Probiotic Insights from the Genomic Exploration of Lacticaseibacillus paracasei Strains Isolated from Fermented Palm Sap
Abstract
:1. Introduction
2. Materials and methods
2.1. Bacterial Strains, Culture Conditions, and DNA Isolation
2.2. Genome Assembly and Annotation
2.3. Pangenome Analysis and Comparative Genomics
3. Results and Discussion
3.1. Genome Features and Stability of the L. paracasei Strains
3.2. Comparative Genomics and Pangenome Analysis
3.3. Identification of Genes Related to Probiotic Features
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokoena, M.P. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules 2017, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Hatti-Kaul, R.; Chen, L.; Dishisha, T.; Enshasy, H.E. Lactic acid bacteria: From starter cultures to producers of chemicals. FEMS Microbiol. Lett. 2018, 365, fny213. [Google Scholar] [CrossRef] [PubMed]
- De Boeck, I.; Spacova, I.; Vanderveken, O.M.; Lebeer, S. Lactic acid bacteria as probiotics for the nose? Microb. Biotechnol. 2021, 14, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Mathur, H.; Beresford, T.P.; Cotter, P.D. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients 2020, 12, 1679. [Google Scholar] [CrossRef] [PubMed]
- Sornsenee, P.; Singkhamanan, K.; Sangkhathat, S.; Saengsuwan, P.; Romyasamit, C. Probiotic Properties of Lactobacillus Species Isolated from Fermented Palm Sap in Thailand. Probiotics Antimicrob. Proteins 2021, 13, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Mohsin, M.; Ijaz, H.; Tulain, U.R.; Ashraf, M.A.; Fayyaz, A.; Abadeen, Z.; Kamran, Q. Review—Lactic acid bacteria in traditional fermented Asian foods. Pak. J. Pharm. Sci. 2017, 30, 1803–1814. [Google Scholar] [PubMed]
- FAO/WHO Guidelines for the Evaluation of Probiotics in Food. Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food; FAO: Rome, Italy, 2002. [Google Scholar]
- Huang, H.C.; Lee, I.J.; Huang, C.; Chang, T.M. Lactic Acid Bacteria and Lactic Acid for Skin Health and Melanogenesis Inhibition. Curr. Pharm. Biotechnol. 2020, 21, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Ayeni, F.; Adeniyi, B. Antagonistic activities of lactic acid bacteria against organisms implicated in urogenital infections. Afr. J. Pharm. Res. Dev. 2012, 4, 59–69. [Google Scholar]
- Romyasamit, C.; Thatrimontrichai, A.; Aroonkesorn, A.; Chanket, W.; Ingviya, N.; Saengsuwan, P.; Singkhamanan, K. Enterococcus faecalis Isolated From Infant Feces Inhibits Toxigenic Clostridioides (Clostridium) difficile. Front. Pediatr. 2020, 8, 572633. [Google Scholar] [CrossRef] [PubMed]
- Maarof, H.A.; Abdallah, M.; Bazalou, M.; Abo-Samra, R. Effect of Probiotics bacteria isolated from yoghurts produced in Damietta city on some pathogenic bacteria. In Proceedings of the 6th Scientific Conference of Animal Wealth Research in the Middle East and North Africa, Hurghada, Egypt, 27–30 September 2013. [Google Scholar]
- Li, C.-H.; Chen, T.-Y.; Wu, C.-C.; Cheng, S.-H.; Chang, M.-Y.; Cheng, W.-H.; Chiu, S.-H.; Chen, C.-C.; Tsai, Y.-C.; Yang, D.-J.; et al. Safety Evaluation and Anti-Inflammatory Efficacy of Lacticaseibacillus paracasei PS23. Int. J. Mol. Sci. 2022, 24, 724. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.; Sugrue, I.; Tobin, C.; Hill, C.; Stanton, C.; Ross, R.P. The Lactobacillus casei group: History and health related applications. Front. Microbiol. 2018, 9, 2107. [Google Scholar] [CrossRef] [PubMed]
- Sornsenee, P.; Chatatikun, M.; Mitsuwan, W.; Kongpol, K.; Kooltheat, N.; Sohbenalee, S.; Pruksaphanrat, S.; Mudpan, A.; Romyasamit, C. Lyophilized cell-free supernatants of Lactobacillus isolates exhibited antibiofilm, antioxidant, and reduces nitric oxide activity in lipopolysaccharide-stimulated RAW 264.7 cells. PeerJ 2021, 9, e12586. [Google Scholar] [CrossRef] [PubMed]
- Sornsenee, P.; Chimplee, S.; Saengsuwan, P.; Romyasamit, C. Characterization of probiotic properties and development of banana powder enriched with freeze-dried Lacticaseibacillus paracasei probiotics. Heliyon 2022, 8, e11063. [Google Scholar] [CrossRef] [PubMed]
- Onwuakor, C.E.; Nwaugo, V.O.; Nnadi, C.J.; Emetole, J.M. Effect of Varied Culture Conditions on Crude Supernatant (Bacteriocin) Production from Four Lactobacillus Species Isolated from Locally Fermented Maize (Ogi). Am. J. Microbiol. Res. 2014, 2, 125–130. [Google Scholar] [CrossRef]
- Bengoa, A.A.; Dardis, C.; Garrote, G.L.; Abraham, A.G. Health-Promoting Properties of Lacticaseibacillus paracasei: A Focus on Kefir Isolates and Exopolysaccharide-Producing Strains. Foods 2021, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.; Tyrrell, K.L.; Citron, D.M. Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clin. Infect. Dis. 2015, 60, S98–S107. [Google Scholar] [CrossRef]
- Surachat, K.; Kantachote, D.; Wonglapsuwan, M.; Chukamnerd, A.; Deachamag, P.; Mittraparp-Arthorn, P.; Jeenkeawpiam, K. Complete Genome Sequence of Weissella cibaria NH9449 and Comprehensive Comparative-Genomic Analysis: Genomic Diversity and Versatility Trait Revealed. Front. Microbiol. 2022, 13, 826683. [Google Scholar] [CrossRef] [PubMed]
- Chokesajjawatee, N.; Santiyanont, P.; Chantarasakha, K.; Kocharin, K.; Thammarongtham, C.; Lertampaiporn, S.; Vorapreeda, T.; Srisuk, T.; Wongsurawat, T.; Jenjaroenpun, P.; et al. Safety Assessment of a Nham Starter Culture Lactobacillus plantarum BCC9546 via Whole-genome Analysis. Sci. Rep. 2020, 10, 10241. [Google Scholar] [CrossRef]
- Yu, X.; Yu, Y.; Ouyang, J.; Wen, H.; Wang, H.; Ma, X. Complete Genome Sequence of Lactobacillus acidophilus LA-10A, a Promising Probiotic Strain Isolated from Fermented Mare’s Milk. Microbiol. Resour. Announc. 2022, 11, e0021522. [Google Scholar] [CrossRef]
- Surachat, K.; Sangket, U.; Deachamag, P.; Chotigeat, W. In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases. PLoS ONE 2017, 12, e0183548. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, Y.; Han, Y.; Zhang, J.; Wang, S.; Lu, S.; Wang, H.; Lu, F.; Jia, L. Complete Genome Sequence of a Novel Lactobacillus paracasei TK1501 and Its Application in the Biosynthesis of Isoflavone Aglycones. Foods 2022, 11, 2807. [Google Scholar] [CrossRef] [PubMed]
- Chukamnerd, A.; Jeenkeawpiam, K.; Chusri, S.; Pomwised, R.; Singkhamanan, K.; Surachat, K. BacSeq: A User-Friendly Automated Pipeline for Whole-Genome Sequence Analysis of Bacterial Genomes. Microorganisms 2023, 11, 1769. [Google Scholar] [CrossRef] [PubMed]
- Holzer, M.; Marz, M. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers. Gigascience 2019, 8, giz039. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2018, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. mobileOG-db: A Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements. Appl. Environ. Microbiol. 2022, 88, e0099122. [Google Scholar] [CrossRef] [PubMed]
- Starikova, E.V.; Tikhonova, P.O.; Prianichnikov, N.A.; Rands, C.M.; Zdobnov, E.M.; Ilina, E.N.; Govorun, V.M. Phigaro: High-throughput prophage sequence annotation. Bioinformatics 2020, 36, 3882–3884. [Google Scholar] [CrossRef] [PubMed]
- Malberg Tetzschner, A.M.; Johnson, J.R.; Johnston, B.D.; Lund, O.; Scheutz, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020, 58, e01269-20. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Pourcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed]
- van Heel, A.J.; de Jong, A.; Song, C.X.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Stothard, P.; Grant, J.R.; Van Domselaar, G. Visualizing and comparing circular genomes using the CGView family of tools. Brief. Bioinform. 2019, 20, 1576–1582. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST plus: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ouk Kim, Y.; Park, S.C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef] [PubMed]
- Duar, R.M.; Lin, X.B.; Zheng, J.; Martino, M.E.; Grenier, T.; Pérez-Muñoz, M.E.; Leulier, F.; Gänzle, M.; Walter, J. Lifestyles in transition: Evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 2017, 41 (Suppl. 1), S27–S48. [Google Scholar] [CrossRef] [PubMed]
- Stefanovic, E.; McAuliffe, O. Comparative genomic and metabolic analysis of three Lactobacillus paracasei cheese isolates reveals considerable genomic differences in strains from the same niche. BMC Genom. 2018, 19, 205. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.L.; Skophammer, R.G.; Regus, J.U. Evolutionary transitions in bacterial symbiosis. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 2), 10800–10807. [Google Scholar] [CrossRef] [PubMed]
- Tarrah, A.; Pakroo, S.; Corich, V.; Giacomini, A. Whole-genome sequence and comparative genome analysis of Lactobacillus paracasei DTA93, a promising probiotic lactic acid bacterium. Arch. Microbiol. 2020, 202, 1997–2003. [Google Scholar] [CrossRef] [PubMed]
- Ventura, M.; Canchaya, C.; Kleerebezem, M.; de Vos, W.M.; Siezen, R.J.; Brüssow, H. The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology 2003, 316, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Raethong, N.; Santivarangkna, C.; Visessanguan, W.; Santiyanont, P.; Mhuantong, W.; Chokesajjawatee, N. Whole-genome sequence analysis for evaluating the safety and probiotic potential of Lactiplantibacillus pentosus 9D3, a gamma-aminobutyric acid (GABA)-producing strain isolated from Thai pickled weed. Front. Microbiol. 2022, 13, 969548. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Sadiq, F.A.; Han, X.; Zhao, J.; Zhang, H.; Ross, R.P.; Lu, W.; Chen, W. Comprehensive Scanning of Prophages in Lactobacillus: Distribution, Diversity, Antibiotic Resistance Genes, and Linkages with CRISPR-Cas Systems. mSystems 2021, 6, e0121120. [Google Scholar] [CrossRef] [PubMed]
- Brandt, K.; Tilsala-Timisjärvi, A.; Alatossava, T. Phage-related DNA polymorphism in dairy and probiotic Lactobacillus. Micron 2001, 32, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhao, A.; Zhang, J.; Yang, C.; Zhong, W.; Mao, S.; Wang, S.; Yuan, Q.; Wang, P.; Zhang, Y. Safety and tolerance of Lacticaseibacillus paracasei N1115 in caesarean-born young children: A randomised, placebo-controlled trial. Benef. Microbes 2022, 13, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Scardi, S.; Mazzone, C. New operative models for the management of anticoagulant prophylaxis. Monaldi Arch. Chest Dis. 2002, 58, 64–69. [Google Scholar] [PubMed]
- Goyal, A.; Bittleston, L.S.; Leventhal, G.E.; Lu, L.; Cordero, O.X. Interactions between strains govern the eco-evolutionary dynamics of microbial communities. eLife 2022, 11, e74987. [Google Scholar] [CrossRef] [PubMed]
- Jaenike, J.; Holt, R.D. Genetic Variation for Habitat Preference: Evidence and Explanations. Am. Nat. 1991, 137, S67–S90. [Google Scholar] [CrossRef]
- Cadotte, M.; Carscadden, K.; Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Jiang, L.; Olesen, I.; Andersen, T.; Fang, W.; Jespersen, L. Survival of Listeria monocytogenes in simulated gastrointestinal system and transcriptional profiling of stress- and adhesion-related genes. Foodborne Pathog Dis. 2010, 7, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Baez, J.; da Costa, F.M.R.; Pinto Gomide, A.C.; Profeta, R.; da Silva, A.L.; Sousa, T.d.J.; Viana, M.V.C.; Bentes Kato, R.; Americo, M.F.; dos Santos Freitas, A.; et al. Comparative Genomics In Silico Evaluation of Genes Related to the Probiotic Potential of Bifidobacterium breve 1101A. Bacteria 2022, 1, 161–182. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Y.; Gu, L.; Yu, J.; Liu, Q.; Zhang, R.; Liang, G.; Chen, H.; Gu, F.; Liu, H.; et al. Characterization of Probiotic Properties and Whole-Genome Analysis of Lactobacillus johnsonii N5 and N7 Isolated from Swine. Microorganisms 2024, 12, 672. [Google Scholar] [CrossRef] [PubMed]
- Kiousi, D.E.; Efstathiou, C.; Tegopoulos, K.; Mantzourani, I.; Alexopoulos, A.; Plessas, S.; Kolovos, P.; Koffa, M.; Galanis, A. Genomic Insight Into Lacticaseibacillus paracasei SP5, Reveals Genes and Gene Clusters of Probiotic Interest and Biotechnological Potential. Front. Microbiol. 2022, 13, 922689. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-H.; Yang, R.-S.; Lin, Y.-C.; Xin, W.-G.; Zhou, H.-Y.; Wang, F.; Zhang, Q.-L.; Lin, L.-B. Assessment of the safety and probiotic characteristics of Lactobacillus salivarius CGMCC20700 based on whole-genome sequencing and phenotypic analysis. Front. Microbiol. 2023, 14, 1120263. [Google Scholar] [CrossRef] [PubMed]
- de Veaux, L.C.; Clevenson, D.S.; Bradbeer, C.; Kadner, R.J. Identification of the btuCED polypeptides and evidence for their role in vitamin B12 transport in Escherichia coli. J. Bacteriol. 1986, 167, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.C.; Liu, C.F.; Lin, J.F.; Li, A.C.; Lo, T.C.; Lin, T.H. Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334. Appl. Microbiol. Biotechnol. 2013, 97, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Marciset, O.; Jeronimus-Stratingh, M.C.; Mollet, B.; Poolman, B. Thermophilin 13, a nontypical antilisterial poration complex bacteriocin, that functions without a receptor. J. Biol. Chem. 1997, 272, 14277–14284. [Google Scholar] [CrossRef] [PubMed]
Feature | T0601 | T0602 | T0901 | T0902 | T1301 | T1304 | T1901 |
---|---|---|---|---|---|---|---|
Total length | 3,072,098 | 3,070,747 | 3,085,678 | 3,131,129 | 3,129,100 | 3,129,120 | 3,126,709 |
GC (%) | 46.14 | 46.14 | 46.17 | 46.11 | 46.11 | 46.11 | 46.11 |
N50 | 158,110 | 146,425 | 194,163 | 166,913 | 166,913 | 152,444 | 166,913 |
L50 | 5 | 6 | 5 | 6 | 6 | 7 | 6 |
Number of contigs | 61 | 60 | 61 | 75 | 78 | 79 | 93 |
CDS | 2921 | 2918 | 2969 | 3009 | 3009 | 3006 | 2999 |
rRNA | 3 | 3 | 4 | 4 | 3 | 4 | 4 |
tRNA | 56 | 56 | 56 | 56 | 56 | 56 | 56 |
tmRNA | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Function | Gene | T0601 | T0602 | T0901 | T0902 | T1301 | T1304 | T1901 |
---|---|---|---|---|---|---|---|---|
Gastrointestinal tract survival | pbpB | + | + | + | + | + | + | + |
penA | + | + | + | + | + | + | + | |
pbpE | + | + | + | + | + | + | + | |
ponA | + | + | + | + | + | + | + | |
pbpF_1 | + | + | + | + | + | + | + | |
pbpF_2 | + | + | + | + | + | + | + | |
pbpX | + | + | + | + | + | + | + | |
pbp | + | + | + | + | + | + | + | |
Acid tolerance | nhaK_2 | + | + | + | + | + | + | + |
atpA | + | + | + | + | + | + | + | |
atpF | + | + | + | + | + | + | + | |
atpG | + | + | + | + | + | + | + | |
atpB | + | + | + | + | + | + | + | |
atpD | + | + | + | + | + | + | + | |
atpH | + | + | + | + | + | + | + | |
atpE | + | + | + | + | + | + | + | |
Bile salt tolerance | murE | + | + | + | + | + | + | + |
mleS | + | + | + | + | + | + | + | |
Temperature tolerance | cspB | + | + | + | + | + | + | + |
cspLA | + | + | + | + | + | + | + | |
csp | + | + | + | + | + | + | + | |
hrcA | + | + | + | + | + | + | + | |
dnaJ | + | + | + | + | + | + | + | |
dnaK | + | + | + | + | + | + | + | |
clpC_1 | + | + | + | + | + | + | + | |
clpB | + | + | + | + | + | + | + | |
Osmotic shock tolerance | grpE | + | + | + | + | + | + | + |
gbuA | + | + | + | + | + | + | + | |
gbuC | + | + | + | + | + | + | + | |
gbuB | + | + | + | + | + | + | + | |
opuCD | + | + | + | + | + | + | + | |
opuCC | + | + | + | + | + | + | + | |
Oxidative stress survival | hslO | + | + | + | + | + | + | + |
nox_2 | + | + | + | + | + | + | + | |
nox_1 | + | + | + | + | + | + | + | |
tpx | + | + | + | + | + | + | + | |
npr | + | + | + | + | + | + | + | |
Cell wall formation | murA1 | + | + | + | + | + | + | + |
epsH_2 | + | + | + | + | + | + | + | |
ykoT_1 | + | + | + | + | + | + | + | |
tagE | + | + | + | + | + | + | + | |
dltC | + | + | + | + | + | + | + | |
dltA | + | + | + | + | + | + | + | |
dltD | + | + | + | + | + | + | + | |
dltC | + | + | + | + | + | + | + | |
Biofilm formation | ywqC | + | + | + | + | + | + | + |
luxS | + | + | + | + | + | + | + | |
desR | + | + | + | + | + | + | + | |
ccpA_2 | + | + | + | + | + | + | + | |
brpA_2 | + | + | + | + | + | + | + | |
brpA_4 | + | + | + | + | + | + | + | |
brpA_3 | + | + | + | + | + | + | + | |
Vitamin synthesis | btuD_14 | + | + | + | + | + | + | + |
btuD_14 | + | + | + | + | + | + | + | |
btuD_2 | + | + | + | + | + | + | + | |
btuD_8 | + | + | + | + | + | + | + | |
btuD_13 | + | + | + | + | + | + | + | |
btuD_4 | + | + | + | + | + | + | + | |
btuD_15 | + | + | + | + | + | + | + | |
btuD_5 | + | + | + | + | + | + | + | |
btuD_9 | + | + | + | + | + | + | + | |
btuD_12 | + | + | + | + | + | + | + | |
btuD_11 | + | + | + | + | + | + | + | |
btuD_7 | + | + | + | + | + | + | + | |
btuD_6 | + | + | + | + | + | + | + | |
btuD_1 | + | + | + | + | + | + | + | |
btuD_3 | + | + | + | + | + | + | + | |
Bacteriocin | Thermophilin_A | + | + | + | + | + | − | + |
Sactipeptides | + | − | + | + | + | + | + | |
LSEI_2386 | + | + | + | + | + | + | + | |
Thermophilin 13 Chain A | − | − | − | − | − | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornsenee, P.; Surachat, K.; Kang, D.-K.; Mendoza, R.; Romyasamit, C. Probiotic Insights from the Genomic Exploration of Lacticaseibacillus paracasei Strains Isolated from Fermented Palm Sap. Foods 2024, 13, 1773. https://doi.org/10.3390/foods13111773
Sornsenee P, Surachat K, Kang D-K, Mendoza R, Romyasamit C. Probiotic Insights from the Genomic Exploration of Lacticaseibacillus paracasei Strains Isolated from Fermented Palm Sap. Foods. 2024; 13(11):1773. https://doi.org/10.3390/foods13111773
Chicago/Turabian StyleSornsenee, Phoomjai, Komwit Surachat, Dae-Kyung Kang, Remylin Mendoza, and Chonticha Romyasamit. 2024. "Probiotic Insights from the Genomic Exploration of Lacticaseibacillus paracasei Strains Isolated from Fermented Palm Sap" Foods 13, no. 11: 1773. https://doi.org/10.3390/foods13111773
APA StyleSornsenee, P., Surachat, K., Kang, D. -K., Mendoza, R., & Romyasamit, C. (2024). Probiotic Insights from the Genomic Exploration of Lacticaseibacillus paracasei Strains Isolated from Fermented Palm Sap. Foods, 13(11), 1773. https://doi.org/10.3390/foods13111773