Extraction Effects on Roselle Functionalities: Antioxidant, Antiglycation, and Antibacterial Capacities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Roselle Anthocyanin Extraction
2.3. Functional Components
2.3.1. Total Saccharides and Total Organic Acids
2.3.2. Total Anthocyanins
2.3.3. Total Polyphenols and Total Flavonoids
2.4. Antioxidant Capacities
2.5. Antiglycation Capacity
2.6. Bacterial Growth Inhibition
2.6.1. Preparation of Culture Medium, LB Agar Plates, and LB Agar Overlay
2.6.2. Bacterial Subculture
2.6.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Functional Composition of Roselle Extracts
3.2. Antioxidant Capacities of Roselle Extracts
3.3. Antiglycation Capacity of Roselle Extracts
3.4. Bacterial Growth Inhibition of Roselle Extracts
3.5. Correlation Analysis, Principal Component Analysis, and Agglomerative Hierarchical Clustering Analysis of Roselle Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oyaizu, M. Antioxidative activities of browning products of glucosamine fractionated by organic solvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi 1988, 35, 771–775. [Google Scholar] [CrossRef]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, J.; Yim, M.B.; Chock, P.B. Free radicals and disease. Arch. Biochem. Biophys. 2002, 397, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Wautier, M.; Massin, P.; Guillausseau, P.; Huijberts, M.; Levy, B.; Boulanger, E.; Laloi-Michelin, M.; Wautier, J. N(carboxymethyl) lysine as a biomarker for microvascular complications in type 2 diabetic patients. Diabetes Metab. 2003, 29, 44–52. [Google Scholar] [CrossRef]
- Parija, M.; Bobby, Z.; Kumar, V.; Saradha, B. Oxidative stress and protein glycation in patients with chronic obstructive pulmonary disease. Indian J. Physiol. Pharmacol. 2005, 49, 95–98. [Google Scholar] [PubMed]
- Meetoo, D.; McGovern, P.; Safadi, R. An epidemiological overview of diabetes across the world. Br. J. Nurs. 2013, 16, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari-Khosravi, H.; Jalali-Khanabadi, B.A.; Afkhami-Ardekani, M.; Fatehi, F. Effects of sour tea (Hibiscus sabdariffa) on lipid profile and lipoproteins in patients with type II diabetes. J. Altern. Complem. Med. 2009, 15, 899–903. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, P.; Luo, Y.; Zhao, M.; Chen, F. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Crit. Rev. Food Sci. Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef]
- Li, A.; Xiao, R.; He, S.; An, X.; He, Y.; Wang, C.; Yin, S.; Wang, B.; Shi, X.; He, J. Research Advances of Purple Sweet Potato Anthocyanins: Extraction, Identification, Stability, Bioactivity, Application, and Biotransformation. Molecules 2019, 24, 3816. [Google Scholar] [CrossRef]
- Gershenzon, J. Secondary Metabolites and Plant Defense. In Plant Physiology; Sinauer Associates: Sunderland, MA, USA, 2002; pp. 283–308. [Google Scholar]
- Goyal, S.; Lambert, C.; Cluzet, S.; Mérillon, J.M.; Ramawat, K.G. Secondary Metabolites and Plant Defence. In Plant Defence: Biological Control; Springer: Berlin, Germany, 2012; pp. 109–138. [Google Scholar] [CrossRef]
- Galvano, F.; La Fauci, L.; Lazzarino, G.; Gloginao, V.; Triieni, A.; Ciappellano, S.; Battistini, N.C.; Tavazzi, B.; Galvano, G. Cyanidins: Metabolism and biological properties. J. Nutr. Biochem. 2004, 15, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Gul, M.Z.; Bhakshu, L.M.; Ahmad, F.; Kondapi, A.K.; Qureshi, I.A.; Ghazi, I.A. Evaluation of Abelmoschus moschatus extracts for antioxidant, free radical scavenging, antimicrobial and antiproliferative activities using in vitro assays. BMC Complement. Altern. Med. 2011, 11, 64. [Google Scholar] [CrossRef]
- Tsuda, T.; Horio, F.; Uchida, K.; Aoki, H.; Osawa, T. Dietary cyanidin 3-O-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 2003, 133, 2125–2130. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Peng, C.H.; Chan, K.C.; Yang, Y.S.; Huang, C.N.; Wang, C.J. The hypolipidemic effect of Hibiscus sabdariffa polyphenols via inhibiting lipogenesis and promoting hepatic lipid clearance. J. Agric. Food Chem. 2010, 58, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Martín, J.; Asuero, A.G. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Choudhary, M.I.; Khan, A. Protein glycation inhibitory activities of Lawsonia inermis and its active principles. J. Enzym. Inhib. Med. Chem. 2009, 24, 257–261. [Google Scholar] [CrossRef]
- Yuan, K.C.; Chiang, Y.C.; Li, P.H.; Chiang, P.Y. Physicochemical and release properties of anthocyanin gastric floating tablets colloidized with κ-carrageenan/metal ions. Food Hydrocoll. 2024, 150, 109674. [Google Scholar] [CrossRef]
- Liu, K.S.; Tsao, S.M.; Yin, M.C. In vitro antibacterial activity of roselle calyx and protocatechuic acid. Phytother. Res. 2005, 19, 942–945. [Google Scholar] [CrossRef] [PubMed]
- Olaleye, M.T. Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa. J. Med. Plants Res. 2007, 1, 9–13. [Google Scholar]
- Yin, M.C.; Chao, C.Y. Anti-Campylobacter, anti-aerobic, and anti-oxidative effects of roselle calyx extract and protocatechuic acid in ground beef. Int. J. Food Microbiol. 2008, 127, 73–77. [Google Scholar] [CrossRef]
- Nwaiwu, N.E.; Mshelia, F.; Raufu, I.A. Antimicrobial activities of crude extracts of Moringa oleifera, Hibiscus sabdariffa and Hibiscus esculentus seeds against some enterobacteria. J. Appl. Phytotechnol. Environ. Sanit. 2012, 1, 11. [Google Scholar]
- Eiro, M.J.; Heinonen, M. Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation. J. Agric. Food Chem. 2002, 50, 7461–7466. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Younis, M.; Akram, N.A.; Abdel Latef, A.A.H.; Ashraf, M. Appraisal of Improvement in Physiological and Metabolic Processes by Exogenously Applied Natural and Synthetic Ascorbic Acid in Okra (Abelmoschus esculentus L.) Fruit Subjected to Water Deficit Stress. Phyton 2023, 92, 2761–2784. [Google Scholar] [CrossRef]
- Lu, W.C.; Cheng, Y.T.; Chan, Y.J.; Yan, J.; Li, P.H. Effects of different soaking and germinating conditions on γ-aminobutyric acid, antioxidant activity, and chemical composition of djulis (Chenopodium formosanum). J. Agric. Food Res. 2024, 17, 101162. [Google Scholar] [CrossRef]
- Hsu, T.Y.; Yang, K.M.; Chiang, Y.C.; Lin, L.Y.; Chiang, P.Y. The Browning Properties, Antioxidant Activity, and α-Glucosidase Inhibitory Improvement of Aged Oranges (Citrus sinensis). Foods 2024, 13, 1093. [Google Scholar] [CrossRef]
- Li, P.H.; Chan, Y.J.; Lu, W.C.; Huang, D.W.; Chang, T.C.; Chang, W.H.; Nie, X.B.; Jiang, C.X.; Zhang, X.L. Bioresource utilization of djulis (Chenopodium formosanum) biomass as natural antioxidants. Sustainability 2020, 12, 5926. [Google Scholar] [CrossRef]
- Wu, C.H.; Yen, G.C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J. Agric. Food Chem. 2005, 53, 3167–3173. [Google Scholar] [CrossRef]
- Chou, M.Y.; Osako, K.; Lee, T.A.; Wang, M.F.; Lu, W.C.; Wu, W.J.; Huang, P.H.; Li, P.H.; Ho, J.H. Characterization and antibacterial properties of fish skin gelatin/guava leaf extract bio-composited films incorporated with catechin. LWT 2023, 178, 114568. [Google Scholar] [CrossRef]
- Chavan, S.; Nadanathangam, V. Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy 2019, 9, 140. [Google Scholar] [CrossRef]
- Sun, T.; Ho, C.T. Antioxidant activities of buckwheat extracts. Food Chem. 2005, 90, 743–749. [Google Scholar] [CrossRef]
- Zhou, X.; Choi, P.S.; Yang, J.M.; Or, P.M.; Hoi, P.M.; Lee, S.M.; Leung, G.P.H.; Ngai, S.M.; Kong, S.K.; Ho, H.P.; et al. Chemical and pharmacological evaluations on the extract of Scutellaria baicalensis Georgi (Huang-Qin) prepared by various extraction methods. SpringerPlus 2016, 5, 1438. [Google Scholar] [CrossRef]
- Li, X.; Zhou, A.; Han, Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro. Carbohydr. Polym. 2006, 66, 34–42. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Optimization of extraction of anthocyanins from black currants with aqueous ethanol. J. Food Sci. 2003, 68, 240–248. [Google Scholar] [CrossRef]
- Canals, R.; Llaudy, M.C.; Valls, J.; Canals, J.M.; Zamora, F. Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. J. Agric. Food Chem. 2005, 53, 4019–4025. [Google Scholar] [CrossRef]
- Berg, H.W.; Akiyoshi, M.A. On the nature of reactions responsible for color behavior in red wine: A hypothesis. Am. J. Enol. Vitic. 1975, 26, 134–143. [Google Scholar] [CrossRef]
- Davies, A.J.; Mazza, G. Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. J. Agric. Food Chem. 1993, 41, 716–720. [Google Scholar] [CrossRef]
- Hermosín Gutiérrez, I. Influence of ethanol content on the extent of copigmentation in a Cencibel young red wine. J. Agric. Food Chem. 2003, 51, 4079–4083. [Google Scholar] [CrossRef]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef]
- Sroka, Z.; Cisowski, W.H.P.S. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 2003, 41, 753–758. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Peng, X.; Cheng, K.W.; Ma, J.; Chen, B.; Ho, C.T.; Lo, C.; Chen, F.; Wang, M. Cinnamon bark proanthocyanidins as reactive carbonyl scavengers to prevent the formation of advanced glycation endproducts. J. Agric. Food Chem. 2008, 56, 1907–1911. [Google Scholar] [CrossRef]
- Münch, G.; Thome, J.; Foley, P.; Schinzel, R.; Riederer, P. Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res. Rev. 1997, 23, 134–143. [Google Scholar] [CrossRef]
- Kilhovd, B.K.; Juutilainen, A.; Lehto, S.; Rönnemaa, T.; Torjesen, P.A.; Hanssen, K.F.; Laakso, M. Increased serum levels of advanced glycation endproducts predict total, cardiovascular and coronary mortality in women with type 2 diabetes: A population-based 18 year follow-up study. Diabetologia 2007, 50, 1409–1417. [Google Scholar] [CrossRef]
- Bonjar, S. Evaluation of antibacterial properties of some medicinal plants used in Iran. J. Ethnopharmacol. 2004, 94, 301–305. [Google Scholar] [CrossRef]
- Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol. 2006, 24, 1504–1507. [Google Scholar] [CrossRef]
- Davidson, P.M.; Sofos, J.N.; Branen, A.L. Antimicrobials in Food; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Tokutake, N.; Miyoshi, H.; Iwamura, H. Effects of phenolic respiration inhibitors on cytochrome bc 1 complex of rat-liver mitochondria. Biosci. Biotechnol. Biochem. 1992, 56, 919–923. [Google Scholar] [CrossRef]
- Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Yao, K.; Ye, P.; Zhang, L.; Tan, J.; Tang, X.; Zhang, Y. Epigallocatechin gallate protects against oxidative stress-induced mitochondria-dependent apoptosis in human lens epithelial cells. Mol. Vis. 2008, 14, 217. [Google Scholar]
- Camouse, M.M.; Domingo, D.S.; Swain, F.R.; Conrad, E.P.; Matsui, M.S.; Maes, D.; Declercq, L.; Copper, K.D.; Stevens, S.R.; Baron, E.D. Topical application of green and white tea extracts provides protection from solar-simulated ultraviolet light in human skin. Exp. Dermatol. 2009, 18, 522–526. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Ikram, E.H.K.; Nazri, H.S.M. Roselle (Hibiscus sabdariffa L.) seeds nutritional composition protein quality and health benefits. Food 2008, 2, 1–16. [Google Scholar]
- Sengupta, R.U.P.A.; Banik, J.K. Evaluation of Hibiscus sabdariffa leaf mucilage as a suspending agent. Int. J. Pharm. Pharm. Sci. 2011, 3, 184–187. [Google Scholar]
- Chiang, Y.C.; Chiang, P.Y. Accentuation of the browning characteristics and functional properties of aged tomatoes (Solanum lycopersicum cv.). Food Chem. X 2024, 22, 101499. [Google Scholar] [CrossRef]
Extractability | Total Saccharides | Total Organic Acids | Total Anthocyanins | Total Polyphenols | Total Flavonoids | |
---|---|---|---|---|---|---|
Unit | % | mg/g | ||||
50Et30 | 45.8 ± 3.7 b | 46.4 ± 0.5 b | 41.4 ± 0.1 a | 2.1 ± 0.1 a | 5.8 ± 0.3 c | 4.9 ± 0.6 b |
70Et30 | 42.4 ± 5.9 b | - | 44.1 ± 0.4 a | 1.8 ± 0.0 b | 6.0 ± 0.5 c | 5.5 ± 0.2 b |
W30 | 46.0 ± 4.4 ab | 98.0 ± 1.6 a | 32.3 ± 0.1 b | 1.1 ± 0.1 c | 10.5 ± 0.2 b | 8.8 ± 0.3 a |
W80 | 49.3 ± 2.7 a | 100.8 ± 0.4 a | 34.1 ± 0.6 b | 0.8 ± 0.0 d | 11.9 ± 0.4 a | 10.8 ± 0.2 a |
W90 | 49.2 ± 2.8 a | 124.1 ± 3.6 a | 33.2 ± 0.1 b | 0.8 ± 0.1 d | 13.0 ± 0.2 a | 11.4 ± 0.2 a |
TEAC (μM) | DPPH EC50 (μg/g) | |
---|---|---|
50Et30 | 93.9 ± 3.5 d | 26.2 ± 1.7 b |
70Et30 | 102.6 ± 3.4 c | 21.1 ± 1.8 c |
W30 | 115.9 ± 4.5 b | 33.8 ± 2.3 a |
W80 | 109.8 ± 4.5 b | 28.7 ± 2.2 b |
W90 | 132.0 ± 3.4 a | 29.4 ± 2.3 b |
Escherichia coli | Staphylococcus aureus | |||
---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
50Et30 | 0.9 b | 0.9 b | 0.6 a | 1.0 b |
70Et30 | 1.0 a | 1.0 a | 0.6 a | 1.2 a |
W30 | - | - | 0.6 a | 1.2 a |
W80 | - | - | - | - |
W90 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.-J.; Chiang, Y.-C.; Jhan, Y.-S.; Song, T.-Y.; Cheng, M.-C. Extraction Effects on Roselle Functionalities: Antioxidant, Antiglycation, and Antibacterial Capacities. Foods 2024, 13, 2172. https://doi.org/10.3390/foods13142172
Lai Y-J, Chiang Y-C, Jhan Y-S, Song T-Y, Cheng M-C. Extraction Effects on Roselle Functionalities: Antioxidant, Antiglycation, and Antibacterial Capacities. Foods. 2024; 13(14):2172. https://doi.org/10.3390/foods13142172
Chicago/Turabian StyleLai, Ying-Jang, Yi-Chan Chiang, Yi-Syuan Jhan, Tuzz-Ying Song, and Ming-Ching Cheng. 2024. "Extraction Effects on Roselle Functionalities: Antioxidant, Antiglycation, and Antibacterial Capacities" Foods 13, no. 14: 2172. https://doi.org/10.3390/foods13142172
APA StyleLai, Y. -J., Chiang, Y. -C., Jhan, Y. -S., Song, T. -Y., & Cheng, M. -C. (2024). Extraction Effects on Roselle Functionalities: Antioxidant, Antiglycation, and Antibacterial Capacities. Foods, 13(14), 2172. https://doi.org/10.3390/foods13142172