Kidney Bean Protein Prevents High-Fat and High-Fructose Diet-Induced Obesity, Cognitive Impairment, and Disruption of Gut Microbiota Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Treatment
2.2. Raw Materials
2.3. Morris Water-Maze Tests
2.4. Steps to Obtain 16S rRNA Gene Sequences
2.5. Untargeted Metabolomics of the Liver
2.6. Targeted Metabolomics of Brain Tissues
2.7. Data Analysis
3. Results and Discussion
3.1. Effect of Supplementary Kidney Bean Protein on the Growth Profile of Obese Rats
3.2. Gut Microbiota Composition in Rats
3.3. Liver Non-Targeted Metabolomics Analysis
3.4. Brain-Targeted Metabolomics Analysis
3.5. Analysis of the Correlation among Gut Microbiota, Hepatic Lipid Metabolites, and Brain Metabolites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taylor, V.H.; MacQueen, G.M. Cognitive dysfunction associated with metabolic syndrome. Obes. Rev. 2007, 8, 409–418. [Google Scholar] [CrossRef]
- Puglielli, L.T.R.; Kovacs, D. Alzheimer’s disease:thecholesterol connection. Nat. Neurosci. 2003, 6, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, W.; Yang, H.; Mi, Z.; Tan, S.; Lei, X. Polysaccharides from Tumorous stem mustard prevented high fructose diet-induced non-alcoholic fatty liver disease by regulating gut microbiota, hepatic lipid metabolism, and the AKT/FOXO1/MAPK signaling pathway. J. Funct. Foods 2023, 102, 105448. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Q.; Zheng, M.; Hao, S.; Lum, J.S.; Chen, X.; Huang, X.-F.; Yu, Y.; Zheng, K. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J. Neuroinflamm. 2020, 17, 77. [Google Scholar] [CrossRef]
- Ukena, S.N.; Singh, A.; Dringenberg, U.; Engelhardt, R.; Seidler, U.; Hansen, W.; Bleich, A.; Bruder, D.; Franzke, A.; Rogler, G.; et al. Probiotic Escherichia coli Nissle 1917 Inhibits Leaky Gut by Enhancing Mucosal Integrity. PLoS ONE 2007, 2, e1308. [Google Scholar] [CrossRef] [PubMed]
- Telesford, K.M.; Yan, W.; Ochoa-Reparaz, J.; Pant, A.; Kircher, C.; Christy, M.A.; Begum-Haque, S.; Kasper, D.L.; Kasper, L.H. A commensal symbiotic factor derived from Bacteroides fragilis promotes human CD39+Foxp3+ T cells and Treg function. Gut Microbes 2015, 6, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Saji, N.; Niida, S.; Murotani, K.; Hisada, T.; Tsuduki, T.; Sugimoto, T.; Kimura, A.; Toba, K.; Sakurai, T. Analysis of the relationship between the gut microbiome and dementia: A cross-sectional study conducted in Japan. Sci. Rep. 2019, 9, 1008. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 2017, 49, 60–68. [Google Scholar] [CrossRef]
- Gehrig, J.L.; Venkatesh, S.; Chang, H.-W.; Hibberd, M.C.; Kung, V.L.; Cheng, J.; Chen, R.Y.; Subramanian, S.; Cowardin, C.A.; Meier, M.F.; et al. Effects of microbiota-directed foods in gnotobiotic animals and undernourished children. Science 2019, 365, eaau4732. [Google Scholar] [CrossRef]
- Gao, Y.; Hao, X.; Hu, Y.; Zhou, N.; Ma, Q.; Zou, L.; Yao, Y. Modification of the functional properties of chickpea proteins by ultrasonication treatment and alleviation of malnutrition in rat. Food Funct. 2023, 14, 1773–1784. [Google Scholar] [CrossRef]
- Shi, Z.; Blecker, C.; Richel, A.; Wei, Z.; Chen, J.; Ren, G.; Guo, D.; Yao, Y.; Haubruge, E. Three-dimensional (3D) printability assessment of food-ink systems with superfine ground white common bean (Phaseolus vulgaris L.) protein based on different 3D food printers. LWT 2022, 155, 112906. [Google Scholar] [CrossRef]
- Brown, E.M.; Wlodarska, M.; Willing, B.P.; Vonaesch, P.; Han, J.; Reynolds, L.A.; Arrieta, M.C.; Uhrig, M.; Scholz, R.; Partida, O.; et al. Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat. Commun. 2015, 6, 7806. [Google Scholar] [CrossRef] [PubMed]
- Diana, F.M.; Rimbawan, R.; Damayanthi, E.; Dewi, M.; Juniantito, V.; Lipoeto, N.I. Effect of Biscuits Enriched with Bilih Fish (Mystacoleucus padangensis) on Growth of Experimental Rats. J. Gizi Dan. Pangan 2020, 15, 11–18. [Google Scholar] [CrossRef]
- Liu, Z.; Dai, X.; Zhang, H.; Shi, R.; Hui, Y.; Jin, X.; Zhang, W.; Wang, L.; Wang, Q.; Wang, D.; et al. Gut microbiota mediates intermittent-fasting alleviation of diabetes-induced cognitive impairment. Nat. Commun. 2020, 11, 855. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Zhu, Y.; Teng, C.; Yao, Y.; Ren, G.; Richel, A. Anti-obesity effects of alpha-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris L.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct. 2020, 11, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Du, S.K.; Wang, H.; Cai, M. In vitro antioxidant activity of extracts from common legumes. Food Chem. 2014, 152, 462–466. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Y.; Shi, Z.; Zhou, N.; Ren, G.; Hao, X.; Zou, L.; Yao, Y. Mung Bean Protein Suppresses Undernutrition-Induced Growth Deficits and Cognitive Dysfunction in Rats via Gut Microbiota-TLR4/NF-kB Pathway. J. Agric. Food Chem. 2021, 69, 12566–12577. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.Q.; Shi, Y.C.; Lin, S.; Chen, X.R. Metabolic disorders on cognitive dysfunction after traumatic brain injury. Trends Endocrinol. Metab. 2022, 33, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Hao, R.; Lv, X.; Zhou, X.; Li, D.; Zhang, C. Nuciferine ameliorates high-fat diet-induced disorders of glucose and lipid metabolism in obese mice based on the gut–liver axis. Food Front. 2023, 5, 188–201. [Google Scholar] [CrossRef]
- Jeong, J.J.; Woo, J.Y.; Kim, K.A.; Han, M.; Kim, D.H. Lactobacillus pentosus var. plantarum C29 ameliorates age-dependent memory impairment in Fischer 344 rats. Lett. Appl. Microbiol. 2015, 60, 307–314. [Google Scholar] [CrossRef]
- Jung, I.H.; Jung, M.A.; Kim, E.J.; Han, M.J.; Kim, D.H. Lactobacillus pentosus var. plantarum C29 protects scopolamine-induced memory deficit in mice. J. Appl. Microbiol. 2012, 113, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; O’Riordan, M.X.D. Regulation of Bacterial Pathogenesis by Intestinal Short-Chain Fatty Acids. Adv. Appl. Microbiol. 2013, 85, 93–118. [Google Scholar] [PubMed]
- Polis, B.; Squillario, M.; Gurevich, V.; Srikanth, K.D.; Assa, M.; Samson, A.O. Effects of Chronic Arginase Inhibition with Norvaline on Tau Pathology and Brain Glucose Metabolism in Alzheimer’s Disease Mice. Neurochem. Res. 2022, 47, 1255–1268. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.; López-Jurado, M.; Wanden-Berghe, C.; Sanz-Valero, J.; Porres, J.M.; Kapravelou, G. Beneficial effects of legumes on parameters of the metabolic syndrome: A systematic review of trials in animal models. Br. J. Nutr. 2016, 116, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Kawade, N.; Yamanaka, K. Novel insights into brain lipid metabolism in Alzheimer’s disease: Oligodendrocytes and white matter abnormalities. FEBS Open Bio 2024, 14, 194–216. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Yang, H.T.; Lane, H.Y. D-glutamate, D-serine, and D-alanine differ in their roles in cognitive decline in patients with Alzheimer’s disease or mild cognitive impairment. Pharmacol. Biochem. Behav. 2019, 185, 172760. [Google Scholar] [CrossRef] [PubMed]
- Keller, K.A.; Chu, Y.; Grider, A.; Coffield, J.A. Supplementation with L-histidine during dietary zinc repletion improves short-term memory in zinc-restricted young adult male rats. J. Nutr. 2000, 130, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Avgerinos, K.I.; Spyrou, N.; Bougioukas, K.I.; Kapogiannis, D. Effects of creatine supplementation on cognitive function of healthy individuals: A systematic review of randomized controlled trials. Exp. Gerontol. 2018, 108, 166–173. [Google Scholar] [CrossRef]
- Bavaresco, C.S.; Zugno, A.I.; Tagliari, B.; Wannmacher, C.M.; Wajner, M.; Wyse, A.T. Inhibition of Na+, K+-ATPase activity in rat striatum by the metabolites accumulated in Lesch-Nyhan disease. Int. J. Dev. Neurosci. 2004, 22, 11–17. [Google Scholar] [CrossRef]
- Polis, B.; Gurevich, V.; Assa, M.; Samson, A.O. Norvaline Restores the BBB Integrity in a Mouse Model of Alzheimer’s Disease. Int. J. Mol. Sci. 2019, 20, 4616. [Google Scholar] [CrossRef] [PubMed]
Component | ND | HFFD | HFFD + LP | HFFD + KP |
---|---|---|---|---|
Casein/g | 200 | 200 | 70 | - |
L-cystine/g | 3 | 3 | 3 | 3 |
Kidney bean protein/g | - | - | - | 200 |
Corn starch/g | 397.5 | 217.5 | 347.5 | 217.5 |
Maltodextrin 10/g | 132 | 132 | 132 | 132 |
Sucrose/g | 100 | 100 | 100 | 100 |
Cellulose, BW200/g | 50 | 50 | 50 | 50 |
Lard/g | 70 | 250 | 250 | 250 |
Vitamin mix V10037/g | 10 | 10 | 10 | 10 |
Mineral mix S10022G/g | 35 | 35 | 35 | 35 |
Choline bitartrate/g | 2.5 | 2.5 | 2.5 | 2.5 |
Energy supply ratio of each nutrition component | ||||
Protein (%) | 19 | 18 | 6 | 18 |
Carbohydrate (%) | 65 | 37 | 49 | 37 |
Fat (%) | 15 | 45 | 45 | 45 |
Group | Week 0 | Week 2 | Week 4 | Week 6 | Week 8 | |
---|---|---|---|---|---|---|
Body weight (g) | ND | 77.84 ± 3.47 b | 172.65 ± 8.57 a | 236.93 ± 5.65 b | 317.04 ± 8.10 c | 391.03 ± 7.95 b |
HFFD | 85.11 ± 4.60 a | 180.76 ± 6.87 a | 250.64 ± 10.22 a | 344.14 ± 8.8 a | 430.28 ± 14.92 a | |
HFFD + LP | 84.46 ± 6.58 ab | 176.75 ± 10.74 a | 244.61 ± 9.90 ab | 337.14 ± 12.45 ab | 403.09 ± 11.69 b | |
HFFD + KP | 85.55 ± 5.60 a | 177.49 ± 7.27 a | 243.94 ± 7.61 ab | 328.60 ± 8.53 bc | 397.18 ± 8.11 b | |
Tail length (cm) | ND | 9.71 ± 0.57 a | 13.18 ± 0.84 a | 14.80 ± 0.75 b | 16.31 ± 0.69 ab | 18.23 ± 0.80 a |
HFFD | 10.19 ± 0.57 a | 13.49 ± 1.20 a | 15.33 ± 1.15 a | 17.03 ± 1.02 a | 18.75 ± 1.08 a | |
HFFD + LP | 10.39 ± 0.20 a | 13.01 ± 0.77 a | 14.08 ± 0.87 ab | 15.40 ± 0.73 b | 16.13 ± 0.73 b | |
HFFD + KP | 11.45 ± 3.39 a | 13.34 ± 0.72 a | 14.95 ± 0.67 ab | 16.48 ± 0.59 a | 18.05 ± 0.84 a | |
Body weight/Tail length | ND | 8.03 ± 0.40 a | 13.12 ± 0.44 a | 16.04 ± 0.67 b | 19.46 ± 0.65 b | 21.48 ± 0.73 c |
HFFD | 8.36 ± 0.26 a | 13.47 ± 0.81 a | 16.41 ± 0.83 b | 20.27 ± 0.98 b | 23.00 ± 1.05 a | |
HFFD + LP | 8.13 ± 0.55 a | 13.60 ± 0.69 a | 17.42 ± 0.79 a | 21.93 ± 1.07 a | 25.03 ± 0.95 b | |
HFFD + KP | 7.89 ± 1.51 a | 13.30 ± 0.44 a | 16.23 ± 0.56 b | 19.86 ± 0.50 b | 21.96 ± 0.98 bc |
Group | 1 | 2 | 3 | 4 |
---|---|---|---|---|
ND | 41.00 ± 1.41 d | 30.50 ± 1.50 c | 26.88 ± 1.27 b | 24.50 ± 0.87 c |
HFFD | 46.13 ± 1.83 b | 33.13 ± 1.45 b | 28.00 ± 1.12 b | 28.50 ± 1.66 b |
HFFD + LP | 59.00 ± 0.71 a | 52.00 ± 2.18 a | 41.25 ± 2.11 a | 41.00 ± 1.41 a |
HFFD + KP | 43.5 ± 1.87 c | 31.13 ± 2.03 bc | 27.38 ± 1.87 b | 26.00 ± 1.22 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Li, S.; Su, H.; Zhou, N.; Yao, Y. Kidney Bean Protein Prevents High-Fat and High-Fructose Diet-Induced Obesity, Cognitive Impairment, and Disruption of Gut Microbiota Composition. Foods 2024, 13, 1718. https://doi.org/10.3390/foods13111718
Jiang C, Li S, Su H, Zhou N, Yao Y. Kidney Bean Protein Prevents High-Fat and High-Fructose Diet-Induced Obesity, Cognitive Impairment, and Disruption of Gut Microbiota Composition. Foods. 2024; 13(11):1718. https://doi.org/10.3390/foods13111718
Chicago/Turabian StyleJiang, Chunyang, Shiyu Li, Hang Su, Nong Zhou, and Yang Yao. 2024. "Kidney Bean Protein Prevents High-Fat and High-Fructose Diet-Induced Obesity, Cognitive Impairment, and Disruption of Gut Microbiota Composition" Foods 13, no. 11: 1718. https://doi.org/10.3390/foods13111718
APA StyleJiang, C., Li, S., Su, H., Zhou, N., & Yao, Y. (2024). Kidney Bean Protein Prevents High-Fat and High-Fructose Diet-Induced Obesity, Cognitive Impairment, and Disruption of Gut Microbiota Composition. Foods, 13(11), 1718. https://doi.org/10.3390/foods13111718