Influence of Fish Species and Wood Type on Polycyclic Aromatic Hydrocarbons Contamination in Smoked Fish Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Smoking Type, Materials and Experimental Protocol
2.3. Fish Proximate Composition
2.4. PAHs Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Fish Species Influence on PAH Contamination in Smoked Fish
4.2. Influence of Fuel Type on PAH Contamination in the Smoking Process
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Smet, S. Meat, poultry, and fish composition: Strategies for optimizing human intake of essential nutrients. Anim. Front. 2012, 2, 10–16. [Google Scholar] [CrossRef]
- Sarojnalini, C.; Hei, A. Fish as an Important Functional Food for Quality Life. Functional Foods; Lagouri, V., Ed.; IntechOpen Limited: London, UK, 2019; pp. 62–68. [Google Scholar]
- Usydus, Z.; Szlinder-Richert, J. Functional Properties of Fish and Fish Products: A Review. Int. J. Food Prop. 2012, 15, 823–846. [Google Scholar] [CrossRef]
- Lee, S.-J.; Mamun, M.; Atique, U.; An, K.-G. Fish Tissue Contamination with Organic Pollutants and Heavy Metals: Link between Land Use and Ecological Health. Water 2023, 15, 1845. [Google Scholar] [CrossRef]
- Badonia, R.; Ramacgandran, A.; Sankar, T.V. Quality Problems in Fish. J. Indian Fish. Assoc. 1988, 18, 283–287. [Google Scholar]
- da Silva Junior, F.C.; Felipe, M.B.; de Castro, D.E.; da Silva Araújo, S.C.; Sisenando, H.C.; de Medeiros, S.R. A look beyond the priority: A systematic review of the genotoxic, mutagenic, and carcinogenic endpoints of non-priority PAHs. Environ. Pollut. 2021, 278, 116838. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.M.; Ravi Kumar, B.V.V.; Banik, B.K.; Borah, P. Polyaromatic Hydrocarbons (PAHs): Structures, Synthesis and their Biological Profile. Curr. Org. Synth. 2020, 17, 625–640. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef]
- Lawal, A.T. Polycyclic aromatic hydrocarbons. A review. Cogent Environ. Sci. 2017, 3, 1339841. [Google Scholar] [CrossRef]
- Skupińska, K.; Misiewicz, I.; Kasprzycka-Guttman, T. Polycyclic aromatic hydrocarbons: Physicochemical properties, environmental appearance and impact on living organisms. Acta Pol. Pharm. 2004, 61, 233–240. [Google Scholar]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Jameson, C.W. Polycyclic aromatic hydrocarbons and associated occupational exposures. In Tumour Site Concordance and Mechanisms of Carcinogenesis; IARC Scientific Publications, No. 165; International Agency for Research on Cancer: Lyon, France, 2019; Chapter 7. [Google Scholar]
- Krzyszczak, A.; Czech, B. Occurrence and toxicity of polycyclic aromatic hydrocarbons derivatives in environmental matrices. Sci. Total Environ. 2021, 788, 147738. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Sokhi, R.; Vangrieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2018, 42, 2895–2921. [Google Scholar] [CrossRef]
- Dhananjayan, V.; Muralidharan, S. Polycyclic Aromatic Hydrocarbons in Various Species of Fishes from Mumbai Harbour, India, and Their Dietary Intake Concentration to Human. Int. J. Oceanogr. 2012, 2012, 645178. [Google Scholar] [CrossRef]
- Chen, Y.W.; Huang, P.H.; Tsai, Y.H.; Jiang, C.M.; Hou, C.Y. Effects of Limonene on the PAHs Mutagenicity Risk in Roasted Fish Skin. J. Food Process. Technol. 2018, 9, 764. [Google Scholar] [CrossRef]
- Dumka, N.J.; Friday, K. Polycyclic Aromatic Hydrocarbons (PAHs) Concentrations in Roasted Plantain and Fish from Port Harcourt City, Rivers State, Nigeria. Chem. Sci. Rev. Lett. 2017, 6, 1356–1362. [Google Scholar]
- Erhunmwunse, N.; Ainerua, M.; Idemudia, I.; Biose, E. Effects of Barbecuing on the Levels of Polycyclic Aromatic Hydrocarbons in Fish (Pseudotolitus Elongatus and Clarias Gariepinus). J. Nat. Sci. Res. 2016, 6, 2224–3186. [Google Scholar]
- Sumer, G.; Oz, F. The Effect of Direct and Indirect Barbecue Cooking on Polycyclic Aromatic Hydrocarbon Formation and Beef Quality. Foods 2023, 12, 1374. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Ulusoy, H.I.; Alemdar, S.; Erdogan, S.; Agaoglu, S. The Presence of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Beef, Chicken and Fish by Considering Dietary Exposure and Risk Assessment. Food Sci. Anim. Resour. 2020, 40, 675–688. [Google Scholar] [CrossRef]
- Akpambang, V.O.E.; Purcaro, G.; Lajide, L.; Amoo, I.A.; Conte, L.S.; Moret, S. Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed Nigerian smoked/grilled fish and meat. Food Addit. Contam. Part A 2019, 26, 1096–1103. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Osijaye, K.O.; Igbuku, U.A.; Egobueze, F.E.; Tesi, G.O.; Bassey, F.I.; Martincigh, B.S. Effect of the number of frying cycles on the composition, concentrations and risk of polycyclic aromatic hydrocarbons (PAHs) in vegetable oils and fried fish. J. Food Compos. Anal. 2020, 94, 103633. [Google Scholar] [CrossRef]
- Hafez, N.E.; Awad, A.M.; Ibrahim, S.M.; Mohamed, H.R. Levels of Polycyclic Aromatic Hydrocarbons in Fried Tilapia Fish (O. niloticus) using GC-MS. J. Food Sci. Nutr. Res. 2018, 1, 10–17. [Google Scholar]
- Stołyhwo, A.; Sikorski, Z.E. Polycyclic aromatic hydrocarbons in smoked fish–a critical review. Food Chem. 2005, 91, 303–311. [Google Scholar] [CrossRef]
- Aksun Tümerkan, E.T. Investigations of the Polycyclic Aromatic Hydrocarbon and Elemental Profile of Smoked Fish. Molecules 2022, 27, 7015. [Google Scholar] [CrossRef]
- Drabova, L.; Pulkrabova, J.; Kalachova, K.; Tomaniova, M.; Kocourek, V.; Hajslova, J. Polycyclic aromatic hydrocarbons and halogenated persistent organic pollutants in canned fish and seafood products: Smoked versus non-smoked products. Food Addit. Contam. Part A 2013, 30, 515–527. [Google Scholar] [CrossRef]
- Jinadasa, B.K.; Monteau, F.; Fowler, S.W. Review of polycyclic aromatic hydrocarbons (PAHs) in fish and fisheries products; a Sri Lankan perspective. Environ. Sci. Pollut. Res. 2020, 27, 20663–20674. [Google Scholar] [CrossRef] [PubMed]
- Rascón, A.J.; Azzouz, A.; Ballesteros, E. Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS. Food Control. 2019, 101, 198–208. [Google Scholar] [CrossRef]
- Singh, D.; Tassew, D.D.; Nelson, J.; Chalbot, M.G.; Kavouras, I.G.; Tesfaigzi, Y.; Demokritou, P. Physicochemical and toxicological properties of wood smoke particulate matter as a function of wood species and combustion condition. J. Hazard. Mater. 2023, 441, 129874. [Google Scholar] [CrossRef] [PubMed]
- Toledo, R.T. Wood Smoke Components and Functional Properties. In International Smoked Seafood Conference Proceedings; Kramer, D.E., Brown, L., Eds.; Alaska Sea Grant College Program: Fairbanks, AK, USA, 2008; pp. 55–61. [Google Scholar]
- FAO Codex Alimentarius Commission Code of Practice CAC/RCP 68/2009. 2009, pp. 3–5. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/codes-of-practice/en/ (accessed on 10 August 2023).
- COMMISSION REGULATION (EU) No 835/2011 of 19 August 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:215:0004:0008:En:PDF (accessed on 10 August 2023).
- Sava, A.; Uiuiu, P.; Lațiu, C.; Cocan, D.; Muntean, G.-C.; Papuc, T.; Ihuț, A.; Răducu, C.; Becze, A.; Craioveanu, C.; et al. PAHs, Physicochemical and Microbiological Analyses of Trout Processed by Traditional Smoking, in Different Types of Packaging. Fishes 2023, 8, 424. [Google Scholar] [CrossRef]
- Mihalca, G.L.; Tița, O.; Tița, M.; Mihalca, A. Polycyclic aromatic hydrocarbons (PAHs) in smoked fish from three smoke-houses in Braşov county. J. Agroaliment. Process. Technol. 2011, 17, 392–397. [Google Scholar]
- AOAC International: AOAC 2007.04-2007, Fat, Moisture, and Protein in Meat and Meat Pro. Available online: www.aoacofficialmethod.org/index.php?main_page=product_info&products_id=2710 (accessed on 10 August 2023).
- AOAC International: AOAC 920.153-1920, Ash of Meat. Available online: www.aoacofficialmethod.org/index.php?main_page=product_info&cPath=1&products_id=1694 (accessed on 10 August 2023).
- Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 2007, 5, 169–195. [Google Scholar] [CrossRef]
- Coroian, C.O.; Coroian, A.; Becze, A.; Longodor, A.; Mastan, O.; Radu-Rusu, R.-M. Polycyclic Aromatic Hydrocarbons (PAHs) Occurrence in Traditionally Smoked Chicken, Turkey and Duck Meat. Agriculture 2023, 13, 57. [Google Scholar] [CrossRef]
- Lee, J.G.; Kim, S.Y.; Moon, J.S.; Kim, S.H.; Kang, D.H.; Yoon, H.J. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 2016, 199, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Essumang, D.K.; Dodoo, D.K.; Adjei, J.K. Effect of smoke generation sources and smoke curing duration on the levels of polycyclic aromatic hydrocarbon (PAH) in different suites of fish. Food Chem. Toxicol. 2013, 58, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Mráz, J.; Pickova, J. Factors influencing fatty acid composition of common carp (Cyprinus carpio) muscle. Neuro Endocrinol. Lett. 2011, 32 (Suppl. S2), 3–8. [Google Scholar] [PubMed]
- Naz, S.; Nawab, K.; Bano, N.; Rafique, S.; Ali, U.; Khubaib, M.; Ali, U.; Ismaila, A.; Rehman, N.; Tariq, A.; et al. Comparative Study of Proximate Parameters of both Farmed and Wild Selected Fish Species. Adv. Bioresearch 2020, 11, 21–29. [Google Scholar]
- Librando, V.; Sarpietro, M.G.; Castelli, F. Role of lipophilic medium in the absorption of polycyclic aromatic compounds by biomembranes. Environ. Toxicol. Pharmacol. 2003, 14, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, E.N.; Hajeb, P.; Selamat, J.; Lee, S.Y.; Abdull Razis, A.F. Bioaccessibility of Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Meat: The Effects of Meat Doneness and Fat Content. Int. J. Environ. Res. Public Health 2022, 19, 736. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gomes, A.; Santos, C.; Almeida, J.; Elias, M.; Roseiro, L.C. Effect of fat content, casing type and smoking procedures on PAHs contents of Portuguese traditional dry fermented sausages. Food Chem. Toxicol. 2013, 58, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Ledesma, E.; Rendueles, M.; Díaz, M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control. 2016, 60, 64–87. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Meng, Q.; Yan, J.; Wu, R.; Liu, H.; Sun, Y.; Wu, N.; Xiang, J.; Zheng, L.; Zhang, J.; Han, B. Sustainable production of benzene from lignin. Nat. Commun. 2021, 12, 4534. [Google Scholar] [CrossRef] [PubMed]
- Racovita, R.; Secuianu, C.; Ciucă, M.D.; Israel-Roming, F. Effects of Smoking Temperature, Smoking Time, and Type of Wood Sawdust on Polycyclic Aromatic Hydrocarbon Accumulation Levels in Directly Smoked Pork Sausages. J. Agric. Food Chem. 2020, 68, 9530–9536. [Google Scholar] [CrossRef] [PubMed]
- Kiaei, M.; Tajik, M.; Vaysi, R. Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas. Cienc. Y Tecnol. 2014, 16, 313–322. [Google Scholar]
- Španić, N.; Jambreković, V.; Klarić, M. Basic chemical composition on wood as parameter in raw material selection for biocomposite production. ASIC Cellul. Chem. Technol. 2018, 52, 163–169. [Google Scholar]
- Popescu, M.-C.; Popescu, C.-M.; Lisa, G.; Sakata, Y. Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct. 2011, 988, 65–72. [Google Scholar] [CrossRef]
- Po, M.; Szczepkowski, A.; Nicewicz, D.; Koczoń, P. The relationship between tree health and chemical composition of beech (Fagus sylvatica L.) and oak (Quercus robur L.) wood of Polish provenances. Pol. Silv. Colendar. Rat. Ind. Lignar. 2007, 6, 77–88. [Google Scholar]
- Stumpe-Vīksna, I.; Bartkevičs, V.; Kukāre, A.; Morozovs, A. Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chem. 2008, 110, 794–797. [Google Scholar] [CrossRef]
Proximate Compounds | Fish Species | ||
---|---|---|---|
Rainbow Trout (g/100 g) | Carp (g/100 g) | Siberian Sturgeon (g/100 g) | |
Moisture | 75.22 | 68.65 | 76.82 |
Dry matter | 24.78 | 31.35 | 23.18 |
Total minerals | 1.33 | 1.6 | 1.03 |
Organic matters | 23.45 | 29.75 | 22.15 |
Total proteins | 18.62 | 12.20 | 16.11 |
Total lipids | 4.75 | 17.44 | 5.98 |
PAH | Rainbow Trout | Carp | Siberian Sturgeon | ||||||
---|---|---|---|---|---|---|---|---|---|
Beech Wood | Plum Wood | Oak Wood | Beech Wood | Plum Wood | Oak Wood | Beech Wood | Plum Wood | Oak Wood | |
Naph | 3.81 ± 0.17 e | 34.04 ± 0.93 a | 5.85 ± 0.69 d | 4.44 ± 0.57 cd | 32.25 ± 0.87 a | 4.40 ± 0.28 cd | 2.72 ± 0.71 e | 19.78 ± 0.33 b | 11.85 ± 0.74 c |
Ace | 0.06 ± 0.01 c | 0.48 ± 0.09 ab | 0.08 ± 0.02 c | 0.07 ± 0.02 c | 0.42 ± 0.15 b | 0.12 ± 0.07 c | 0.11 ± 0.03 c | 0.68 ± 0.11 a | 0.45 ± 0.03 b |
Flu | 1.27 ± 0.11 d | 55.17 ± 2.05 a | 7.29 ± 0.31 c | 1.57 ± 0.29 d | 55.45 ± 1.77 a | 8.63 ± 1.40 c | 1.60 ± 0.26 d | 56.55 ± 0.65 a | 13.24 ± 0.65 b |
Phen | 4.60 ± 0.04 e | 74.18 ± 1.25 b | 12.52 ± 0.47 d | 5.67 ± 0.63 e | 74.21 ± 1.98 b | 14.04 ± 0.36 d | 6.53 ± 0.25 e | 85.59 ± 1.19 a | 26.94 ± 1.18 c |
Ant | 1.36 ± 0.08 f | 24.92 ± 3.39 c | 3.53 ± 0.23 e | 1.79 ± 0.34 f | 26.66 ± 0.51 b | 3.62 ± 0.53 e | 1.99 ± 0.21 ef | 29.67 ± 1.53 a | 7.51 ± 0.65 d |
Flt | 4.39 ± 0.04 f | 96.30 ± 2.58 b | 12.75 ± 1.25 e | 5.11 ± 0.54 f | 91.13 ± 1.77 c | 11.10 ± 0.42 e | 6.39 ± 0.75 f | 113.88 ± 2.59 a | 19.38 ± 0.60 d |
Pyr | 2.45 ± 0.07 fg | 54.46 ± 1.95 b | 7.53 ± 0.58 e | 1.47 ± 0.41 g | 26.55 ± 0.61 c | 15.99 ± 1.06 d | 4.84 ± 0.13 ef | 87.23 ± 1.74 a | 15.17 ± 0.82 d |
B(a)A | 0.50 ± 0.04 e | 12.47 ± 0.77 c | 0.54 ± 0.11 e | 0.95 ± 0.51 e | 19.06 ± 1.05 b | 4.56 ± 0.44 d | 1.07 ± 0.38 e | 20.48 ± 0.56 a | 3.54 ± 0.46 d |
Cry | 0.01 ± 0.00 d | 0.30 ± 0.03 d | 0.36 ± 0.09 d | 0.85 ± 0.41 d | 18.80 ± 1.46 a | 10.43 ± 0.87 b | 0.51 ± 0.07 d | 11.42 ± 0.75 b | 2.80 ± 0.54 c |
B(b)F | 0.02 ± 0.01 c | 0.76 ± 0.11 c | 0.53 ± 0.43 c | 0.12 ± 0.02 c | 2.92 ± 0.95 b | 4.87 ± 0.22 b | 0.19 ± 0.09 c | 4.44 ± 0.58 a | 0.93 ± 0.07 c |
B(k)F | 0.06 ± 0.02 d | 2.12 ± 0.51 b | 1.75 ± 0.22 bc | 0.16 ± 0.10 d | 4.60 ± 0.98 a | 4.30 ± 0.36 a | 0.15 ± 0.08 d | 4.24 ± 0.61 a | 0.79 ± 0.14 cd |
B(a)P | 0.11 ± 0.02 e | 4.04 ± 0.42 b | 0.47 ± 0.07 de | 0.14 ± 0.06 e | 4.47 ± 0.95 b | 1.69 ± 0.22 c | 0.28 ± 0.05 de | 8.63 ± 1.01 a | 0.68 ± 0.04 d |
D(a,h)A | 0.03 ± 0.01 b | 0.59 ± 0.21 b | 0.07 ± 0.03 b | 0.04 ± 0.03 b | 0.58 ± 0.20 b | 0.16 ± 0.01 b | 0.11 ± 0.04 b | 1.46 ± 0.51 a | 0.10 ± 0.04 b |
B(ghi)P | 0.09 ± 0.06 f | 2.20 ± 0.34 c | 1.34 ± 0.13 cd | 0.20 ± 0.08 ef | 4.09 ± 0.55 b | 3.69 ± 0.44 b | 0.26 ± 0.04 ef | 5.14 ± 0.49 a | 1.06 ± 0.33 de |
I(1,2,3-cd)P | 0.05 ± 0.06 c | 0.05 ± 0.02 c | 0.05 ± 0.01 c | 0.05 ± 0.02 c | 0.05 ± 0.02 c | 0.05 ± 0.02 c | 0.05 ± 0.02 c | 0.20 ± 0.12 b | 0.42 ± 0.09 a |
Σ4PAHs | 0.64 ± 0.04 b | 17.57 ± 0.12 e | 1.90 ± 0.05 a | 2.06 ± 0.43 a | 45.24 ± 0.39 cd | 21.55 ± 0.07 d | 2.05 ± 0.24 a | 44.97 ± 0.02 cd | 7.95 ± 0.44 b |
Σ15PAHs | 17.54 ± 0.49 f | 362.17 ± 11.34 b | 54.69 ± 2.86 e | 21.52 ± 2.04 f | 361.35 ± 8.46 b | 87.66 ± 1.57 d | 26.83 ± 1.26 f | 450.47 ± 6.94 a | 104.94 ± 2.93 c |
Factor | Naph | Ace | Flu | Phen | Ant | Flt | Pyr | B(a)A | Cry | B(b)F | B(k)F | B(a)P | D(a,h)A | B(ghi)P | I (1,2,3-cd)P | Σ15 PAHs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fish species | ||||||||||||||||
Rainbow trout | 14.57 ± 14.64 a | 0.22 ± 0.21 b | 21.25 ± 5.60 b | 30.45 ± 7.81 b | 9.94 ± 4.29 c | 37.81 ± 4.04 b | 21.48 ± 4.87 b | 4.51 ± 1.99 b | 0.25 ± 0.17 c | 0.44 ± 0.39 c | 1.32 ± 0.94 b | 1.55 ± 0.90 c | 0.24 ± 0.11 b | 1.21 ± 0.94 c | 0.048 ± 0.01 b | 144.80 ± 14.22 c |
Carp | 13.70 ± 13.93 b | 0.21 ± 0.18 b | 21.87 ± 5.38 b | 31.31 ± 8.40 b | 10.69 ± 5.02 b | 35.78 ± 4.61 c | 14.67 ± 1.92 c | 8.20 ± 3.33 a | 10.03 ± 3.83 a | 2.64 ± 0.89 a | 3.03 ± 1.21 a | 2.10 ± 0.90 b | 0.27 ± 0.13 b | 2.66 ± 1.28 a | 0.045 ± 0.01 b | 156.84 ± 16.10 b |
Siberian sturgeon | 11.46 ± 7.41 c | 0.42 ± 0.25 a | 23.80 ± 5.08 a | 39.69 ± 5.55 a | 13.06 ± 6.09 a | 46.56 ± 5.82 a | 35.75 ± 8.88 a | 8.70 ± 3.66 a | 4.91 ± 1.99 b | 1.86 ± 0.99 b | 1.73 ± 0.93 b | 3.20 ± 1.80 a | 0.26 ± 0.08 a | 2.15 ± 1.29 b | 0.220 ± 0.18 a | 194.06 ± 15.26 a |
Wood species | ||||||||||||||||
Beech wood | 3.67 ± 0.88 c | 0.09 ± 0.03 c | 1.50 ± 0.25 c | 5.60 ± 0.90 c | 1.72 ± 0.33 c | 5.31 ± 0.99 c | 2.92 ± 1.51 c | 0.84 ± 0.41 c | 0.46 ± 0.42 c | 0.12 ± 0.08 c | 3.66 ± 0.08 c | 0.18 ± 0.10 c | 0.07 ± 0.05 b | 0.18 ± 0.09 c | 0.047 ± 0.01 b | 21.95 ± 4.22 c |
Plum wood | 28.70 ± 6.76 a | 0.53 ± 0.16 a | 55.72 ± 1.53 a | 77.99 ± 5.90 a | 27.09 ± 2.20 a | 100.44 ± 10.55 a | 56.08 ± 6.35 a | 17.68 ± 4.10 a | 10.18 ± 2.10 a | 2.71 ± 1.07 a | 3.66 ± 1.32 a | 5.72 ± 1.21 a | 0.88 ± 0.53 a | 3.81 ± 1.35 b | 0.096 ± 0.10 b | 391.32 ± 45.02 a |
Oak wood | 7.37 ± 0.89 b | 0.22 ± 0.05 b | 9.71 ± 0.99 b | 17.83 ± 0.85 b | 4.90 ± 0.32 b | 14.41 ± 0.91 b | 12.90 ± 4.28 b | 2.88 ± 1.02 b | 4.53 ± 1.05 b | 2.11 ± 1.19 b | 2.30 ± 0.88 b | 0.95 ± 0.62 b | 0.12 ± 0.05 b | 20.30 ± 4.18 a | 0.170 ± 0.01 a | 82.43 ± 16.62 b |
Fish species | <0.0001 | <0.0001 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Fish species | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0037 | <0.0001 | 0.0004 | <0.0001 |
Fish species × Wood species | <0.0001 | 0.0121 | 0.0019 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0022 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savin, R.-L.; Ladoși, D.; Ladoși, I.; Păpuc, T.; Becze, A.; Cadar, O.; Torök, I.; Simedru, D.; Mariș, Ș.C.; Coroian, A. Influence of Fish Species and Wood Type on Polycyclic Aromatic Hydrocarbons Contamination in Smoked Fish Meat. Foods 2024, 13, 1790. https://doi.org/10.3390/foods13121790
Savin R-L, Ladoși D, Ladoși I, Păpuc T, Becze A, Cadar O, Torök I, Simedru D, Mariș ȘC, Coroian A. Influence of Fish Species and Wood Type on Polycyclic Aromatic Hydrocarbons Contamination in Smoked Fish Meat. Foods. 2024; 13(12):1790. https://doi.org/10.3390/foods13121790
Chicago/Turabian StyleSavin, Raul-Lucian, Daniela Ladoși, Ioan Ladoși, Tudor Păpuc, Anca Becze, Oana Cadar, Iulia Torök, Dorina Simedru, Ștefania Codruța Mariș, and Aurelia Coroian. 2024. "Influence of Fish Species and Wood Type on Polycyclic Aromatic Hydrocarbons Contamination in Smoked Fish Meat" Foods 13, no. 12: 1790. https://doi.org/10.3390/foods13121790
APA StyleSavin, R. -L., Ladoși, D., Ladoși, I., Păpuc, T., Becze, A., Cadar, O., Torök, I., Simedru, D., Mariș, Ș. C., & Coroian, A. (2024). Influence of Fish Species and Wood Type on Polycyclic Aromatic Hydrocarbons Contamination in Smoked Fish Meat. Foods, 13(12), 1790. https://doi.org/10.3390/foods13121790