A review. Anal. Chim. Acta 2015, 892, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Schenck, F.J.; Hobbs, J.E. Evaluation of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Approach to Pesticide Residue Analysis. Bull. Environ. Contam. Toxicol. 2004, 73, 24–30. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S. Analysis of PAHs in oily systems using modified QuEChERS with EMR-Lipid clean-up followed by GC-QqQ-MS. Food Control 2020, 109, 106950. [Google Scholar] [CrossRef]
- Xin, L.; Hu, M.; Ma, X.; Wu, S.; Yoong, J.H.; Chen, S.; Tarmizi, A.H.A.; Zhang, G. Selection of 12 vegetable oils influences the prevalence of polycyclic aromatic hydrocarbons, fatty acids, tocol homologs and total polar components during deep frying. J. Food Compos. Anal. 2022, 114, 104840. [Google Scholar] [CrossRef]
- Sakin, A.E.; Mert, C.; Tasdemir, Y. PAHs, PCBs and OCPs in olive oil during the fruit ripening period of olive fruits. Environ. Geochem. Health 2022, 45, 1739–1755. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Wei, C.; Li, X.; Lai, C.; Zhan, Z.; Jin, Y.; Zhou, L.; Hao, Q.; Yang, J.; Wang, S.; et al. Rapid authentication of different herbal medicines by heating online extraction electrospray ionization mass spectrometry. J. Pharm. Anal. 2023, 13, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Basuri, P.; Sarkar, D.; Paramasivam, G.; Pradeep, T. Detection of Hydrocarbons by Laser Assisted Paper Spray Ionization Mass Spectrometry (LAPSI MS). Anal. Chem. 2018, 90, 4663–4668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-L.; Zhang, M.; Shi, Q.; Jiang, Z.; Tong, L.; Chen, Z.; Tang, B. In Situ Construction of COF-Based Paper Serving as a Plasmonic Substrate for Enhanced PSI-MS Detection of Polycyclic Aromatic Hydrocarbons. ACS Appl. Mater. Interfaces 2021, 13, 43438–43448. [Google Scholar] [CrossRef]
- Hollosi, L.; Wenzl, T. Development and optimisation of a dopant assisted liquid chromatographic-atmospheric pressure photo ionisation-tandem mass spectrometric method for the determination of 15+1 EU priority PAHs in edible oils. J. Chromatogr. A 2011, 1218, 23–31. [Google Scholar] [CrossRef]
Compound | Acronym | Structure |
Benzo(a)anthracene | BaA | |
Benzo(b)fluoranthene | BbF | |
Chrysene | Chr | |
Benzo(a)pyrene | BaP | |
Benzo(k)fluoranthene | BkF | |
Dibenz(a,h)anthracene | DBahA | |
Benzo(g,h,i)perylene | BghiP | |
Indeno(1,2,3-cd)pyrene | IP | |
Naphthalene | Na | |
Acenaphthene | Ace | |
Acenaphthylene | Acy | |
Fluorene | Fl | |
Phenanthrene | Phe | |
Anthracene | A | |
Fluoranthene | F | |
Pyrene | P | |
Cyclopenta(c,d)pyrene | Cpp | |
Methylchrysene | Mch | |
Benzo(j)fluoranthene | BjFA | |
Dibenzo(a,l)pyrene | DBalP | |
Dibenzo(a,e)pyrene | DBaeP | |
Dibenzo(a,i)pyrene | DBaiP | |
Dibenzo(a,h) pyrene | DBahP | |
5-Methylchrysene | 5-Mchr | |
Benzo(e)pyrene | BeP | |
Benzo(c)fluorene | BcFl |
Sample Amount | Analytes | Solvent Usage | Sample Preparation | Detection Techniques | LODs | Recoveries | Linearity Range | Ref. |
---|---|---|---|---|---|---|---|---|
1 g | 4PAHs (BaA etc.) | Cyclohexane | LLE | HPLC-FLD | 0.01–0.03 μg/kg | 70.89–98.00% | 0–32 μg/kg | [3] |
1.5 g | BaP | ACN */ACE * (6:4, v/v) | LLE | MALDI-TOF MS * | 0.1 μg/L | 80.0–114.8% | 0.25–50 μg/L | [34] |
2.0 g | 6PAHs (BaA etc.) | ACN/ACE (60:40, v/v), Fatty acid, and Na2CO3 tablet with LPIL * | EM-LPSH * | HPLC-FLD | 0.02–0.19 μg/kg | 80.12–103.27% | 0.07–0.63–200 μg/kg | [35] |
0.5 g | 22PAHs (BaA etc.) | ACN | LLE | GC-MS | 0.10–0.60 μg/kg | 76.4–115.4% | 1–100 ng/mL | [36] |
2.5 mL | 5PAHs (BaP etc.) | MDES * | ALLME * | HPLC-DAD | 0.04–0.13 ng/g | 75–88% | 0.43–250 ng/g | [37] |
0.5 g | 23PAHs (Ba A etc.) | Hexane-saturated ACN | LLE | GC-MS/MS | 0.1–1.0 μg/kg | 70.0–110.8% | 2–100 μg/L | [38] |
0.25 g | BaP | SUPRAS * | SUSME * | HPLC-FLD | 0.06 μg/kg | 94–102% | 0.03–5.0 ng/mL | [21] |
1 g | 16PAHs (Ba A etc.) | ACN | LLE | LC-APPI-MS/MS | 0.006–0.156 μg/kg | 77.8–106.4% | 0.5–1000 ng/mL | [39] |
/ | 5PAHs (BaA etc.) | Micellar solution | LPME | HPLC-UV | / | >95% | 0.10–200 ng/mL | [40] |
0.5 g | BaP | ACN | LLE | UPLC-FLD | 0.2 μg/kg | 81.0–97.0% | / | [29] |
2.5 g | 15PAHs (Ba A etc.) | ACN/ACE (60:40, v/v), C18, Florisil, and alumina-N | LPME | HPLC-FLD | 0.16–0.97 μg/kg | 75.0–1111.0% | 0.01–90 μg/L | [41] |
1 mL | 14PAHs (BaA etc.) | ACN/ACE (50:50, v/v), methanolic KOH, ethanol, and tetrachloroethylene | MAE-DLLME * | GC-MS | 0.2–2.7 ng/mL | 84.4–101.9% | 2–500 ng/mL | [42] |
Sample Amount | Analytes | Sorbents | Sample Preparation | Detection Techniques | LODs | Recoveries | Linearity Range | Ref. |
---|---|---|---|---|---|---|---|---|
2 mL | 5PHAs (P etc.) | CFYM * | SPE | HPLC-UV | 0.37–38.5 ng/kg | 60–116% | 0.008–132.0 μg/L | [46] |
0.5 g | 16PHAs (BaA etc.) | RP-C18 | LLE-SPE | GC-MS | 4–110 ng/kg | 87–104% | 15–60,000 ng/kg | [2] |
500 mg | 4PHAs (BaA etc.) | C18 | LLE-SPE | UHPLC-FLD | 0.08–0.30 μg/kg | 90.46–96.78% | 0.25–20.00 ng/mL | [4] |
2 g | 13PHAs (BaA etc.) | C18 and Florisil | LLE-SPE | HPLC-FLD | 0.10–0.38 μg/kg | 81.5–107.1% | 1–200 ng/kg | [8] |
0.5 g | 8PHAs (BaA etc.) | MIP * | LLE-SPE | UHPLC-MS/MS | / | 81.40–101.14% | / | [47] |
1.0 g | 16PAHs (BaA etc.) | Si | UE-SPE * | GC-MS | 0.06–0.13 μg/kg | 84.8–115.5% | 0.1–100 ng/mL | [48] |
0.5 g | 4PAHs (BaA etc.) | MIP | SPE | HPLC-FLD | 0.10–0.19 μg/kg | 89.7–109.0% | / | [49] |
/ | 4PAHs (BaA etc.) | SiO2 | SPE | GC-MS | / | / | / | [10] |
10 g | BaP | MIL-101(Cr) | d-SPE | HPLC-FLD | 0.19 ng/mL | 88.8–118.8% | 1–30 ng mL | [50] |
1 g | BaP | SiO2-OCA | LLE-SPE | HPLC-FLD | 0.03 μg/kg | 88.0–122.3% | 0.1–100 μg/kg | [33] |
1 g | 15PAHs (BaA etc.) | Fe3O4 @COF(TpDA) | MSPE | HPLC-DAD | 0.03–0.73 μg/L | 85.5–104.2% | 5–100 μg/L | [51] |
1 g | 6PAHs (Na etc.) | mMWCNT s-ZrO2-C18 | MSPE | HPLC-DAD | 0.06–0.55 ng/g | 93.5–113.2% | 0.2–200 ng/ | [52] |
1.0 g | 4PAHs (BaA etc.) | MWCNT * | d-SPE | GC-MS/MS | 0.10–0.60 μg/kg | 96–107% | 0.1–10 μg/kg | [53] |
10 mL | 6PAHs (Na etc.) | SNF@Cu | SPME | GC-MS | 0.1–1.2 μg/L | 67–104% | 0.3–500 μg/L | [54] |
0.50 g | 24PAHs (BaA etc.) | MIP-PAH special cartridge | LLE-SPE | GC-MS | 0.1–1 μg/kg | 86.0–116% | 1.0–250 μg/L | [55] |
4 μL | 24PAHs (BaA etc.) | Florisil and C18/Z-Sep | μSPE | GC-MS | / | 53–118% | 5–50 ng/mL | [19] |
5 g | 4PAHs (BaA etc.) | EZ-POP NP dual-layer and NH2 | LLE-SPE | GC-HRMS | 0.08–0.1 μg/kg | 97.5–102% | / | [56] |
0.20 g | 8PAHs (BaA etc.) | Silica-Amino | SPE | HPLC-FLD | 0.03–0.21 μg/kg | 56.5–109.4% | 0.1–89.8 μg/kg | [57] |
0.25 g | BaP | Fe2O3 @DA/GO | MSPE | HPLC-FLD | 0.13 μg/kg | 73.5–121% | / | [23] |
2 mL | 4PAHs (BaA etc.) | Si | LLE-SPE | GC-MS | 0.27–0.85 μg/L | 67.32–86.78% | / | [30] |
25.0 g | 13PAHs (BaA etc.) | mm-MoS2-GN MNPs | MSPE | GC-MS | 0.10–2.50 μg/kg | 70.2–112.6% | / | [58] |
5 g | Naphthalene,1-methyl | / | HS-SPME | GC-MS | / | / | / | [59] |
5.0 mL | 4PAHs (Na etc.) | Zn5 copolymerized monolithic | μ-SPE | HPLC-UV | 0.050–1.5 μg/L | 86.3–101.5% | 0.15–250 μg/L | [60] |
500 μL | 16PAHs (BaA etc.) | Florisil, a mixture of zirconia-coated silica and C18 | SPE | HPLC-FLD | 0.19–1.01 μg/kg | >75% | 0.5–20 μg/kg | [61] |
20 g | 8PAHs (BaP etc.) | GOPA@Fe2O3 * | MSPE | HPLC-UV | 0.06–0.15 ng/g | 85.6–102.3% | 0.2–200 ng/g | [62] |
1 g | 8PAHs (BaA etc.) | mMWCNT | MSPE | GC-MS | 0.10–0.88 ng/g | 87.8–122.3% | 1–200 ng/g | [63] |
2.0 g | 8PAHs (BaA etc.) | C18 and silica | LLE-SPE | GC-MS | 0.04–0.23 μg/kg | >80% | 0–4 μg/kg | [5] |
50 mL | 9PAHs (BaA etc.) | House-made silica–alumina | LLE-SPE | HPLC-UV | 0.26–1.15 μg/L | 75.22–127.26% | / | [64] |
2.5 g | 8PAHs (BaA etc.) | Silica gel | LLE-SPE | GC-MS | 1.9–3.1 μg/mL | 56–84% | 2–1000 μg/mL | [31] |
0.5 g | BaP | [Zn(BTA)2] n coordination polymer | LLE-SPE | GC-MS | 0.075 μg/kg | 88.7–106% | 0.25–10 ng/mL | [65] |
1 g | 16PAHs (BaA etc.) | Florisil | LLE-SPE | GC-MS | / | 70.11–127.92% | 5–6000 ng/mL | [28] |
2.5 g | 16PAHs (BaA etc.) | MIPs | SPE | GC×GC-TOFMS | / | 70–99% | / | [66] |
2 g | 15PAHs (BaA etc.) | SDB-L | SPE | GC-MS/MS | 0.01–0.06 μg/kg | 55.1–105.0% | / | [67] |
1 g | 16PAHs (BaA etc.) | Alumina-N | LLE-SPE | HPLC-FLD | 0.13–3.13 μg/kg | 45.9–118.5% | 0.25–150 μg/kg | [68] |
500 mg | 10PAHs (BaA etc.) | Carbopack Z/PDMS | DI-SPME * | GC-MS | / | / | 0.10–7.93 mg/kg | [69] |
2.5 g | 16PAHs (BaA etc.) | ProElut C18 | LLE-SPE | HPLC-DAD-FLD | 0.01–2.35 μg/kg | >70% | 0.05–2000 μg/kg | [70] |
4 g | 8PAHs (BaA etc.) | Florisil | LLE-SPE | GC-MS | 0.15–0.77 μg/kg | 80.6–97.8% | 0.15–10 μg/kg | [71] |
0.4 g | 4PAHs (BaA etc.) | EZ-POP NP | SPE | GC-MS | 0.1 μg/kg | 86–114% | 0.1–60.0 μg/kg | [72] |
1 g | 4PAHs (BaA etc.) | Silica | LLE-SPE | HPLC-FLD | 0.06–0.12 μg/kg | >84.8% | 0.2–10 μg/L | [73] |
0.500 g | 16PAHs (BaA etc.) | EZ-POP NP | SPE | GC-EI-MS * | 0.35–1.1 μg/kg | 85–98% | / | [74] |
2 g | BaP | HAS | SPE | HPLC-PHRED-FLD | 0.01 μg/kg | 66.9–118.4% | / | [75] |
5.0 g | 16PAHs (BaA etc.) | 3D-IL@mGO * | MSPE | GC-MS | 0.05–0.30 μg/kg | 80.2–115% | / | [76] |
0.4 g | 4PAHs (BaA etc.) | Alumina | LLE-SPE | HPLC-FLD | 0.18 μg/kg | 80–110% | / | [77] |
20.0 g | 8PAHs (BaA etc.) | Magnetic CN nanosheets | MSPE | GC-MS | 0.4–0.9 ng/g | 91.0–124.1% | 0.5–100 ng/g | [78] |
Sample Amount | Analytes | Sorbents | Sample Preparation | Detection Techniques | LODs | Recoveries | Linearity Range | Ref. |
---|---|---|---|---|---|---|---|---|
2 g | 16PAHs (BaA etc.) | EMR-Lipids * | QuEChERS | GC-QqQ-MS * | 0.06–0.13 μg/kg | 66.72–112.87% | 1–200 μg/kg | [85] |
2 g | 13PAHs (BaA etc.) | Z-Sep+-C18 | QuEChERS | GC-MS | 0.05 mg/kg | 70.9–110% | 0.01–0.5 μg/mL | [20] |
2 g | 16PAHs (BaA etc.) | EMR-Lipids | QuEChERS | GC-QqQ-MS | 0.06–0.12 μg/kg | / | / | [86] |
5 g | 16PAHs (BaA etc.) | GPC | QuEChERS | GC-MS | 0–37.85 ng/kg | / | / | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Li, X.; Zheng, Y.; Qin, Q.; Chen, D. Recent Advances in Sample Preparation and Chromatographic/Mass Spectrometric Techniques for Detecting Polycyclic Aromatic Hydrocarbons in Edible Oils: 2010 to Present. Foods 2024, 13, 1714. https://doi.org/10.3390/foods13111714
Gao J, Li X, Zheng Y, Qin Q, Chen D. Recent Advances in Sample Preparation and Chromatographic/Mass Spectrometric Techniques for Detecting Polycyclic Aromatic Hydrocarbons in Edible Oils: 2010 to Present. Foods. 2024; 13(11):1714. https://doi.org/10.3390/foods13111714
Chicago/Turabian StyleGao, Jiayi, Xingyue Li, Yuanyuan Zheng, Qian Qin, and Di Chen. 2024. "Recent Advances in Sample Preparation and Chromatographic/Mass Spectrometric Techniques for Detecting Polycyclic Aromatic Hydrocarbons in Edible Oils: 2010 to Present" Foods 13, no. 11: 1714. https://doi.org/10.3390/foods13111714
APA StyleGao, J., Li, X., Zheng, Y., Qin, Q., & Chen, D. (2024). Recent Advances in Sample Preparation and Chromatographic/Mass Spectrometric Techniques for Detecting Polycyclic Aromatic Hydrocarbons in Edible Oils: 2010 to Present. Foods, 13(11), 1714. https://doi.org/10.3390/foods13111714