Food Protein Nanofibril Gels: From Conditions, Types and Properties to Applications
Abstract
:1. Introduction
2. FPN, Concept, Specification, and Reactivity
3. Factors Affecting FPN Gelling
3.1. The Morphology of the Nanofibrils
3.2. Protein Concentration
3.3. Heating Time
3.4. Ionic Type and Strength
4. Preparation of Different Types of FPN Gels
4.1. Pure Protein Nanofibril Gels
4.2. Hybrid Protein Nanofibril Gels
4.2.1. Hot-Set Nanofibril Gels
4.2.2. Cold-Set Nanofibril Gels
4.3. Aerogels
5. Properties of FPN Gels
5.1. Water-Holding Capacity
5.2. Mechanical Properties
5.3. Thixotropy
5.4. Electrical Conductivity
5.5. Antibacterial and Antioxidant Activities
6. Application of FPN Gels
6.1. Biomedical Engineering
6.2. Water Purification and CO2 Capture
6.3. Tissue Engineering
6.4. Energy Materials
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FPN | food protein nanofibrils |
WPI | whey protein isolate |
β-Lactoglobulin | β-lg |
SPI | soy protein isolate |
WPF | WPI nanofibrils |
GNP | gliadin nanoparticles |
WHC | water-holding capacity |
CNCs | cellulose nanocrystals |
EGCG | Epigallocatechin gallate |
PEG | poly(ethylene glycol) |
HEWL | hen egg-white lysozyme |
CA | citric acid |
GDL | glucono-δ-lactone |
SA | sodium alginate |
XG | xanthan gum |
Cur | curcumin |
PVA | polyvinyl alcohol |
AHB-gel | aerogel-hydrogel biphase gel |
References
- Tomadoni, B.; Capello, C.; Valencia, G.A.; Gutiérrez, T.J. Self-assembled proteins for food applications: A review. Trends Food Sci. Technol. 2020, 101, 1–16. [Google Scholar] [CrossRef]
- Cao, Y.; Mezzenga, R. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Adv. Colloid Interface Sci. 2019, 269, 334–356. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wei, Z.; Xue, C. Protein fibrils from different food sources: A review of fibrillation conditions, properties, applications and research trends. Trends Food Sci. Technol. 2022, 121, 59–75. [Google Scholar] [CrossRef]
- Lambrecht, M.A.; Jansens, K.J.A.; Rombouts, I.; Brijs, K.; Rousseau, F.; Schymkowitz, J.; Delcour, J.A. Conditions Governing Food Protein Amyloid Fibril Formation. Part II: Milk and Legume Proteins. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1277–1291. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ma, C.-m.; Yang, Y.; Bian, X.; Liu, X.-f.; Wang, Y.; Zhang, N. Food-derived protein amyloid-like fibrils: Fibrillation mechanism, structure, and recent advances for the stabilization of emulsions. Food Hydrocoll. 2023, 145, 109146. [Google Scholar] [CrossRef]
- Mantovani, R.A.; de Figueiredo Furtado, G.; Netto, F.M.; Cunha, R.L. Assessing the potential of whey protein fibril as emulsifier. J. Food Eng. 2018, 223, 99–108. [Google Scholar] [CrossRef]
- Mohammadian, M.; Salami, M.; Emam-Djomeh, Z. Characterization of hydrogels formed by non-toxic chemical cross-linking of mixed nanofibrillated/heat-denatured whey proteins. J. Iran. Chem. Soc. 2019, 16, 2731–2741. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Gan, H.; Meng, Q.; Du, G.; An, Y.; Liu, J. The effect of heparan sulfate on promoting amyloid fibril formation by β-casein and their binding research with multi-spectroscopic approaches. J. Photochem. Photobiol. B Biol. 2020, 202, 111671. [Google Scholar] [CrossRef]
- Movaghati, S.; Delphi, L.; Disfani, F.; Moosavi-Movahedi, A.A. The role of surface activity on the amyloid fibrillation pathway of bovine serum albumin upon interaction with glyphosate. Int. J. Biol. Macromol. 2023, 226, 1166–1177. [Google Scholar] [CrossRef]
- Yang, L.; Li, H.; Yao, L.; Yu, Y.; Ma, G. Amyloid-Based Injectable Hydrogel Derived from Hydrolyzed Hen Egg White Lysozyme. ACS Omega 2019, 4, 8071–8080. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, Q. In vitro digestion and stability under environmental stresses of ovotransferrin nanofibrils. Food Hydrocoll. 2020, 99, 105343. [Google Scholar] [CrossRef]
- Herneke, A.; Lendel, C.; Johansson, D.; Newson, W.; Hedenqvist, M.; Karkehabadi, S.; Jonsson, D.; Langton, M. Protein Nanofibrils for Sustainable Food–Characterization and Comparison of Fibrils from a Broad Range of Plant Protein Isolates. ACS Food Sci. Technol. 2021, 1, 854–864. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, S.; Jin, C.; Ren, F.; Wang, J. Wheat gluten amyloid fibrils: Conditions, mechanism, characterization, application, and future perspectives. Int. J. Biol. Macromol. 2023, 253, 126435. [Google Scholar] [CrossRef]
- Xu, J.; Tang, M.; Wang, D.; Xie, Q.; Xu, X. Exploring the self-assembly journey of oat globulin fibrils: From structural evolution to modified functionality. Food Hydrocoll. 2024, 149, 109587. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Huang, L.-H.; Wei, Z.-C. Effects of additional fibrils on structural and rheological properties of rice bran albumin solution and gel. Eur. Food Res. Technol. 2014, 239, 971–978. [Google Scholar] [CrossRef]
- Lassé, M.; Ulluwishewa, D.; Healy, J.; Thompson, D.; Miller, A.; Roy, N.; Chitcholtan, K.; Gerrard, J.A. Evaluation of protease resistance and toxicity of amyloid-like food fibrils from whey, soy, kidney bean, and egg white. Food Chem. 2016, 192, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.-S.; Ma, Z.; Jing, P. Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability. Food Res. Int. 2020, 135, 109289. [Google Scholar] [CrossRef]
- Herneke, A.; Karkehabadi, S.; Lu, J.; Lendel, C.; Langton, M. Protein nanofibrils from mung bean: The effect of pH on morphology and the ability to form and stabilise foams. Food Hydrocoll. 2023, 136, 108315. [Google Scholar] [CrossRef]
- Liu, Q.-Q.; Yang, Q.; Wang, Y.-R.; Jiang, Y.-X.; Chen, H.-Q. Formation and structural characteristics of pea globulin amyloid-like fibrils pretreated with low-frequency magnetic field. Food Hydrocoll. 2024, 147, 109331. [Google Scholar] [CrossRef]
- Dong, Z.; Peydayesh, M.; Donat, F.; Jin, T.; Li, T.; Müller, C.R.; Mezzenga, R. Amine-Functionalized Amyloid Aerogels for CO2 Capture. ChemSusChem 2023, 16, e202300767. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, L.; Gilbert, E.P.; Loo, T.S.; Lee, S.J.; Harrison, J.; Yang, Z. Fibrillisation of faba bean protein isolate by thermosonication for process efficacy: Microstructural characteristics, assembly behaviour, and physicochemical properties. Food Hydrocoll. 2024, 154, 110127. [Google Scholar] [CrossRef]
- Josefsson, L.; Ye, X.; Brett, C.J.; Meijer, J.; Olsson, C.; Sjögren, A.; Sundlöf, J.; Davydok, A.; Langton, M.; Emmer, Å.; et al. Potato Protein Nanofibrils Produced from a Starch Industry Sidestream. ACS Sustain. Chem. Eng. 2019, 8, 1058–1067. [Google Scholar] [CrossRef]
- Bagnani, M.; Ehrengruber, S.; Soon, W.L.; Peydayesh, M.; Miserez, A.; Mezzenga, R. Rapeseed Cake Valorization into Bioplastics Based on Protein Amyloid Fibrils. Adv. Mater. Technol. 2022, 8, 2200932. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.-R.; Du, Y.-N.; Chen, H.-Q. Comparison of the assembly behavior and structural characteristics of arachin and conarachin amyloid-like fibrils. Food Hydrocoll. 2023, 138, 108479. [Google Scholar] [CrossRef]
- Soon, W.L.; Peydayesh, M.; Mezzenga, R.; Miserez, A. Plant-based amyloids from food waste for removal of heavy metals from contaminated water. Chem. Eng. J. 2022, 445, 136513. [Google Scholar] [CrossRef]
- Kutzli, I.; Zhou, J.; Li, T.; Baier, S.K.; Mezzenga, R. Formation and characterization of plant-based amyloid fibrils from hemp seed protein. Food Hydrocoll. 2023, 137, 108307. [Google Scholar] [CrossRef]
- Yu, M.; Ge, R.; Zhang, J.; Xiong, C.; Xu, L.; Zhao, M.; Fan, J. Buckwheat self-assembling peptide-based hydrogel: Preparation, characteristics and forming mechanism. Food Hydrocoll. 2021, 125, 107378. [Google Scholar] [CrossRef]
- Mykolenko, S.; Soon, W.L.; Mezzenga, R. Production and characterization of amaranth amyloid fibrils from food protein waste. Food Hydrocoll. 2024, 149, 109604. [Google Scholar] [CrossRef]
- Pham, C.L.L.; Rodríguez de Francisco, B.; Valsecchi, I.; Dazzoni, R.; Pillé, A.; Lo, V.; Ball, S.R.; Cappai, R.; Wien, F.; Kwan, A.H.; et al. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi. J. Mol. Biol. 2018, 430, 3784–3801. [Google Scholar] [CrossRef]
- Van Gerven, N.; Van der Verren, S.E.; Reiter, D.M.; Remaut, H. The Role of Functional Amyloids in Bacterial Virulence. J. Mol. Biol. 2018, 430, 3657–3684. [Google Scholar] [CrossRef]
- Riek, R.; Eisenberg, D.S. The activities of amyloids from a structural perspective. Nature 2016, 539, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, M.; Moosavi-Movahedi, A.A.; Saboury, A.A.; Khodagholi, F.; Shaerzadeh, F.; Sheibani, N. Curcumin Protects β-Lactoglobulin Fibril Formation and Fibril-Induced Neurotoxicity in PC12 Cells. PLoS ONE 2015, 10, e0133206. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wu, G.; Liu, C.; Li, D.; Jiang, B.; Zhang, X. Edible coating based on whey protein isolate nanofibrils for antioxidation and inhibition of product browning. Food Hydrocoll. 2018, 79, 179–188. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Zhong, C. Amyloid-directed assembly of nanostructures and functional devices for bionanoelectronics. J. Mater. Chem. B 2015, 3, 4953–4958. [Google Scholar] [CrossRef]
- Shiroodi, S.G.; Rasco, B.A.; Lo, Y.M. Influence of Xanthan-Curdlan Hydrogel Complex on Freeze-Thaw Stability and Rheological Properties of Whey Protein Isolate Gel over Multiple Freeze-Thaw Cycle. J. Food Sci. 2015, 80, E1498–E1505. [Google Scholar] [CrossRef] [PubMed]
- Urbonaite, V.; van der Kaaij, S.; de Jongh, H.H.J.; Scholten, E.; Ako, K.; van der Linden, E.; Pouvreau, L. Relation between gel stiffness and water holding for coarse and fine-stranded protein gels. Food Hydrocoll. 2016, 56, 334–343. [Google Scholar] [CrossRef]
- Chantrapornchai, W.; McClements, D.J. Influence of NaCl on optical properties, large-strain rheology and water holding capacity of heat-induced whey protein isolate gels. Food Hydrocoll. 2002, 16, 467–476. [Google Scholar] [CrossRef]
- Jo, Y.-J.; Huang, W.; Chen, L. Fabrication and characterization of lentil protein gels from fibrillar aggregates and the gelling mechanism study. Food Funct. 2020, 11, 10114–10125. [Google Scholar] [CrossRef] [PubMed]
- Renkema, J.M.S.; Lakemond, C.M.M.; de Jongh, H.H.J.; Gruppen, H.; van Vliet, T. The effect of pH on heat denaturation and gel forming properties of soy proteins. J. Biotechnol. 2000, 79, 223–230. [Google Scholar] [CrossRef]
- Shimanovich, U.; Efimov, I.; Mason, T.O.; Flagmeier, P.; Buell, A.K.; Gedanken, A.; Linse, S.; Åkerfeldt, K.S.; Dobson, C.M.; Weitz, D.A.; et al. Protein Microgels from Amyloid Fibril Networks. ACS Nano 2015, 9, 43–51. [Google Scholar] [CrossRef]
- Jin, B.; Zhou, X.; Li, X.; Lin, W.; Chen, G.; Qiu, R. Self-Assembled Modified Soy Protein/Dextran Nanogel Induced by Ultrasonication as a Delivery Vehicle for Riboflavin. Molecules 2016, 21, 282. [Google Scholar] [CrossRef]
- Zhang, X.; Razanajatovo, M.R.; Du, X.; Wang, S.; Feng, L.; Wan, S.; Chen, N.; Zhang, Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. Eco-Environ. Health 2023, 2, 264–277. [Google Scholar] [CrossRef]
- Jacob, R.S.; Ghosh, D.; Singh, P.K.; Basu, S.K.; Jha, N.N.; Das, S.; Sukul, P.K.; Patil, S.; Sathaye, S.; Kumar, A.; et al. Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation. Biomaterials 2015, 54, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Yadav, J.K. Amyloids and Amyloid-like Protein Aggregates in Foods: Challenges and New Perspectives. Curr. Protein Pept. Sci. 2023, 24, 393–403. [Google Scholar] [CrossRef]
- Jones, O.G.; Mezzenga, R. Inhibiting, promoting, and preserving stability of functional proteinfibrils. Soft Matter 2012, 8, 876–895. [Google Scholar] [CrossRef]
- Li, T.; Zhou, J.; Peydayesh, M.; Yao, Y.; Bagnani, M.; Kutzli, I.; Chen, Z.; Wang, L.; Mezzenga, R.J.A.S.S. Plant protein amyloid fibrils for multifunctional sustainable materials. Adv. Sustain. Syst. 2023, 7, 2200414. [Google Scholar] [CrossRef]
- Munialo, C.D.; Martin, A.H.; van der Linden, E.; de Jongh, H.H.J. Fibril Formation from Pea Protein and Subsequent Gel Formation. J. Agric. Food Chem. 2014, 62, 2418–2427. [Google Scholar] [CrossRef]
- Bolisetty, S.; Harnau, L.; Jung, J.-m.; Mezzenga, R. Gelation, Phase Behavior, and Dynamics of β-Lactoglobulin Amyloid Fibrils at Varying Concentrations and Ionic Strengths. Biomacromolecules 2012, 13, 3241–3252. [Google Scholar] [CrossRef]
- Yan, H.; Nykanen, A.; Ruokolainen, J.; Farrar, D.; Gough, J.E.; Saiani, A.; Miller, A.F. Thermo-reversible protein fibrillar hydrogels as cell scaffolds. Faraday Discuss. 2008, 139, 71–84. [Google Scholar] [CrossRef]
- Kavanagh, G.M.; Clark, A.H.; Ross-Murphy, S.B. Heat-Induced Gelation of Globular Proteins: 4. Gelation Kinetics of Low pH β-Lactoglobulin Gels. Langmuir 2000, 16, 9584–9594. [Google Scholar] [CrossRef]
- Bolder, S.G.; Vasbinder, A.J.; Sagis, L.M.C.; van der Linden, E. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation. Int. Dairy J. 2007, 17, 846–853. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Gao, Y.; Zhang, Y.; Jiang, L.; Sui, X. Structural insights into acidic heating-induced amyloid fibrils derived from soy protein as a function of protein concentration. Food Hydrocoll. 2023, 145, 109085. [Google Scholar] [CrossRef]
- Veerman, C.; Baptist, H.; Sagis, L.M.C.; van der Linden, E. A New Multistep Ca2+-Induced Cold Gelation Process for β-Lactoglobulin. J. Agric. Food Chem. 2003, 51, 3880–3885. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, K.; Xie, H.; Wang, Y.; Ning, F.; Xiong, H.; Zhao, Q. Color formation during the fibrillization of whey protein isolate: Maillard reaction and protein oxidation. Food Hydrocoll. 2023, 142, 108819. [Google Scholar] [CrossRef]
- Keppler, J.K.; Heyn, T.R.; Meissner, P.M.; Schrader, K.; Schwarz, K. Protein oxidation during temperature-induced amyloid aggregation of beta-lactoglobulin. Food Chem. 2019, 289, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Capezza, A.J.; Xiao, X.; Lendel, C.; Hedenqvist, M.S.; Kessler, V.G.; Olsson, R.T. Protein Nanofibrils and Their Hydrogel Formation with Metal Ions. ACS Nano 2021, 15, 5341–5354. [Google Scholar] [CrossRef] [PubMed]
- Mohammadian, M.; Madadlou, A. Cold-set hydrogels made of whey protein nanofibrils with different divalent cations. Int. J. Biol. Macromol. 2016, 89, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Khalesi, H.; Zhao, Y.; Sun, C.; Lu, W.; Cao, Y.; Zhang, Y.; Kadkhodaee, R.; Fang, Y. Influence of amyloid fibril length and ionic strength on WPI-based fiber-hydrogel composites: Microstructural, rheological and water holding properties. Food Hydrocoll. 2024, 148, 109499. [Google Scholar] [CrossRef]
- Zhu, Y.; Han, Y.; Peng, S.; Chen, X.; Xie, Y.; Liang, R.; Zou, L. Hydrogels assembled from hybrid of whey protein amyloid fibrils and gliadin nanoparticles for curcumin loading: Microstructure, tunable viscoelasticity, and stability. Front. Nutr. 2022, 9, 994740. [Google Scholar] [CrossRef]
- Seth, P.; Mukherjee, A.; Sarkar, N. Formation of hen egg white lysozyme derived amyloid-based hydrogels using different gelation agents: A potential tool for drug delivery. Int. J. Biol. Macromol. 2023, 253, 127177. [Google Scholar] [CrossRef]
- Qian, S.; Chen, L.; Zhao, Z.; Fan, X.; Xu, X.; Zhou, G.; Zhu, B.; Ullah, N.; Feng, X. Epigallocatechin-3-gallate mediated self-assemble behavior and gelling properties of the ovalbumin with heating treatment. Food Hydrocoll. 2022, 131, 107797. [Google Scholar] [CrossRef]
- Khalesi, H.; Sun, C.; He, J.; Lu, W.; Fang, Y. The role of amyloid fibrils in the modification of whey protein isolate gels with the form of stranded and particulate microstructures. Food Res. Int. 2021, 140, 109856. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Sun, C.; Chang, Y.; Sun, M.; Zhang, Y.; Fang, Y. Heat-induced pea protein isolate gels reinforced by panda bean protein amyloid fibrils: Gelling properties and formation mechanism. Food Res. Int. 2022, 162, 112053. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Lv, S.; Wang, W.; Zhu, S.; Xu, J.; Zheng, M.; Liu, Y.; Zhou, Y.; Sui, X.; Xiao, Y. Remodeling mechanism of gel network structure of soy protein isolate amyloid fibrils mediated by cellulose nanocrystals. Carbohydr. Polym. 2024, 332, 121919. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Meng, X.; Zhou, L.; Liu, W.; Liu, C.; Prakash, S.; Zhong, J. The gel mechanism and carrier quality of fibrous and granular whey protein self-assembly. Food Hydrocoll. 2023, 136, 108302. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, Y.; Zhang, Y.; Wei, Z.; Wan, Z.; Li, C.; Tang, X.; Zhao, Z.; Zhou, P.; Li, P.; et al. Impacts of citric acid concentration and pH value on mechanism and rheological properties of cold-set whey protein fibrils hydrogels. LWT 2023, 183, 114872. [Google Scholar] [CrossRef]
- How, S.-C.; Lin, T.-H.; Chang, C.-C.; Wang, S.S.S. Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels. Int. J. Biol. Macromol. 2021, 184, 79–91. [Google Scholar] [CrossRef]
- Zhou, J.; Li, T.; Peydayesh, M.; Usuelli, M.; Lutz-Bueno, V.; Teng, J.; Wang, L.; Mezzenga, R. Oat Plant Amyloids for Sustainable Functional Materials. Adv. Sci. 2022, 9, 2104445. [Google Scholar] [CrossRef]
- Wu, X.; Nishinari, K.; Gao, Z.; Zhao, M.; Zhang, K.; Fang, Y.; Phillips, G.O.; Jiang, F. Gelation of β-lactoglobulin and its fibrils in the presence of transglutaminase. Food Hydrocoll. 2016, 52, 942–951. [Google Scholar] [CrossRef]
- Usuelli, M.; Germerdonk, T.; Cao, Y.; Peydayesh, M.; Bagnani, M.; Handschin, S.; Nyström, G.; Mezzenga, R. Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. Nanoscale 2021, 13, 12534–12545. [Google Scholar] [CrossRef]
- Wu, S.; Wang, L.; Zhao, Y.; Chen, B.; Qiu, D.; Sun, P.; Shao, P.; Feng, S. Fabrication of high strength cold-set sodium alginate/whey protein nanofiber double network hydrogels and their interaction with curcumin. Food Res. Int. 2023, 165, 112490. [Google Scholar] [CrossRef] [PubMed]
- Roshanghias, S.; Madadlou, A. Functional and gel properties of whey protein nanofibrils as influenced by partial substitution with cellulose nanocrystal and alginate. Int. Dairy J. 2018, 81, 53–61. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, Y.; Wijaya, W.; Cheng, Y.; Xiao, J.; Huang, Q. Hydrogels assembled from ovotransferrin fibrils and xanthan gum as dihydromyricetin delivery vehicles. Food Funct. 2020, 11, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Peydayesh, M.; Boschi, E.; Bagnani, M.; Tay, D.; Donat, F.; Almohammadi, H.; Li, M.; Usuelli, M.; Shiroka, T.; Mezzenga, R. Hybrid Amyloid–Chitin Nanofibrils for Magnetic and Catalytic Aerogels. ACS Nano 2024, 18, 6690–6701. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Xie, J.; Qu, X.; Liu, C. Lysozyme Amyloid Fibril-Integrated PEG Injectable Hydrogel Adhesive with Improved Antiswelling and Antibacterial Capabilities. Biomacromolecules 2022, 23, 1376–1391. [Google Scholar] [CrossRef]
- Nian, Y.; Zhang, Y.; Ruan, C.; Hu, B. Update of the interaction between polyphenols and amyloid fibrils. Curr. Opin. Food Sci. 2022, 43, 99–106. [Google Scholar] [CrossRef]
- He, X.; Li, M.; Liu, Y.; Nian, Y.; Hu, B. Purification of Egg White Lysozyme Determines the Downstream Fibrillation of Protein and Co-assembly with Phytochemicals to Form Edible Hydrogels Regulating the Lipid Metabolism. J. Agric. Food Chem. 2022, 70, 9432–9441. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Shen, Y.; Adamcik, J.; Fischer, P.; Schneider, M.; Loessner, M.J.; Mezzenga, R. Polyphenol-Binding Amyloid Fibrils Self-Assemble into Reversible Hydrogels with Antibacterial Activity. ACS Nano 2018, 12, 3385–3396. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yu, S.; Shi, C.; Gu, J.; Shao, Y.; Chen, Q.; Li, Y.; Mezzenga, R. Amyloid–Polyphenol Hybrid Nanofilaments Mitigate Colitis and Regulate Gut Microbial Dysbiosis. ACS Nano 2020, 14, 2760–2776. [Google Scholar] [CrossRef]
- Ruan, C.; Nian, Y.; Chen, Q.; Li, N.; He, X.; Li, C.; Hu, B. Higher affinity of polyphenol to zein than to amyloid fibrils leading to nanoparticle-embed network wall scaffold to construct amyloid fibril-zein-EGCG hydrogels for coating of beef. Food Res. Int. 2022, 156, 111187. [Google Scholar] [CrossRef]
- Cheng, S.; Dong, Y.; Nian, Y.; Chen, Q.; Hu, B. Lysozyme amyloid fibril templated phenolic-iron hydrogels cross-linked with genipin. Food Struct. 2022, 32, 100271. [Google Scholar] [CrossRef]
- Ji, F.; Liu, H.; Wang, C.; Guo, N.; Shen, Y.; Luo, S.; Jiang, S.; Zheng, Z. Remodeling the structure of soy protein fibrils to hydrogels for co-encapsulation of (−)-epigallocatechin gallate (EGCG) and curcumin: Role of EGCG. Food Hydrocoll. 2024, 147, 109439. [Google Scholar] [CrossRef]
- Shen, Y.; Nyström, G.; Mezzenga, R. Amyloid Fibrils form Hybrid Colloidal Gels and Aerogels with Dispersed CaCO3 Nanoparticles. Adv. Funct. Mater. 2017, 27, 1700897. [Google Scholar] [CrossRef]
- Han, Y.; Cao, Y.; Bolisetty, S.; Tian, T.; Handschin, S.; Lu, C.; Mezzenga, R. Amyloid Fibril-Templated High-Performance Conductive Aerogels with Sensing Properties. Small 2020, 16, 2004932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wen, J.; Zhou, Y.; Wang, J.; Cheng, W. Novel efficient capture of hexavalent chromium by polyethyleneimine/amyloid fibrils/polyvinyl alcohol aerogel beads: Functional design, applicability, and mechanisms. J. Hazard. Mater. 2023, 458, 132017. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Shi, H.; Hu, Z.; Wang, F.; Dong, M.; Lei, R.; Zeng, Z.; Wang, Y.; Chen, J. Aerogel-hydrogel biphase gels based on physically crosslinked β-lactoglobulin fibrils/polyvinyl alcohol for skin wound dressings: In vitro and in vivo characterization. Chem. Eng. J. 2023, 473, 145394. [Google Scholar] [CrossRef]
- Alavi, F.; Emam-Djomeh, Z.; Mohammadian, M.; Salami, M.; Moosavi-Movahedi, A.A. Physico-chemical and foaming properties of nanofibrillated egg white protein and its functionality in meringue batter. Food Hydrocoll. 2020, 101, 105554. [Google Scholar] [CrossRef]
- Huyst, A.M.R.; Deleu, L.J.; Luyckx, T.; Van der Meeren, L.; Housmans, J.A.J.; Grootaert, C.; Monge-Morera, M.; Delcour, J.A.; Skirtach, A.G.; Rousseau, F.; et al. Impact of heat and enzymatic treatment on ovalbumin amyloid-like fibril formation and enzyme-induced gelation. Food Hydrocoll. 2022, 131, 107784. [Google Scholar] [CrossRef]
- Smith, J.F.; Knowles, T.P.; Dobson, C.M.; MacPhee, C.E.; Welland, M.E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA 2006, 103, 15806–15811. [Google Scholar] [CrossRef]
- Liu, H.; Liu, C.; McClements, D.J.; Xu, X.; Bai, C.; Sun, Q.; Xu, F.; Dai, L. Reinforcement of heat-set whey protein gels using whey protein nanofibers: Impact of nanofiber morphology and pH values. Food Hydrocoll. 2024, 153, 109954. [Google Scholar] [CrossRef]
- Wei, Z.; Huang, Q. Impact of covalent or non-covalent bound epigallocatechin-3-gallate (EGCG) on assembly, physicochemical characteristics and digestion of ovotransferrin fibrils. Food Hydrocoll. 2020, 98, 105314. [Google Scholar] [CrossRef]
- Diaz, C.; Missirlis, D. Amyloid-Based Albumin Hydrogels. Adv. Healthc. Mater. 2022, 12, 2201748. [Google Scholar] [CrossRef]
- Yang, Q.; Miao, Y.; Luo, J.; Chen, Y.; Wang, Y. Amyloid Fibril and Clay Nanosheet Dual-Nanoengineered DNA Dynamic Hydrogel for Vascularized Bone Regeneration. ACS Nano 2023, 17, 17131–17147. [Google Scholar] [CrossRef]
- Su, J.; Wang, P.; Zhou, W.; Peydayesh, M.; Zhou, J.; Jin, T.; Donat, F.; Jin, C.; Xia, L.; Wang, K.; et al. Single-site iron-anchored amyloid hydrogels as catalytic platforms for alcohol detoxification. Nat. Nanotechnol. 2024. [Google Scholar] [CrossRef]
- Yuan, Y.; Solin, N. Protein-Based Flexible Conductive Aerogels for Piezoresistive Pressure Sensors. ACS Appl. Bio Mater. 2022, 5, 3360–3370. [Google Scholar] [CrossRef]
- Wei, Z.; Wu, S.; Xia, J.; Shao, P.; Sun, P.; Xiang, N. Enhanced Antibacterial Activity of Hen Egg-White Lysozyme against Staphylococcus aureus and Escherichia coli due to Protein Fibrillation. Biomacromolecules 2021, 22, 890–897. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, J.; Zheng, J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. Soft Matter 2014, 10, 7425–7451. [Google Scholar] [CrossRef]
- Nyström, G.; Roder, L.; Fernández-Ronco, M.P.; Mezzenga, R. Amyloid Templated Organic–Inorganic Hybrid Aerogels. Adv. Funct. Mater. 2017, 28, 1703609. [Google Scholar] [CrossRef]
- Peydayesh, M.; Chen, X.; Vogt, J.; Donat, F.; Müller, C.R.; Mezzenga, R. Amyloid fibril-UiO-66-NH2 aerogels for environmental remediation. Chem. Commun. 2022, 58, 5104–5107. [Google Scholar] [CrossRef]
- Peydayesh, M.; Suter, M.K.; Bolisetty, S.; Boulos, S.; Handschin, S.; Nyström, L.; Mezzenga, R. Amyloid Fibrils Aerogel for Sustainable Removal of Organic Contaminants from Water. Adv. Mater. 2020, 32, 1907932. [Google Scholar] [CrossRef]
- Jia, X.; Peydayesh, M.; Huang, Q.; Mezzenga, R. Amyloid Fibril Templated MOF Aerogels for Water Purification. Small 2022, 18, 2105502. [Google Scholar] [CrossRef] [PubMed]
- van Dalen, M.C.E.; Karperien, M.; Claessens, M.M.A.E.; Post, J.N. Choice of Protein, Not Its Amyloid-Fold, Determines the Success of Amyloid-Based Scaffolds for Cartilage Tissue Regeneration. ACS Omega 2023, 8, 24198–24209. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhou, J.; Shen, Y.; Lupo, C.; Sun, Q.; Jin, T.; Sturla, S.J.; Liang, H.; Mezzenga, R. Highly Adhesive Amyloid–Polyphenol Hydrogels for Cell Scaffolding. Biomacromolecules 2022, 24, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Dai, S.; Huang, J.; Hu, X.; Ge, C.; Zhang, X.; Yang, K.; Shao, P.; Sun, P.; Xiang, N. Soy Protein Amyloid Fibril Scaffold for Cultivated Meat Application. ACS Appl. Mater. Interfaces 2023, 15, 15108–15119. [Google Scholar] [CrossRef] [PubMed]
- Nyström, G.; Fong, W.-K.; Mezzenga, R. Ice-Templated and Cross-Linked Amyloid Fibril Aerogel Scaffolds for Cell Growth. Biomacromolecules 2017, 18, 2858–2865. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, S.; Xu, Z.; Chen, L.; Li, G. Biodegradable Pea Protein Fibril Hydrogel-Based Quasi-Solid-State Zn-Ion Battery. ACS Appl. Mater. Interfaces 2023, 15, 49060–49070. [Google Scholar] [CrossRef] [PubMed]
- Nyström, G.; Fernández-Ronco, M.P.; Bolisetty, S.; Mazzotti, M.; Mezzenga, R. Amyloid Templated Gold Aerogels. Adv. Mater. 2015, 28, 472–478. [Google Scholar] [CrossRef]
- Peydayesh, M.; Vogt, J.; Chen, X.; Zhou, J.; Donat, F.; Bagnani, M.; Müller, C.R.; Mezzenga, R. Amyloid-based carbon aerogels for water purification. Chem. Eng. J. 2022, 449, 137703. [Google Scholar] [CrossRef]
- Chun, J.; Bhak, G.; Lee, S.-G.; Lee, J.-H.; Lee, D.; Char, K.; Paik, S.R. κ-Casein-Based Hierarchical Suprastructures and Their Use for Selective Temporal and Spatial Control over Neuronal Differentiation. Biomacromolecules 2012, 13, 2731–2738. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Yang, Q.; Jiang, Y.-X.; Chen, H.-Q. Ovalbumin amyloid-like fibrils/resveratrol self-assembling hydrogel: Preparation, characterization and formation mechanism. Food Hydrocoll. 2024, 151, 109798. [Google Scholar] [CrossRef]
- Huang, X.-y.; Huang, Y.-y.; Zeng, Q.-z.; Liu, P.; Li, J.; Yuan, Y. Development and mechanical properties of soy protein fibrils-chitin nanowhiskers complex gel. Food Hydrocoll. 2023, 139, 108513. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, J.; Soon, W.L.; Kutzli, I.; Molière, A.; Diedrich, S.; Radiom, M.; Handschin, S.; Li, B.; Li, L. Food amyloid fibrils are safe nutrition ingredients based on in-vitro and in-vivo assessment. Nat. Commun. 2023, 14, 6806. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Wang, Z.; Bai, X.; Zhao, Y.; Zhong, X.; Luo, S.; Shen, Y.; Jiang, S.; Zheng, Z. Ultrasound–treated soy protein fibrils: A potential vehicle for curcumin with improved water solubility, antioxidant activity and sustained–release property. Food Hydrocoll. 2023, 143, 108929. [Google Scholar] [CrossRef]
- Afkhami, R.; Varidi, M.J.; Varidi, M.; Hadizadeh, F. Improvement of heat-induced nanofibrils formation of soy protein isolate through NaCl and microwave. Food Hydrocoll. 2023, 139, 108443. [Google Scholar] [CrossRef]
- Joeres, E.; Drusch, S.; Töpfl, S.; Juadjur, A.; Psathaki, O.E.; Heinz, V.; Terjung, N. Formation of amyloid fibrils from ovalbumin under Ohmic heating. Heliyon 2023, 9, e22061. [Google Scholar] [CrossRef]
- Avelar, Z.; Monge-Morera, M.; Delcour, J.A.; Saraiva, J.A.; Vicente, A.A.; Rodrigues, R.M. Ohmic heating as an innovative strategy to modulate protein fibrillation. Innov. Food Sci. Emerg. Technol. 2024, 92, 103587. [Google Scholar] [CrossRef]
Proteins | Fibrillization Conditions | Gelation Conditions | Types | Application | Ref. | |
---|---|---|---|---|---|---|
milk protein | WPI | pH 2, 90 °C, 24 h | metal ions | hydrogel | [56] | |
pH 2, 90 °C, 5 h, 350 rpm | carbohydrate | carbon aerogel | water purification | [108] | ||
pH 2.0, 85 °C, 5 h | GNP pH 2.0, 85 °C, 3 h | hybrid gel | encapsulate curcumin | [59] | ||
β-lg | pH 2.0, 80 °C, 8 h | sodium alginate | cold-set hydrogel | encapsulate curcumin | [71] | |
β-LG/BSA pH 2.0, 80 °C, 8 h | Ca2+-induced | cold-set hydrogel | delivery of riboflavin | [67] | ||
90 °C, pH 2, 5 h | polymerization, freeze–thaw, drying | aerogel | pressure sensing device | [84] | ||
pH 2, 363 K, 5 h (150 r/min) | mixed with PVA and polyethyleneimine, freeze-dried | hybrid aerogel | water purification | [85] | ||
90 °C, pH 2, 5 h | mixed with PVA, lyophilization | hybrid gel | wound dressings | [86] | ||
κ-Casein | pH 8.0, dithiothreitol, 37 °C | dialysis against distilled water, room temperature | hydrogel | drug delivery | [109] | |
hen egg-white lysozyme | pH 2, 90 °C, 8 h | EGCG-iron; genipin crosslinked | hybrid hydrogel/aerogel | [81] | ||
pH 2, 90 °C, 8 h | crosslink polyphenols | hybrid hydrogel | antibacterial activity, anti-inflammatory | [77,78,79] | ||
pH 2, 90 °C, 12 h | crosslink the PEG/gelatin | hybrid hydrogel | sealing and repairing injured tissues | [75] | ||
pH 2.2, 65 °C, 4 h | crosslink the PEG/gelatin | hybrid hydrogel | drug delivery | [60] | ||
90 °C, pH 2.0, 8 h | zein and EGCG | hybrid hydrogel | coating of beef | [80] | ||
25 mM HCl, 80 °C, 24 h | gelatin | hybrid hydrogel | piezoresistive pressure sensor | [95] | ||
pH 2, 200 mM MgCl2, 65 °C, 5 d | pH 7.3, 37 °C, 5–10 min | hydrogel | injectable drug carrier | [10] | ||
90 °C, pH 2, 350 rpm, 24 h | polyphenols, room temperature, 12 h | hybrid cold-set hydrogel | cell scaffolding | [103] | ||
ovalbumin | 78 °C, 22 h, pH 7; trypsin, 37 °C, 48 h | hydrogel | [88] | |||
pH 3, 90 °C | with EGCG | hybrid hydrogel | [61] | |||
85 °C, 24 h, pH 2 | with resveratrol | hybrid cold-set hydrogel | delivery of resveratrol | [110] | ||
ovotransferrin | pH 2, 90 °C, 26 h | mixed with XG and GDL | hybrid hydrogel | dihydromyricetin deliver | [73] | |
bovine serum albumin | 90 °C, TCEP, 90 min | 5% w/v TCEP, room temperature | hydrogel | cell culture | [92] | |
soy protein isolate | pH 2.0, 85 °C,12 h | the MTGase induced | hybrid hydrogel | [111] | ||
pH 2.0, 80 °C, 8 h | EGCG and Cur, 85 °C, 5 min | hybrid hydrogel | co-encapsulation of EGCG/Cur | [82] | ||
85 °C, pH 2, 20 h | pH 7.5, 37 °C, 24 h, transglutaminase and CaCl2 crosslinking | hybrid hydrogel | scaffold for cultivated meat | [104] | ||
85 °C, 20 h | mixed with CNC,95 °C, 30 min | hybrid hydrogel | [64] | |||
black bean protein | pH 2, 90 °C, 10 h | APTMS-fibril, dried by supercritical CO2 | aerogel | capture of CO2 | [20] | |
pea protein | 85 °C, 20 h | GDL induced | cold-set hydrogel | [47] | ||
vinyl alcohol | hybrid hydrogels | electrolyte of zinc-ion batteries | [106] | |||
lentil protein | 90 °C, 0.5–16 h | hydrogel | [38] | |||
kidney bean protein | 90 °C, pH 2, stirring at 300 rpm, 10 h | dialyzed for 2 days with NaCl solution | cold-set hydrogel | [46] | ||
faba bean protein | pH 2, sonicated for 30 min, 90 °C | hydrogel | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, C.; Wang, C.; Fu, S. Food Protein Nanofibril Gels: From Conditions, Types and Properties to Applications. Foods 2024, 13, 2173. https://doi.org/10.3390/foods13142173
Guan C, Wang C, Fu S. Food Protein Nanofibril Gels: From Conditions, Types and Properties to Applications. Foods. 2024; 13(14):2173. https://doi.org/10.3390/foods13142173
Chicago/Turabian StyleGuan, Chen, Changyuan Wang, and Shixin Fu. 2024. "Food Protein Nanofibril Gels: From Conditions, Types and Properties to Applications" Foods 13, no. 14: 2173. https://doi.org/10.3390/foods13142173
APA StyleGuan, C., Wang, C., & Fu, S. (2024). Food Protein Nanofibril Gels: From Conditions, Types and Properties to Applications. Foods, 13(14), 2173. https://doi.org/10.3390/foods13142173