Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review
Abstract
:1. Introduction
2. Extraction Technique of Chickpea Protein
2.1. Wet Milling
2.2. Dry Fraction
Air Classification
2.3. Wet Extraction Methods
2.3.1. Alkaline Extraction Followed by Isoelectric Precipitation
2.3.2. Ultrafiltration Technique
2.3.3. Use of Enzymes in Protein Extraction
2.3.4. Salt Extraction
Method | Protein Yield (%) | Protein Purity (%) | Advantages | References |
---|---|---|---|---|
Wet milling | 11.26–49 | 49.36–94.2 | High protein yield, fat absorption rate, and starch particle integrity. Light in color Low content of fat | [5,19,44] |
Air classification and milling | 11–31 | 29–46 | Less energy requirement Preserve the native functionality of a protein. Chemical free treatment Higher water-holding capacity, foaming capacity, emulsification, and nitrogen solubility index. | [32] |
Alkaline extraction followed by isoelectric precipitation | 85–90 | 86–91 | high-yield protein high protein purity | [5,45] |
Ultrafiltration | 67–87 | 50–55 | High product throughput Lower complexity Commercial availability of systems with high-productivity designs Prevents loss of enzyme activity Minimal product degradation Protein retention increases with time | [52,53,54] |
Salt extraction | 80–90 | 88–90 | Increasing hydration and water binding capacity Increasing the binding properties of proteins to improve texture Reducing solvent consumption | [64] |
Enzymatic extraction of protein | 93 | 80–95 | Increases the protein yield and purity Enhanced the functional properties | [46] |
3. Techno-Functional Properties of Chickpea Protein
3.1. Protein Solubility (PS)
3.2. Oil-Holding Capacity (OHC)
3.3. Water-Holding Capacity (WHC)
3.4. Emulsifying Capacity and Stability (EC and ES)
3.5. Foaming Capacity
3.6. Gelling Properties
Functional Property | Description | Influencing Factors | Extraction Method Impact | References |
---|---|---|---|---|
Protein Solubility (PS) |
| pH, temperature, ionic strength, solvent type | Isoelectric precipitation achieves higher solubility (91.20%), while wet extraction (67.3%), salt extraction (30.16%), and ultrafiltration (60%) may lead to denaturation and lower solubility. | [60,69,70,71] |
Oil-Holding Capacity (OHC) |
| Particle size, density, amino acid composition, extraction method | Wet extraction may induce protein denaturation leading to higher OHC (2.33 g/g), while isoelectric precipitation maintains protein structure, resulting in slightly lower OHC (2.30 g/g). | [60,69,70,71] |
Water-Holding Capacity (WHC) |
| Protein conformation, extraction method | Isoelectric precipitation maintains protein structure, resulting in higher WHC (3.65 g/g), while other methods may induce denaturation and lower WHC (1.56 g/g for wet extraction). | [60,69,70,71] |
Emulsifying Capacity (EC) |
| Protein properties, pH, ionic strength, temperature | Wet extraction may induce more denaturation, enhancing EC (26.47 to 28.5 m²/g), while isoelectric precipitation maintains protein structure, resulting in slightly lower EC (25.17 m²/g). | [60,69,70,71] |
Emulsifying Stability (ES) |
| Protein properties, pH, ionic strength, temperature | The extraction method impacts ES, with wet extraction generally having higher stability compared to isoelectric precipitation (e.g., 14.09 min for isoelectric precipitation). | [60,69,70,71] |
Foaming Capacity |
| Protein properties, pH, temperature, extraction method | Ultrafiltration may result in higher foaming capacity (around 90%), but isoelectric precipitation leads to higher stability (around 94.49%). | [60,69,70,71] |
Gelling Properties |
| Protein content, heat treatment, ionic/reducing agents, non-protein constituents, pH | Gel formation concentration is influenced by the extraction method, with wet extraction requiring lower concentrations compared to isoelectric precipitation (e.g., 4.5 to 11.5%). | [60,69,70,71] |
4. Modification of Chickpea Protein
4.1. Physical Modification
4.1.1. Ultrasonication Technique
4.1.2. High-Pressure Treatment (HP)
4.2. Chemical Modification
4.2.1. Acetylation
4.2.2. Succinylation
4.3. Biological Modification
4.3.1. Enzymatic Modification
Enzymatic Modification Using Alcalase and Flavourzyme
Enzymatic Crosslinking Using Transglutaminase Enzyme
Type of Method | Treatment Condition | Functional Changes | Reference |
---|---|---|---|
Ultrasonication | Frequency at 20 kHz Power 300 W (on time 4 s, off time 2 s) For 5, 10, and 20 min. | Improved protein solubility (26.6%) Increase emulsifying capacity (8.3%) Increased foaming capacity (136.7%) Improved water-holding capacity (38%) Improved gelling properties. (157.8%) | [76] |
High-pressure treatment | Pressure 90–150 MPa | Apparent viscosity increased from 185.69 to 521.16 Pa s, Improved protein solubility at 0.448%. Particle diameter significantly decreased up to 0.677 μm with 90 MPa treatment and 1.89 μm with 150 MPa treatment | [116] |
Acetylation | Degree of Acetylation (6–49%) Acetic anhydride (2.5% W/V) 2N NaOH at pH 7.5–8 | Solubility increased at pH 7.5–10 (52%). Solubility decreased at pH 2.0–7.0. Improved water absorption capacity (45%) Increase oil absorption capacities (64%). Increase emulsifying capacity (19%). | [125] |
Hydrolysis | Hydrolysis with Flavourzyme (1–10% DH) Temperature 4–50 °C (1 h) pH 7 (100 mM NaH2PO4) | Enhanced solubility of protein at DH 3 and 5% Decrease solubility at DH 1% Decreased protein content (2.5, 2.55, 3.6, and 5.07%) at DH 1, 3, 5, and 10%. Improved oil absorption capacity (109.67, 114.21, 63.32, and 58.74%) at DH 1, 3, 5 and 10%. Increase foaming capacity (126%) at DH 1%. Reduced emulsifying activity (6.9, 10.96, and 4.02%) at DH 3, 5 and 10%. Increased emulsifying activity (18%) at DH 1% | [143] |
Hydrolysis with Alcalase (4–15% DH) pH 8.0 (4N NaOH) Temperature 50–80 °C Time 20–210 min | Increased protein solubility (70%) at pH 7. Low solubility at pH 4–5. Increased protein content (6.64%) up to DH 8.6%. Decreased interfacial tension (10.67%). Decreased emulsifying capacity (44%) at DH 14.67%. Increased emulsifying capacity (20%) at DH 4%. | [144] | |
Crosslinking With transglutaminase | Hydroxamate assay TG used 200 U/per g of protein Temperature 37 °C Time 6 h. | Development of a gel-like emulsion, Enhanced emulsion stability Decrease protein digestibility | [163] |
5. Application of Chickpea Protein: Food Industry
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, M.; Tomar, M.; Potkule, J.; Reetu; Punia, S.; Dhakane-Lad, J.; Singh, S.; Dhumal, S.; Chandra Pradhan, P.; Bhushan, B.; et al. Functional Characterization of Plant-Based Protein to Determine Its Quality for Food Applications. Food Hydrocoll. 2022, 123, 106986. [Google Scholar] [CrossRef]
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future Protein Supply and Demand: Strategies and Factors Influencing a Sustainable Equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, G.; Abhayapala, R.; Karunarathna, B.; Zakeel, M.C.M. Efficient Utilization of Rice Fallow through Pulse Cultivation. In Advances in Legumes for Sustainable Intensification; Elsevier: Amsterdam, The Netherlands, 2022; pp. 71–92. [Google Scholar]
- Venkidasamy, B.; Selvaraj, D.; Nile, A.S.; Ramalingam, S.; Kai, G.; Nile, S.H. Indian Pulses: A Review on Nutritional, Functional and Biochemical Properties with Future Perspectives. Trends Food Sci. Technol. 2019, 88, 228–242. [Google Scholar] [CrossRef]
- Chang, L.; Lan, Y.; Bandillo, N.; Ohm, J.-B.; Chen, B.; Rao, J. Plant Proteins from Green Pea and Chickpea: Extraction, Fractionation, Structural Characterization and Functional Properties. Food Hydrocoll. 2022, 123, 107165. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kohli, S.K.; Yadav, P.; Bali, S.; Bakshi, P.; Parihar, R.D.; Yuan, H.; Yan, D.; He, Y.; et al. Amino Acids Distribution in Economical Important Plants: A Review. Biotechnol. Res. Innov. 2019, 3, 197–207. [Google Scholar] [CrossRef]
- Sim, S.Y.J.; Srv, A.; Chiang, J.H.; Henry, C.J. Plant Proteins for Future Foods: A Roadmap. Foods 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Shanthakumar, P.; Klepacka, J.; Bains, A.; Chawla, P.; Dhull, S.B.; Najda, A. The Current Situation of Pea Protein and Its Application in the Food Industry. Molecules 2022, 27, 5354. [Google Scholar] [CrossRef]
- Bou, R.; Navarro-Vozmediano, P.; Domínguez, R.; López-Gómez, M.; Pinent, M.; Ribas-Agustí, A.; Benedito, J.J.; Lorenzo, J.M.; Terra, X.; García-Pérez, J.V.; et al. Application of Emerging Technologies to Obtain Legume Protein Isolates with Improved Techno-Functional Properties and Health Effects. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2200–2232. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.C.Y.; Can Karaca, A.; Tyler, R.T.; Nickerson, M.T. Pea Protein Isolates: Structure, Extraction, and Functionality. Food Rev. Int. 2018, 34, 126–147. [Google Scholar] [CrossRef]
- Osemwota, E.C.; Alashi, A.M.; Aluko, R.E. Comparative Study of the Structural and Functional Properties of Membrane-Isolated and Isoelectric PH Precipitated Green Lentil Seed Protein Isolates. Membranes 2021, 11, 694. [Google Scholar] [CrossRef]
- Nikbakht Nasrabadi, M.; Sedaghat Doost, A.; Mezzenga, R. Modification Approaches of Plant-Based Proteins to Improve Their Techno-Functionality and Use in Food Products. Food Hydrocoll. 2021, 118, 106789. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B. Ultrasound-Assisted Extraction and Modification of Plant-Based Proteins: Impact on Physicochemical, Functional, and Nutritional Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef] [PubMed]
- Aryee, A.N.A.; Agyei, D.; Udenigwe, C.C. Impact of Processing on the Chemistry and Functionality of Food Proteins. In Proteins in Food Processing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–45. ISBN 9780081007228. [Google Scholar] [CrossRef]
- Goldstein, N.; Reifen, R. The Potential of Legume-Derived Proteins in the Food Industry. Grain & Oil Science and Technology 2022, 5, 167–178. [Google Scholar] [CrossRef]
- Gomes, A.; Sobral, P.J. do A. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules 2021, 27, 60. [Google Scholar] [CrossRef] [PubMed]
- Oduro-Yeboah, C.; Sulaiman, R.; Uebersax, M.A.; Dolan, K.D. A Review of Lentil (Lens Culinaris Medik) Value Chain: Postharvest Handling, Processing, and Processed Products. Legume Sci. 2023, 5, e171. [Google Scholar] [CrossRef]
- Eze, C.R.; Kwofie, E.M.; Adewale, P.; Lam, E.; Ngadi, M. Advances in Legume Protein Extraction Technologies: A Review. Innov. Food Sci. Emerg. Technol. 2022, 82, 103199. [Google Scholar] [CrossRef]
- Nortjie, E.; Basitere, M.; Moyo, D.; Nyamukamba, P. Extraction Methods, Quantitative and Qualitative Phytochemical Screening of Medicinal Plants for Antimicrobial Textiles: A Review. Plants 2022, 11, 2011. [Google Scholar] [CrossRef] [PubMed]
- Kringel, D.H.; El Halal, S.L.M.; Zavareze, E.D.R.; Dias, A.R.G. Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review. Starke 2020, 72, 1900234. [Google Scholar] [CrossRef]
- Irma, C.C.; Ibarra-Herrera, M.; Del, R.; Rocha-Pizaña, D. Alkaline Extraction-Isoelectric Precipitation of Plant Proteins. In Green Protein Processing Technologies from Plants: Novel Extraction and Purification Methods for Product Development; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–29. [Google Scholar] [CrossRef]
- Giteru, S.G.; Ramsey, D.H.; Hou, Y.; Cong, L.; Mohan, A.; Bekhit, A.E.-D.A. Wool Keratin as a Novel Alternative Protein: A Comprehensive Review of Extraction, Purification, Nutrition, Safety, and Food Applications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 643–687. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, J.; Serna-Saldívar, S.O. Wet-Milled Chickpea Coproduct as an Alternative to Obtain Protein Isolates. Lebenson. Wiss. Technol. 2019, 115, 108468. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, N.; Ahmed, M.A.; Verma, A.K.; Umaraw, P.; Mehta, N.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Lee, S.-J.; et al. Technological Interventions in Improving the Functionality of Proteins during Processing of Meat Analogs. Front. Nutr. 2022, 9, 1044024. [Google Scholar] [CrossRef] [PubMed]
- Tabtabaei, S.; Kuspangaliyeva, B.; Legge, R.L.; Rajabzadeh, A.R. Air Classification of Plant Proteins. In Green Protein Processing Technologies from Plants; Springer International Publishing: Cham, Switzerland, 2023; pp. 31–59. ISBN 9783031169670. [Google Scholar] [CrossRef]
- Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J.S. The Future of Aviation Soars with HTL-Based SAFs: Exploring Potential and Overcoming Challenges Using Organic Wet Feedstocks. Sustain. Energy Fuels 2023, 7, 4066–4087. [Google Scholar] [CrossRef]
- Abu-Surrah, A.; Al-Degs, Y. Utilization of Nanosize Spent Oil Shale for Water Treatment: Application of Top-down Nanonization Technology for Solid Residues. Res. Sq. 2022, 29, 78314–78329. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Wang, C.; Gong, C.; McClements, D.J.; Jin, Z.; Wang, J. Advances in Research on Preparation, Characterization, Interaction with Proteins, Digestion and Delivery Systems of Starch-Based Nanoparticles. Int. J. Biol. Macromol. 2020, 152, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Fan, Q.; Zhang, M.; Liu, S.; Tao, H.; Texter, J. Supercritical Fluid-Facilitated Exfoliation and Processing of 2D Materials. Adv. Sci. 2019, 6, 1901084. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.-Y.; Yu, C.-Y.; Ku, C.-A.; Chung, C.-K. Design, Fabrication, and Applications of SERS Substrates for Food Safety Detection: Review. Micromachines 2023, 14, 1343. [Google Scholar] [CrossRef]
- Sivakumar, C.; Findlay, C.R.J.; Karunakaran, C.; Paliwal, J. Non-Destructive Characterization of Pulse Flours-A Review. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1613–1632. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; He, Z.; Zhang, M.; Tan, X.; Sun, K.; Liu, H.; Wang, N.; Guan, L.; Wang, C.; Wan, Y.; et al. Reshaping the Material Research Paradigm of Electrochemical Energy Storage and Conversion by Machine Learning. EcoMat 2023, 5, e12330. [Google Scholar] [CrossRef]
- Schutyser, M.A.I.; Pelgrom, P.J.M.; van der Goot, A.J.; Boom, R.M. Dry Fractionation for Sustainable Production of Functional Legume Protein Concentrates. Trends Food Sci. Technol. 2015, 45, 327–335. [Google Scholar] [CrossRef]
- Assatory, A.; Vitelli, M.; Rajabzadeh, A.R.; Legge, R.L. Dry Fractionation Methods for Plant Protein, Starch and Fiber Enrichment: A Review. Trends Food Sci. Technol. 2019, 86, 340–351. [Google Scholar] [CrossRef]
- Xing, Q.; Utami, D.P.; Demattey, M.B.; Kyriakopoulou, K.; de Wit, M.; Boom, R.M.; Schutyser, M.A.I. A Two-Step Air Classification and Electrostatic Separation Process for Protein Enrichment of Starch-Containing Legumes. Innov. Food Sci. Emerg. Technol. 2020, 66, 102480. [Google Scholar] [CrossRef]
- Rivera, J.; Siliveru, K.; Li, Y. A Comprehensive Review on Pulse Protein Fractionation and Extraction: Processes, Functionality, and Food Applications. Crit. Rev. Food Sci. Nutr. 2022, 62, 1–23. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, W.; Zhang, H.; Zhang, F.; Chen, L.; Ma, L.; Larcher, L.M. Progress, Opportunity, and Perspective on Exosome Isolation-Efforts for Efficient Exosome-Based Theranostics. Theranostics 2020, 10, 3684. [Google Scholar] [CrossRef] [PubMed]
- David, E.M.; Rojo, S.; Bolado, P.A.; García-Encina, B. Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. Appl. Sci. 2022, 12, 2391. [Google Scholar] [CrossRef]
- Mohan, K.; Ganesan, A.R.; Ezhilarasi, P.N.; Kondamareddy, K.K.; Rajan, D.K.; Sathishkumar, P.; Rajarajeswaran, J.; Conterno, L. Green and Eco-Friendly Approaches for the Extraction of Chitin and Chitosan: A Review. Carbohydr. Polym. 2022, 287, 119349. [Google Scholar] [CrossRef] [PubMed]
- Timira, V.; Meki, K.; Li, Z.; Lin, H.; Xu, M.; Pramod, S.N. A Comprehensive Review on the Application of Novel Disruption Techniques for Proteins Release from Microalgae. Crit. Rev. Food Sci. Nutr. 2022, 62, 4309–4325. [Google Scholar] [CrossRef] [PubMed]
- Archut, A.; Klost, M.; Drusch, S.; Kastner, H. Complex Coacervation of Pea Protein and Pectin: Contribution of Different Protein Fractions to Turbidity. Food Hydrocoll. 2023, 134, 108032. [Google Scholar] [CrossRef]
- Garret, D.L.; Luthria, Y.; Chen, N.P.; Bacalzo, F.S.; Tareq, J.; Harnly, K.M. Multi-Glycomic Characterization of Fiber from AOAC Methods Defines the Carbohydrate Structures. J. Agric. Food Chem. 2022, 70, 14559–14570. [Google Scholar] [CrossRef] [PubMed]
- Pas, T.; Marinus, F.W.; Veldkamp, T.; De Haas, Y.; Bannink, A.; Ellen, E.D. Adaptation of Livestock to New Diets Using Feed Components without Competition with Human Edible Protein Sources-a Review of the Possibilities and Recommendations. Animals 2021, 11, 2293. [Google Scholar] [CrossRef]
- Cui, S.; McClements, D.J.; Xu, X.; Jiao, B.; Zhou, L.; Zhou, H.; Xiong, L.; Wang, Q.; Sun, Q.; Dai, L. Peanut Proteins: Extraction, Modifications, and Applications: A Comprehensive Review. Grain Oil Sci. Technol. 2023, 6, 135–147. [Google Scholar] [CrossRef]
- Mesfin, N.; Belay, A.; Amare, E. Effect of Germination, Roasting, and Variety on Physicochemical, Techno-Functional, and Antioxidant Properties of Chickpea (Cicer arietinum L.) Protein Isolate Powder. Heliyon 2021, 7, e08081. [Google Scholar] [CrossRef] [PubMed]
- Perović, M.N.; Pajin, B.S.; Antov, M.G. The Effect of Enzymatic Pretreatment of Chickpea on Functional Properties and Antioxidant Activity of Alkaline Protein Isolate. Food Chem. 2022, 374, 131809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, X.; Zeng, X.; Li, L.; Jiang, Y. Preparation, Functional Properties, and Nutritional Evaluation of Chickpea Protein Concentrate. Cereal Chem. 2023, 100, 310–320. [Google Scholar] [CrossRef]
- Chauhan, P.; Sharma, M.; Nehra, S.; Babu Pachwarya, R.; Sharma, R.; Kumar, D. Modified Nanofiltration Membrane for Wastewater Treatment. In Nanofiltration Membrane for Water Purification; Springer Nature: Singapore, 2023; pp. 157–183. [Google Scholar] [CrossRef]
- Batouti, E.; Mervette, N.F.; Al-Harby, M.M. A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. Water 2021, 13, 3241. [Google Scholar] [CrossRef]
- Kamal, H.; Le, C.F.; Salter, A.M.; Ali, A. Extraction of Protein from Food Waste: An Overview of Current Status and Opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2455–2475. [Google Scholar] [CrossRef] [PubMed]
- Sílvia, M.F.; João, C.M.; Barreira, M. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci. Tech. 2019, 93, 53–68. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, C.; Ambika; Chandana, B.S.; Mahto, R.K.; Patial, R.; Gupta, A.; Gahlaut, V.; Gayacharan; Hamwieh, A.; et al. Exploring Chickpea Germplasm Diversity for Broadening the Genetic Base Utilizing Genomic Resources. Front. Genet. 2022, 13, 905771. [Google Scholar] [CrossRef] [PubMed]
- Boye, J.I.; Aksay, S.; Roufik, S.; Ribéreau, S.; Mondor, M.; Farnworth, E.; Rajamohamed, S.H. Comparison of the Functional Properties of Pea, Chickpea and Lentil Protein Concentrates Processed Using Ultrafiltration and Isoelectric Precipitation Techniques. Food Res. Int. 2010, 43, 537–546. [Google Scholar] [CrossRef]
- Mondor, M.; Aksay, S.; Drolet, H.; Roufik, S.; Farnworth, E.; Boye, J.I. Influence of Processing on Composition and Antinutritional Factors of Chickpea Protein Concentrates Produced by Isoelectric Precipitation and Ultrafiltration. Innov. Food Sci. Emerg. Technol. 2009, 10, 342–347. [Google Scholar] [CrossRef]
- Gleison, Y.; Sui, P. Seaweed as an Alternative Protein Source: Prospective Protein Extraction Technologies. Innov. Food Sci. Emerg. Technol. 2023, 86, 103374. [Google Scholar] [CrossRef]
- Hans, N.; Pattnaik, F.; Malik, A.; Naik, S. Comparison of Different Green Extraction Techniques and Their Influence on Chemical Characteristics of Sulfated Polysaccharide (Fucoidan) from Padina Tetrastromatica and Turbinaria Conoides. Algal Res. 2023, 74, 103199. [Google Scholar] [CrossRef]
- Ragab, M.M.; Othman, H.; Hassabo, A.G. Various Extraction Methods of Different Enzymes and Their Potential Applications in Various Industrial Sector (a Review). Egypt. J. Chem. 2022, 65, 495–508. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the Plant Protein Extraction: Mechanism and Recommendations. Food Hydrocoll. 2021, 115, 106595. [Google Scholar] [CrossRef]
- Asghar, A.; Sairash, S.; Hussain, N.; Baqar, Z.; Sumrin, A.; Bilal, M. Current Challenges of Biomass Refinery and Prospects of Emerging Technologies for Sustainable Bioproducts and Bioeconomy. Biofuel. Bioprod. Biorefin. 2022, 16, 1478–1494. [Google Scholar] [CrossRef]
- Ma, K.K.; Greis, M.; Lu, J.; Nolden, A.A.; McClements, D.J.; Kinchla, A.J. Functional Performance of Plant Proteins. Foods 2022, 11, 594. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Liu, J.; Wei, L.; Liu, Y.; Lu, F.; Wang, W.; Li, Q.; Li, Y. Focusing on Hofmeister Series: Composition, Structure and Functional Properties of Pea Protein Extracted with Food-Related Anions. Food Hydrocoll. 2022, 133, 107976. [Google Scholar] [CrossRef]
- Yingchutrakul, M.; Wasinnitiwong, N.; Benjakul, S.; Singh, A.; Zheng, Y.; Mubango, E.; Luo, Y.; Tan, Y.; Hong, H. Asian Carp, an Alternative Material for Surimi Production: Progress and Future. Foods 2022, 11, 1318. [Google Scholar] [CrossRef] [PubMed]
- El Halal, S.L.M.; Kringel, D.H.; Zavareze, E.D.R.; Dias, A.R.G. Methods for Extracting Cereal Starches from Different Sources: A Review. Starke 2019, 71, 1900128. [Google Scholar] [CrossRef]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying Properties of Chickpea, Faba Bean, Lentil and Pea Proteins Produced by Isoelectric Precipitation and Salt Extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Sosa, F.; Isabel, E.; María, G.; Chaves, F.; Peyrano, A.V.; Quiroga, M. Thermal Gelation of Proteins from Cajanus Cajan Influenced by PH and Ionic Strength. Plant Foods Hum. Nutr. 2023, 78, 574–583. [Google Scholar] [CrossRef]
- Shrestha, S.; van’t Hag, L.; Haritos, V.S.; Dhital, S. Lupin Proteins: Structure, Isolation and Application. Trends Food Sci. Technol. 2021, 116, 928–939. [Google Scholar] [CrossRef]
- Tan, Y.; Lee, P.W.; Martens, T.D.; McClements, D.J. Comparison of Emulsifying Properties of Plant and Animal Proteins in Oil-in-Water Emulsions: Whey, Soy, and RuBisCo Proteins. Food Biophys. 2022, 17, 409–421. [Google Scholar] [CrossRef]
- Salis, A.; Boström, M.; Medda, L.; Cugia, F.; Barse, B.; Parsons, D.F.; Ninham, B.W.; Monduzzi, M. Measurements and Theoretical Interpretation of Points of Zero Charge/Potential of BSA Protein. Langmuir 2011, 27, 11597–11604. [Google Scholar] [CrossRef] [PubMed]
- El Sohaimy, S.A.; Brennan, M.A.; Darwish, A.G.; Brennan, C.S. Chickpea Protein Isolation, Characterization and Application in Muffin Enrichment. Int. J. Food Stud. 2021, 57–71. [Google Scholar] [CrossRef]
- Xing, Q.; Dekker, S.; Kyriakopoulou, K.; Boom, R.M.; Smid, E.J.; Schutyser, M.A.I. Enhanced Nutritional Value of Chickpea Protein Concentrate by Dry Separation and Solid State Fermentation. Innov. Food Sci. Emerg. Technol. 2020, 59, 102269. [Google Scholar] [CrossRef]
- Hayati Zeidanloo, M.; Ahmadzadeh Ghavidel, R.; Ghiafeh Davoodi, M.; Arianfar, A. Functional Properties of Grass Pea Protein Concentrates Prepared Using Various Precipitation Methods. J. Food Sci. Technol. 2019, 56, 4799–4808. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Pius Bassey, A.; Cao, Y.; Ma, Y.; Huang, M.; Yang, H. Food Protein Aggregation and Its Application. Food Res. Int. 2022, 160, 111725. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, R.; Jia, Y.; Gao, Y.; Mao, L. Effects of Nanoparticle Types and Internal Phase Content on the Properties of W/O Emulsions Based on Dual Stabilization Mechanism. Food Hydrocoll. 2023, 139, 108563. [Google Scholar] [CrossRef]
- Onder, S.; Can Karaca, A.; Ozcelik, B.; Alamri, A.S.; Ibrahim, S.A.; Galanakis, C.M. Exploring the Amino-Acid Composition, Secondary Structure, and Physicochemical and Functional Properties of Chickpea Protein Isolates. ACS Omega 2023, 8, 1486–1495. [Google Scholar] [CrossRef]
- Grasso, N.; Lynch, N.L.; Arendt, E.K.; O’Mahony, J.A. Chickpea Protein Ingredients: A Review of Composition, Functionality, and Applications. Compr. Rev. Food Sci. Food Saf. 2022, 21, 435–452. [Google Scholar] [CrossRef]
- Jia, N.; Zhang, F.; Liu, Q.; Wang, L.; Lin, S.; Liu, D. The Beneficial Effects of Rutin on Myofibrillar Protein Gel Properties and Related Changes in Protein Conformation. Food Chem. 2019, 301, 125206. [Google Scholar] [CrossRef]
- Kazemi-Taskooh, Z.; Varidi, M. How Can Plant-Based Protein-Polysaccharide Interactions Affect the Properties of Binary Hydrogels? (A Review). Food Funct. 2023, 13, 5891–5909. [Google Scholar] [CrossRef] [PubMed]
- Dellaney, A.K.; Stone, D.R.; Korber, M.T.; Nickerson, T. Physicochemical Properties of Enzymatically Modified Pea Protein-Enriched Flour Treated by Different Enzymes to Varying Levels of Hydrolysis. Cereal Chem. 2020, 97, 326–338. [Google Scholar] [CrossRef]
- Sareen, J. Effect of Enzymatic Hydrolysis on the Physicochemical, Functional, and Nutritional Properties of Pea and Faba Bean Protein Isolates. European Food Rea and Tech. 2023, 249, 3175–3190. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, K.; Bai, Y.; Li, B.; Xu, W. Effect of High-Intensity Ultrasound on Physicochemical, Interfacial and Gel Properties of Chickpea Protein Isolate. Lebenson. Wiss. Technol. 2020, 129, 109563. [Google Scholar] [CrossRef]
- Lin, D.; Sun, L.-C.; Chen, Y.-L.; Liu, G.-M.; Miao, S.; Cao, M.-J. Peptide/Protein Hydrolysate and Their Derivatives: Their Role as Emulsifying Agents for Enhancement of Physical and Oxidative Stability of Emulsions. Trends Food Sci. Technol. 2022, 129, 11–24. [Google Scholar] [CrossRef]
- Guo, A.; Xiong, Y.L. Electrical Conductivity: A Simple and Sensitive Method to Determine Emulsifying Capacity of Proteins. J. Food Sci. 2021, 86, 4914–4921. [Google Scholar] [CrossRef] [PubMed]
- Padial-Domínguez, M.; Espejo-Carpio, F.J.; Pérez-Gálvez, R.; Guadix, A.; Guadix, E.M. Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods 2020, 9, 636. [Google Scholar] [CrossRef] [PubMed]
- Ghribi, A.M.; Gafsi, I.M.; Blecker, C.; Danthine, S.; Attia, H.; Besbes, S. Effect of Drying Methods on Physico-Chemical and Functional Properties of Chickpea Protein Concentrates. J. Food Eng. 2015, 165, 179–188. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Varela, A.; Domínguez-Timón, F.; Tovar, C.A.; Moreno, H.M.; Borderías, A.J.; Díaz, M.T. Comparison of Bioactive Compounds Content and Techno-Functional Properties of Pea and Bean Flours and Their Protein Isolates. Plant Foods Hum. Nutr. 2020, 75, 642–650. [Google Scholar] [CrossRef]
- Nivala, O.; Nordlund, E.; Kruus, K.; Ercili-Cura, D. The Effect of Heat and Transglutaminase Treatment on Emulsifying and Gelling Properties of Faba Bean Protein Isolate. Lebenson. Wiss. Technol. 2021, 139, 110517. [Google Scholar] [CrossRef]
- Sadia, Y.J.; Manrique, H.; Parekh, J.R. Nuts, Cereals, Seeds and Legumes Proteins Derived Emulsifiers as a Source of Plant Protein Beverages: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2742–2762. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhang, Y.; Wang, J.; Xu, W.; Hu, Z.; Hu, C. Continuous Enzyme Crosslinking Modifying Colloidal Particle Characteristics and Interface Properties of Rice Bran Protein to Improve the Foaming Properties. Lebenson. Wiss. Technol. 2023, 184, 114997. [Google Scholar] [CrossRef]
- Zhao, Q.; Ding, L.; Xia, M.; Huang, X.; Isobe, K.; Handa, A.; Cai, Z. Role of Lysozyme on Liquid Egg White Foaming Properties: Interface Behavior, Physicochemical Characteristics and Protein Structure. Food Hydrocoll. 2021, 120, 106876. [Google Scholar] [CrossRef]
- Orlien, V.; Aalaei, K.; Poojary, M.M.; Nielsen, D.S.; Ahrné, L.; Carrascal, J.R. Effect of Processing on in Vitro Digestibility (IVPD) of Food Proteins. Crit. Rev. Food Sci. Nutr. 2023, 63, 2790–2839. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-H. Globular Proteins as Soft Particles for Stabilizing Emulsions: Concepts and Strategies. Food Hydrocoll. 2020, 103, 105664. [Google Scholar] [CrossRef]
- Kaur, R.; Ghoshal, G. Sunflower Protein Isolates-Composition, Extraction and Functional Properties. Adv. Colloid Interface Sci. 2022, 306, 102725. [Google Scholar] [CrossRef] [PubMed]
- Rostamabadi, H.; Chaudhary, V.; Chhikara, N.; Sharma, N.; Nowacka, M.; Demirkesen, I.; Rathnakumar, K.; Falsafi, S.R. Ovalbumin, an Outstanding Food Hydrocolloid: Applications, Technofunctional Attributes, and Nutritional Facts, A Systematic Review. Food Hydrocoll. 2023, 139, 108514. [Google Scholar] [CrossRef]
- Boukid, F. Chickpea (Cicer arietinum L.) Protein as a Prospective Plant-Based Ingredient: A Review. Int. J. Food Sci. Technol. 2021, 56, 5435–5444. [Google Scholar] [CrossRef]
- Ramani, A.; Kushwaha, R.; Malaviya, R.; Kumar, R.; Yadav, N. Molecular, Functional and Nutritional Properties of Chickpea (Cicer arietinum L.) Protein Isolates Prepared by Modified Solubilization Methods. J. Food Meas. Charact. 2021, 15, 2352–2368. [Google Scholar] [CrossRef]
- Diedericks, C.F.; Shek, C.; Jideani, V.A.; Venema, P.; van der Linden, E. Physicochemical Properties and Gelling Behaviour of Bambara Groundnut Protein Isolates and Protein-Enriched Fractions. Food Res. Int. 2020, 138, 109773. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, J.; Wang, C.; Mu, C.; Ngai, T.; Lin, W. Advances in Pickering Emulsions Stabilized by Protein Particles: Toward Particle Fabrication, Interaction and Arrangement. Food Res. Int. 2022, 157, 111380. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.; Mallick, C. Nanonutraceuticals: A Way towards Modern Therapeutics in Healthcare. J. Drug Deliv. Sci. Technol. 2020, 58, 101838. [Google Scholar] [CrossRef]
- Köhler, J.; Jansen, M.; Rodríguez, A.; Kok, P.J.R.; Toledo, L.F.; Emmrich, M.; Glaw, F.; Haddad, C.F.B.; Rödel, M.-O.; Vences, M. The Use of Bioacoustics in Anuran Taxonomy: Theory, Terminology, Methods and Recommendations for Best Practice. Zootaxa 2017, 4251, 1–124. [Google Scholar] [CrossRef] [PubMed]
- Nazari, B.; Mohammadifar, M.A.; Shojaee-Aliabadi, S.; Feizollahi, E.; Mirmoghtadaie, L. Effect of Ultrasound Treatments on Functional Properties and Structure of Millet Protein Concentrate. Ultrason. Sonochem. 2018, 41, 382–388. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.J.; Park, M.; Beevers, J.; Greenwood, R.W.; Norton, I.T. Applications of Ultrasound for the Functional Modification of Proteins and Nanoemulsion Formation: A Review. Food Hydrocoll. 2017, 71, 299–310. [Google Scholar] [CrossRef]
- Cui, R.; Zhu, F. Ultrasound Modified Polysaccharides: A Review of Structure, Physicochemical Properties, Biological Activities and Food Applications. Trends Food Sci. Technol. 2021, 107, 491–508. [Google Scholar] [CrossRef]
- Gao, X.; You, J.; Yin, T.; Xiong, S.; Liu, R. Simultaneous Effect of High-Intensity Ultrasound Power, Time, and Salt Contents on Gelling Properties of Silver Carp Surimi. Food Chem. 2023, 403, 134478. [Google Scholar] [CrossRef]
- Xin, X.; Qiu, W.; Xue, H.; Zhang, G.; Hu, H.; Zhao, Y.; Tu, Y. Improving the Gel Properties of Salted Egg White/Cooked Soybean Protein Isolate Composite Gels by Ultrasound Treatment: Study on the Gelling Properties and Structure. Ultrason. Sonochem. 2023, 97, 106442. [Google Scholar] [CrossRef]
- Wu, D.; Tu, M.; Wang, Z.; Wu, C.; Yu, C.; Battino, M.; El-Seedi, H.R.; Du, M. Biological and Conventional Food Processing Modifications on Food Proteins: Structure, Functionality, and Bioactivity. Biotechnol. Adv. 2020, 40, 107491. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Smith, B. The Functional Modification of Legume Proteins by Ultrasonication: A Review. Trends Food Sci. Technol. 2020, 98, 107–116. [Google Scholar] [CrossRef]
- Yan, S.; Xie, F.; Zhang, S.; Jiang, L.; Qi, B.; Li, Y. Effects of Soybean Protein Isolate− Polyphenol Conjugate Formation on the Protein Structure and Emulsifying Properties: Protein− Polyphenol Emulsification Performance in the Presence of Chitosan. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 609, 125641. [Google Scholar] [CrossRef]
- Liang, F.; Zhu, Y.; Ye, T.; Jiang, S.; Lin, L.; Lu, J. Effect of Ultrasound-Assisted Treatment and Microwave Combined with Water Bath Heating on Gel Properties of Surimi-Crabmeat Mixed Gels. Lebenson. Wiss. Technol. 2020, 133, 110098. [Google Scholar] [CrossRef]
- Mozafarpour, R.; Sani, M.A.; Koocheki, A.; McClements, D.J.; Mehr, H.M. Ultrasound Modified Protein Colloidal Particles: Interfacial Activity, Gel Property and Encapsulation Efficiency. Adv. Colloid Interface Sci. 2022, 309, 102768. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, J.; Guo, X.; Lei, Y.; Yang, M. Effects of Ultrasonic Treatment on the Structure, Functional Properties of Chickpea Protein Isolate and Its Digestibility In Vitro. Foods 2022, 11, 880. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, L.G.; Moreira, S.A.; Ormando, P.; Pinto, C.A.; Queirós, R.P.; Saraiva, J.A. High-Pressure Processing Associated with Other Technologies to Change Enzyme Activity. In Effect of High-Pressure Technologies on Enzymes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 141–168. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.-S.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-Pressure Processing of Meat: Molecular Impacts and Industrial Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef]
- Zhao, X.; Xu, X.; Zhou, G. Covalent Chemical Modification of Myofibrillar Proteins to Improve Their Gelation Properties: A Systematic Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 924–959. [Google Scholar] [CrossRef]
- Wang, W.; Yang, P.; Rao, L.; Zhao, L.; Wu, X.; Wang, Y.; Liao, X. Effect of High Hydrostatic Pressure Processing on the Structure, Functionality, and Nutritional Properties of Food Proteins: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4640–4682. [Google Scholar] [CrossRef]
- Oliva, R.; Banerjee, S.; Cinar, H.; Ehrt, C.; Winter, R. Alteration of Protein Binding Affinities by Aqueous Two-Phase Systems Revealed by Pressure Perturbation. Sci. Rep. 2020, 10, 8074. [Google Scholar] [CrossRef]
- Han, C.; Zheng, Y.; Zhou, C.; Liang, Y.; Huang, S.; Sun, Y.; Cao, J.; He, J.; Barba, F.J.; Liu, J.; et al. Pressurization-Induced Molten Globule-like Protein as a Regulatory Target for Off-Flavor Controlling: Thermodynamic Evidence and Molecular Modeling. Food Control 2023, 154, 110022. [Google Scholar] [CrossRef]
- Song, F.; Li, Z.; Jia, P.; Zhang, M.; Bo, C.; Feng, G.; Hu, L.; Zhou, Y. Tunable “Soft and Stiff”, Self-Healing, Recyclable, Thermadapt Shape Memory Biomass Polymers Based on Multiple Hydrogen Bonds and Dynamic Imine Bonds. J. Mater. Chem. A Mater. Energy Sustain. 2019, 7, 13400–13410. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kaur, B.P.; Nema, P.K.; Tewari, S.; Kumar, L. Microbial Inactivation by High-Pressure Processing: Principle, Mechanism and Factors Responsible. Food Sci. Biotechnol. 2021, 30, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Olsen, K.; Bolumar, T.; Rode, T.M.; Orlien, V. Effects of High-Pressure Processing on Enzyme Activity in Meat, Fish, and Egg. In Effect of High-Pressure Technologies on Enzymes; Elsevier: Amsterdam, The Netherlands, 2023; pp. 241–267. ISBN 9780323983860. [Google Scholar]
- Ma, Y.; Zhang, J.; He, J.; Xu, Y.; Guo, X. Effects of High-Pressure Homogenization on the Physicochemical, Foaming, and Emulsifying Properties of Chickpea Protein. Food Res. Int. 2023, 170, 112986. [Google Scholar] [CrossRef] [PubMed]
- Alsalman, F.B.; Ramaswamy, H.S. Evaluation of Changes in Protein Quality of High-Pressure Treated Aqueous Aquafaba. Molecules 2021, 26, 234. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-G.; Wang, X.-Y.; Zhang, J.-Y.; Liu, Y.; Zhou, T.; Chi, S.-Y.; Bi, C.-H. High-Pressure Homogenization Modified Chickpea Protein: Rheological Properties, Thermal Properties, and Microstructure. J. Food Eng. 2022, 335, 111196. [Google Scholar] [CrossRef]
- Akharume, F.U.; Aluko, R.E.; Adedeji, A.A. Modification of Plant Proteins for Improved Functionality: A Review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 198–224. [Google Scholar] [CrossRef] [PubMed]
- Shieh, P.; Hill, M.R.; Zhang, W.; Kristufek, S.L.; Johnson, J.A. Clip Chemistry: Diverse (Bio)(Macro) Molecular and Material Function through Breaking Covalent Bonds. Chem. Rev. 2021, 121, 7059–7121. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Huang, X.; Ma, B.; Chen, Y.; Batool, Z.; Fu, X.; Jin, Y. Modification Methods and Applications of Egg Protein Gel Properties: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 2233–2252. [Google Scholar] [CrossRef]
- Rai, S.K.; Savastano, A.; Singh, P.; Mukhopadhyay, S.; Zweckstetter, M. Liquid-Liquid Phase Separation of Tau: From Molecular Biophysics to Physiology and Disease. Protein Sci. 2021, 30, 1294–1314. [Google Scholar] [CrossRef]
- Chand, A.; Biswal, H.S. Hydrogen Bonds with Chalcogens: Looking beyond the Second Row of the Periodic Table. J. Indian Inst. Sci. 2020, 100, 77–100. [Google Scholar] [CrossRef]
- Heredia-Leza, G.L.; Martínez, L.M.; Chuck-Hernandez, C. Impact of Hydrolysis, Acetylation or Succinylation on Functional Properties of Plant-Based Proteins: Patents, Regulations, and Future Trends. Processes 2022, 10, 283. [Google Scholar] [CrossRef]
- Jaworska, M.M.; Antos, D.; Górak, A. Review on the Application of Chitin and Chitosan in Chromatography. React. Funct. Polym. 2020, 152, 104606. [Google Scholar] [CrossRef]
- Shen, Y.; Li, Y. Acylation Modification and/or Guar Gum Conjugation Enhanced Functional Properties of Pea Protein Isolate. Food Hydrocoll. 2021, 117, 106686. [Google Scholar] [CrossRef]
- Liu, L.H.; Hung, T.V. Functional Properties of Acetylated Chickpea Proteins. J. Food Sci. 2008, 63, 331–337. [Google Scholar] [CrossRef]
- Dnyaneshwar Patil, N.; Bains, A.; Kaur, S.; Yadav, R.; Ali, N.; Patil, S.; Goksen, G.; Chawla, P. Influence of Dual Succinylation and Ultrasonication Modification on the Amino Acid Content, Structural and Functional Properties of Chickpea (Cicer arietinum L.) Protein Concentrate. Food Chem. 2024, 445, 138671. [Google Scholar] [CrossRef] [PubMed]
- Olatunde, O.O.; Owolabi, I.O.; Fadairo, O.S.; Ghosal, A.; Coker, O.J.; Soladoye, O.P.; Aluko, R.E.; Bandara, N. Enzymatic Modification of Plant Proteins for Improved Functional and Bioactive Properties. Food Bioprocess. Tech. 2022, 16, 1216–1234. [Google Scholar] [CrossRef]
- Wróblewska, B.; Kaliszewska, A.; Kołakowski, P.; Pawlikowska, K.; Troszyńska, A. Impact of Transglutaminase Reaction on the Immunoreactive and Sensory Quality of Yoghurt Starter. World J. Microbiol. Biotechnol. 2011, 27, 215–227. [Google Scholar] [CrossRef]
- Buchert, J.; Ercili Cura, D.; Ma, H.; Gasparetti, C.; Monogioudi, E.; Faccio, G.; Mattinen, M.; Boer, H.; Partanen, R.; Selinheimo, E.; et al. Crosslinking Food Proteins for Improved Functionality. Annu. Rev. Food Sci. Technol. 2010, 1, 113–138. [Google Scholar] [CrossRef]
- Eckert, E.; Han, J.; Swallow, K.; Tian, Z.; Jarpa-Parra, M.; Chen, L. Effects of Enzymatic Hydrolysis and Ultrafiltration on Physicochemical and Functional Properties of Faba Bean Protein. Cereal Chem. 2019, 96, 725–741. [Google Scholar] [CrossRef]
- Aluko, R.E. Food Protein-Derived Peptides: Production, Isolation, and Purification. In Proteins in Food Processing; Elsevier: Amsterdam, The Netherlands, 2018; pp. 389–412. [Google Scholar] [CrossRef]
- Fuentes, L.R.; Richard, C.; Chen, L. Sequential Alcalase and Flavourzyme Treatment for Preparation of α-Amylase, α-Glucosidase, and Dipeptidyl Peptidase (DPP)-IV Inhibitory Peptides from Oat Protein. J. Funct. Foods 2021, 87, 104829. [Google Scholar] [CrossRef]
- Shahosseini, S.R.; Javadian, S.R.; Safari, R. Effects of Molecular Weights-Assisted Enzymatic Hydrolysis on Antioxidant and Anticancer Activities of Liza Abu Muscle Protein Hydrolysates. Int. J. Pept. Res. Ther. 2022, 28, 72. [Google Scholar] [CrossRef]
- Akbari, N.; Mohammadzadeh Milani, J.; Biparva, P. Functional and Conformational Properties of Proteolytic Enzyme-Modified Potato Protein Isolate. J. Sci. Food Agric. 2020, 100, 1320–1327. [Google Scholar] [CrossRef]
- Ghribi, A.; Mokni, I.M.; Gafsi, A.; Sila, C.; Blecker, S.; Danthine, H.; Attia, A.; Bougatef, S. Effects of Enzymatic Hydrolysis on Conformational and Functional Properties of Chickpea Protein Isolate. Food Chem. 2015, 187, 322–330. [Google Scholar] [CrossRef]
- Tawalbeh, D.; Ahmad, W.W.; Sarbon, N.M. Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. Food Rev. Int. 2023, 39, 5423–5445. [Google Scholar] [CrossRef]
- Vogelsang-O’Dwyer, M.; Dwyer, M.; Sahin, A.W.; Arendt, E.K.; Zannini, E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022, 11, 1307. [Google Scholar] [CrossRef]
- Zhang, M.; Fan, L.; Liu, Y.; Huang, S.; Li, J. Effects of Proteins on Emulsion Stability: The Role of Proteins at the Oil-Water Interface. Food Chem. 2022, 397, 133726. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Lian, T.; Wan, X.; Jiang, L.; Han, L.; Zhang, C.; Liang, Q. Folate Monoglutamate in Cereal Grains: Evaluation of Extraction Techniques and Determination by LC-MS/MS. J. Food Compost. Anal. 2020, 91, 103510. [Google Scholar] [CrossRef]
- Hemker, A.K.; Nguyen, L.T.; Karwe, M.; Salvi, D. Effects of Pressure-Assisted Enzymatic Hydrolysis on Functional and Bioactive Properties of Tilapia (Oreochromis Niloticus) by-Product Protein Hydrolysates. Lebenson. Wiss. Technol. 2020, 122, 109003. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, L.; Shi, Y.; Akhtar, M.; Chen, J.; Ettelaie, R. Emulsifying and Emulsion Stabilizing Properties of Soy Protein Hydrolysates, Covalently Bonded to Polysaccharides: The Impact of Enzyme Choice and the Degree of Hydrolysis. Food Hydrocoll. 2021, 113, 106519. [Google Scholar] [CrossRef]
- Guo, A.; Xiong, Y.L. Myoprotein-Phytophenol Interaction: Implications for Muscle Food Structure-Forming Properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2801–2824. [Google Scholar] [CrossRef]
- del Mar Yust, M.; del Carmen Millán-Linares, M.; Alcaide-Hidalgo, J.M.; Millán, F.; Pedroche, J. Hydrolysis of Chickpea Proteins with Flavourzyme Immobilized on Glyoxyl-Agarose Gels Improves Functional Properties. Food Sci. Technol. Int. 2013, 19, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Thirulogasundar, A. Effect of Enzyme Hydrolysis of Lentil and Chickpea Protein Isolates on Their Physicochemical, Functional Properties and Protein Quality. Doctoral Dissertation, University of Saskatchewan, Saskatoon, Canada, 2023. [Google Scholar]
- Sharma, M.; Bains, A.; Sridhar, K.; Chawla, P.; Sharma, M. Process optimization for spray dried Aegle marmelos fruit nanomucilage: Characterization, functional properties, and in vitro antibiofilm activity against food pathogenic microorganisms. Int. J. Biol. Macromol. 2023, 249, 126050. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Shen, P.; Zhang, Y.; Zhong, M.; Zhao, Q.; Zhou, F. Fabrication of Soy Protein Nanoparticles via Partial Enzymatic Hydrolysis and Their Role in Controlling Lipid Digestion of Oil-in-Water Emulsions. ACS Food Sci. Technol. 2021, 1, 193–204. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Tsopmo, A.; Ejike, C.E.C.C.; Udenigwe, C.C. Germination as a Bioprocess for Enhancing the Quality and Nutritional Prospects of Legume Proteins. Trends Food Sci. Technol. 2020, 101, 213–222. [Google Scholar] [CrossRef]
- Hu, X.; Hu, W.-X.; Lu, H.-Y.; Liu, S.; Rao, S.-Q.; Yang, Z.-Q.; Jiao, X.-A. Glycosylated Cross-Linked Ovalbumin by Transglutaminase in the Presence of Oligochitosan: Effect of Enzyme Action Time and Enhanced Functional Properties. Food Hydrocoll. 2023, 138, 108462. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, M.; Fang, Y.; Wu, Y.; Liu, Y.; Zhao, Y.; Xu, J. Recent Advancements in Encapsulation of Chitosan-Based Enzymes and Their Applications in Food Industry. Crit. Rev. Food Sci. Nutr. 2023, 63, 11044–11062. [Google Scholar] [CrossRef]
- Glusac, J.; Isaschar-Ovdat, S.; Fishman, A. Transglutaminase Modifies the Physical Stability and Digestibility of Chickpea Protein-Stabilized Oil-in-Water Emulsions. Food Chem. 2020, 315, 126301. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Rostamabadi, H.; Nishinari, K.; Amani, R.; Jafari, S.M. The Role of Emulsification Strategy on the Electrospinning of β-Carotene-Loaded Emulsions Stabilized by Gum Arabic and Whey Protein Isolate. Food Chem. 2022, 374, 131826. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Pal, A.; Kumar, S.; Saharan, V. Protein Chemistry and Gelation. In Advances in Food Chemistry; Springer Nature: Singapore, 2022; pp. 161–207. ISBN 9789811947957. [Google Scholar]
- Qin, W.; Lin, Z.; Wang, A.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.-T. Influence of Particle Size on the Properties of Rice Flour and Quality of Gluten-Free Rice Bread. Lebenson. Wiss. Technol. 2021, 151, 112236. [Google Scholar] [CrossRef]
- Sanchez-Cano, C.; Carril, M. Recent Developments in the Design of Non-Biofouling Coatings for Nanoparticles and Surfaces. Int. J. Mol. Sci. 2020, 21, 1007. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, F.; Yang, X.; Mao, Y.; Qi, Q.; Zheng, M.; Xu, X.; Cao, Y.; Wu, Y.; Liu, J. Synergistic Influence of Ultrasound and Dietary Fiber Addition on Transglutaminase-Induced Peanut Protein Gel and Its Application for Encapsulation of Lutein. Food Hydrocoll. 2023, 137, 108374. [Google Scholar] [CrossRef]
- Rivera Del Rio, A.; Boom, R.M.; Janssen, A.E.M. Effect of Fractionation and Processing Conditions on the Digestibility of Plant Proteins as Food Ingredients. Foods 2022, 11, 870. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, Y.; Xie, L.; Sun, H.; Zheng, Z.; Liu, F. Effects of Enzymatic Cross-Linking Combined with Ultrasound on the Oil Adsorption Capacity of Chickpea Protein. Food Chem. 2022, 383, 132641. [Google Scholar] [CrossRef] [PubMed]
- Sharif, M.K.; Saleem, M.; Sharif, H.R.; Saleem, R. Enrichment and Fortification of Traditional Foods with Plant Protein Isolates. In Plant Protein Foods; Springer International Publishing: Cham, Switzerland, 2022; pp. 131–169. ISBN 9783030912055. [Google Scholar]
- Garcia-Valle, D.E.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Alvarez-Ramirez, J. Structural Characteristics and in Vitro Starch Digestibility of Pasta Made with Durum Wheat Semolina and Chickpea Flour. Lebenson. Wiss. Technol. 2021, 145, 111347. [Google Scholar] [CrossRef]
- Mansoor, R.; Ali, T.M.; Hasnain, A. Effects of Barley Flour Substitution on Glycemic Index, Compositional, Rheological, Textural, and Sensory Characteristics of Chickpea Flour-based Flat Bread. Legum. Sci. 2021, 3, e89. [Google Scholar] [CrossRef]
- Di Pede, G.; Dodi, R.; Scarpa, C.; Brighenti, F.; Dall’Asta, M.; Scazzina, F. Glycemic Index Values of Pasta Products: An Overview. Foods 2021, 10, 2541. [Google Scholar] [CrossRef] [PubMed]
- Binou, P.; Yanni, A.E.; Karathanos, V.T. Physical Properties, Sensory Acceptance, Postprandial Glycemic Response, and Satiety of Cereal Based Foods Enriched with Legume Flours: A Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 2722–2740. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Yang, K.A.; Gonzalez De Mejia, M.M. Technological Properties of Chickpea (Cicer arietinum): Production of Snacks and Health Benefits Related to Type-2 Diabetes. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3762–3787. [Google Scholar] [CrossRef]
- Rocchetti, G.; Ferronato, G.; Sarv, V.; Kerner, K.; Venskutonis, P.R.; Lucini, L. Meat Extenders from Different Sources as Protein-Rich Alternatives to Improve the Technological Properties and Functional Quality of Meat Products. Curr. Opin. Food Sci. 2022, 49, 100967. [Google Scholar] [CrossRef]
- García-Hernández, Á.; Roldán-Cruz, C.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Stale Bread Waste Recycling as Ingredient for Fresh Oven-Baked White Bread: Effects on Dough Viscoelasticity, Bread Molecular Organization, Texture, and Starch Digestibility. J. Sci. Food Agric. 2023, 103, 4174–4183. [Google Scholar] [CrossRef]
- Brannan, R.G.; Mah, E.; Schott, M.; Yuan, S.; Casher, K.L.; Myers, A.; Herrick, C. Influence of Ingredients That Reduce Oil Absorption during Immersion Frying of Battered and Breaded Foods. Eur. J. Lipid Sci. Technol. 2014, 116, 240–254. [Google Scholar] [CrossRef]
- Van Krimpen, M.M.; Bikker, P.; Van Der Meer, I.M.; Van Der Peet-Schwering, C.M.C.; Vereijken, J.M. Cultivation, Processing and Nutritional Aspects for Pigs and Poultry of European Protein Sources as Alternatives for Imported Soybean Products. Wagening. UR Livest. Res. 2013, 48, 437524. [Google Scholar]
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel Protein Sources for Applications in Meat-Alternative Products-Insight and Challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; He, C.; Liu, B.; Wen, Q.; Xia, S. Incorporation of Chickpea Flour into Biscuits Improves the Physicochemical Properties and in Vitro Starch Digestibility. Lebenson. Wiss. Technol. 2022, 159, 113222. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, M.N.; Ereifej, K.; Gammoh, S.; Kubow, S.; Tawalbeh, D. Preparation of Mayonnaise from Extracted Plant Protein Isolates of Chickpea, Broad Bean and Lupin Flour: Chemical, Physiochemical, Nutritional and Therapeutic Properties. J. Food Sci. Technol. 2017, 54, 1395–1405. [Google Scholar] [CrossRef]
- Herranz, B.; Canet, W.; Jiménez, M.J.; Fuentes, R.; Alvarez, M.D. Characterization of Chickpea Flour-based Gluten-free Batters and Muffins with Added Biopolymers: Rheological, Physical and Sensory Properties. Int. J. Food Sci. Technol. 2016, 51, 1087–1098. [Google Scholar] [CrossRef]
Food Products | Application | Reference |
---|---|---|
Cereal-based food product | Enhance nutritional value Enhance organoleptic properties | [164] |
Meat Product | Increase organoleptic properties, Maintain color during storage Reduce lipid oxidation | [174,170] |
Capsule and Micronutrient supplementation | Increase the biocompatibility Nutritional advantage Improve loading capacity Reduce toxicity Improve stability of folate vitamin B9. | [75] |
Gluten-free muffins | Decrease the crust hardness Decrease browning index Enhanced viscoelasticity | [177] |
Gluten-free noodles and pasta | Enhanced the protein content Increase antioxidant properties Decrease the glycemic index Decrease starch digestibility | [167] |
Soy-Wheat bread | Increase the hardness and Chewiness Decrease the lower specific loaf volume | [147] |
Yogurt | Enhanced the growth of probiotic bacteria Increased antioxidant capacity and viscosity | [75] |
Mayonnaise | Enhance the acceptability in terms of texture, aroma, flavor, appearance, aroma | [176] |
Biscuit | Enhance the nutritious values low digestibility Improve textural properties | [175] |
Snacks | Increases the nutritional quality Improve physical properties Enhanced sensory qualities Increased storage stability | [166] |
Merguez Sausage | Increase process yield Improve textural and sensorial properties | [169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, N.D.; Bains, A.; Sridhar, K.; Bhaswant, M.; Kaur, S.; Tripathi, M.; Lanterbecq, D.; Chawla, P.; Sharma, M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods 2024, 13, 1398. https://doi.org/10.3390/foods13091398
Patil ND, Bains A, Sridhar K, Bhaswant M, Kaur S, Tripathi M, Lanterbecq D, Chawla P, Sharma M. Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods. 2024; 13(9):1398. https://doi.org/10.3390/foods13091398
Chicago/Turabian StylePatil, Nikhil Dnyaneshwar, Aarti Bains, Kandi Sridhar, Maharshi Bhaswant, Sawinder Kaur, Manikant Tripathi, Déborah Lanterbecq, Prince Chawla, and Minaxi Sharma. 2024. "Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review" Foods 13, no. 9: 1398. https://doi.org/10.3390/foods13091398
APA StylePatil, N. D., Bains, A., Sridhar, K., Bhaswant, M., Kaur, S., Tripathi, M., Lanterbecq, D., Chawla, P., & Sharma, M. (2024). Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (Cicer arietinum) Protein: An Up-to-Date Review. Foods, 13(9), 1398. https://doi.org/10.3390/foods13091398