Anxiolytic, Antidepression, and Memory-Enhancing Effects of the Novel Instant Soup RJ6601 in the Middle-Aged of Female Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instant Soup “RJ6601” Formulation
2.2. Experimental Animals and Protocol
2.3. Behavioral Assessments
2.3.1. Elevated plus Maze Test
2.3.2. Forced Swimming Test
2.3.3. Morris Water Maze Test
2.3.4. Novel Object Recognition Test
2.4. Biochemical Assessment
2.4.1. Measurement of Oxidative Stress Markers
2.4.2. Measurement of Inflammatory Mediators and Brain-Derived Growth Factor (BDNF)
2.4.3. Measurement the Cholinergic and Monoaminergic Functions
2.5. Determination of Lactobacillus spp. and Bifidobacterium spp.
2.6. Histological Procedure and Nissl Staining
2.7. Statistical Analysis
3. Results
3.1. Behavioral Assessments
3.2. Biochemical Changes
Neurotransmitter Changes
3.3. Changes in Lactobacillus spp. and Bifidobacterium spp.
3.4. Histological Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharifi, K.; Anoosheh, M.; Foroughan, M.; Kazemnejad, A. Barriers to Middle-Aged Women’s Mental Health: A Qualitative Study. Iran. Red Crescent Med. J. 2014, 16, e18882. [Google Scholar] [CrossRef] [PubMed]
- Raghunath, G.V. Mental Health of Middle-Aged Working Women. Sinhgad J. Nurs. 2012, 2, 57–63. [Google Scholar]
- Bansal, P.; Chaudhary, A.; Soni, R.K.; Sharma, S.; Gupta, V.K.; Kaushal, P. Depression and Anxiety among Middle-Aged Women: A Community-Based Study. J. Fam. Med. Prim. Care 2015, 4, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Beam, C.R.; Kaneshiro, C.; Jang, J.Y.; Reynolds, C.A.; Pedersen, N.L.; Gatz, M. Differences between Women and Men in Incidence Rates of Dementia and Alzheimer’s Disease. J. Alzheimers Dis. 2018, 64, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Disease 2021: Findings from the GBD 2021 Study; IHME: Seattle, WA, USA, 2024. [Google Scholar]
- Li, A.; Wang, D.; Lin, S.; Chu, M.; Huang, S.; Lee, C.Y.; Chiang, Y.C. Depression and Life Satisfaction among Middle-Aged and Older Adults: Mediation Effect of Functional Disability. Front. Psychol. 2021, 12, 755220. [Google Scholar] [CrossRef] [PubMed]
- Conde, D.M.; Verdade, R.C.; Valadares, A.L.R.; Mella, L.F.B.; Pedro, A.O.; Costa-Paiva, L. Menopause and cognitive impairment: A narrative review of current knowledge. World J. Psychiatry 2021, 11, 412–428. [Google Scholar] [CrossRef] [PubMed]
- Whiteford, H.A.; Degenhardt, L.; Rehm, J.; Baxter, A.J.; Ferrari, A.J.; Erskine, H.E.; Charlson, F.J.; Norman, R.E.; Flaxman, A.D.; Johns, N.; et al. Global Burden of Disease Attributable to Mental and Substance Use Disorders: Findings from the Global Burden of Disease Study 2010. Lancet 2013, 382, 1575–1586. [Google Scholar] [CrossRef] [PubMed]
- Wainberg, M.L.; Scorza, P.; Shultz, J.M.; Helpman, L.; Mootz, J.J.; Johnson, K.A.; Neria, Y.; Bradford, J.-M.E.; Oquendo, M.A.; Arbuckle, M.R. Challenges and Opportunities in Global Mental Health: A Research-to-Practice Perspective. Curr. Psychiatry Rep. 2017, 19, 28. [Google Scholar] [CrossRef]
- Bauer, M.E.; Teixeira, A.L. Inflammation in Psychiatric Disorders: What Comes First? Ann. N. Y. Acad. Sci. 2019, 1437, 57–67. [Google Scholar] [CrossRef]
- Salim, S. Oxidative Stress and Psychological Disorders. Curr. Neuropharmacol. 2014, 12, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Luca, M.; Luca, A.; Calandra, C. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer’s Disease and Vascular Dementia. Oxid. Med. Cell. Longev. 2015, 2015, 504678. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.J.; Rucklidge, J.J.; Romijn, A.; McLeod, K. The Emerging Field of Nutritional Mental Health: Inflammation, the Microbiome, Oxidative Stress, and Mitochondrial Function. Clin. Psychol. Sci. 2015, 3, 964–980. [Google Scholar] [CrossRef]
- Rogers, G.B.; Keating, D.J.; Young, R.L.; Wong, M.-L.; Licinio, J.; Wesselingh, S. From Gut Dysbiosis to Altered Brain Function and Mental Illness: Mechanisms and Pathways. Mol. Psychiatry 2016, 21, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Sonali, S.; Ray, B.; Ahmed Tousif, H.; Rathipriya, A.G.; Sunanda, T.; Mahalakshmi, A.M.; Rungratanawanich, W.; Essa, M.M.; Qoronfleh, M.W.; Chidambaram, S.B.; et al. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022, 11, 1362. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, B.; Xu, W.; Collins, S.; Fratiglioni, L. Cognitive Decline, Dietary Factors and Gut-Brain Interactions. Mech. Ageing Dev. 2014, 136–137, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, N.J.; Gaskin, S.; Squire, L.R.; Clark, R.E. Object Recognition Memory and the Rodent Hippocampus. Learn. Mem. 2010, 17, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Fedoce, A.d.G.; Ferreira, F.; Bota, R.G.; Bonet-Costa, V.; Sun, P.Y.; Davies, K.J.A. The Role of Oxidative Stress in Anxiety Disorder: Cause or Consequence? Free Radic. Res. 2018, 52, 737–750. [Google Scholar] [CrossRef]
- Felger, J.C. Imaging the Role of Inflammation in Mood and Anxiety-Related Disorders. Curr. Neuropharmacol. 2018, 16, 533–558. [Google Scholar] [CrossRef] [PubMed]
- Maydych, V. The Interplay between Stress, Inflammation, and Emotional Attention: Relevance for Depression. Front. Neurosci. 2019, 13, 384. [Google Scholar] [CrossRef]
- Shah, N.; Grover, S.; Rao, G.P. Clinical Practice Guidelines for Management of Bipolar Disorder. Indian J. Psychiatry 2017, 59 (Suppl. 1), S51–S66. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Kareem, O.; Khushtar, M.; Akbar, M.; Haque, M.R.; Iqubal, A.; Haider, M.F.; Pottoo, F.H.; Abdulla, F.S.; Al-Haidar, M.B.; et al. Neuroinflammation: A Potential Risk for Dementia. Int. J. Mol. Sci. 2022, 23, 616. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhang, R.; Tian, X.; Zhou, X.; Pan, X.; Wong, A. Assessing the Risk of Probiotic Dietary Supplements in the Context of Antibiotic Resistance. Front. Microbiol. 2017, 8, 908. [Google Scholar] [CrossRef] [PubMed]
- Sansone, R.A.; Sansone, L.A. Antidepressant Adherence: Are Patients Taking Their Medications? Innov. Clin. Neurosci. 2012, 9, 41–46. [Google Scholar] [PubMed]
- Higashi, K.; Medic, G.; Littlewood, K.J.; Diez, T.; Granström, O.; De Hert, M. Medication Adherence in Schizophrenia: Factors Influencing Adherence and Consequences of Nonadherence, a Systematic Literature Review. Ther. Adv. Psychopharmacol. 2013, 3, 200–218. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pinilla, F.; Nguyen, T.T.J. Natural Mood Foods: The Actions of Polyphenols against Psychiatric and Cognitive Disorders. Nutr. Neurosci. 2012, 15, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Trebatická, J.; Ďuračková, Z. Psychiatric Disorders and Polyphenols: Can They Be Helpful in Therapy? Oxid. Med. Cell. Longev. 2015, 2015, 248529. [Google Scholar] [CrossRef]
- Góralczyk-Bińkowska, A.; Szmajda-Krygier, D.; Kozłowska, E. The Microbiota-Gut-Brain Axis in Psychiatric Disorders. Int. J. Mol. Sci. 2022, 23, 11245. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Li, Y.; Toit, E.D.; Wendt, L.; Sun, J. Effects of Polyphenol Supplementations on Improving Depression, Anxiety, and Quality of Life in Patients with Depression. Front. Psychiatry 2021, 12, 765485. [Google Scholar] [CrossRef]
- Westfall, S.; Pasinetti, G.M. The Gut Microbiota Links Dietary Polyphenols with Management of Psychiatric Mood Disorders. Front. Neurosci. 2019, 13, 1196. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Gundelund Nielsen, D.S.; Theil, P.K.; Purup, S.; Hald, S.; Schioldan, A.G.; et al. Impact of Diet-Modulated Butyrate Production on Intestinal Barrier Function and Inflammation. Nutrients 2018, 10, 1499. [Google Scholar] [CrossRef]
- Berding, K.; Carbia, C.; Cryan, J.F. Going with the Grain: Fiber, Cognition, and the Microbiota-Gut-Brain-Axis. Exp. Biol. Med. 2021, 246, 796–811. [Google Scholar] [CrossRef] [PubMed]
- Lucki, I.; Kucharik, R.F. Increased sensitivity to benzodiazepine antagonists in rats following chronic treatment with a low dose of diazepam. Psychopharmacology 1990, 102, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Dulawa, S.C.; Holick, K.A.; Gundersen, B.; Hen, R. Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 2004, 29, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.Y.; Kim, H.S.; Cha, K.H.; Won, D.H.; Lee, J.Y.; Jang, S.W.; Sohn, U.D. The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents. Biomol. Ther. 2018, 26, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Hajhashemi, V.; Rabbani, M.; Ghanadi, A.; Davari, E. Evaluation of antianxiety and sedative effects of essential oil of Ducrosia anethifolia in mice. Clinics 2010, 65, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Pellow, S.; Chopin, P.; File, S.E.; Briley, M. Validation of Open:Closed Arm Entries in an Elevated plus-Maze as a Measure of Anxiety in the Rat. J. Neurosci. Methods 1985, 14, 149–167. [Google Scholar] [CrossRef]
- Schoeman, J.C.; Steyn, S.F.; Harvey, B.H.; Brink, C.B. Long-lasting efects of fuoxetine and/or exercise augmentation on bio-behavioural markers of depression in pre-pubertal stress sensitive rats. Behav. Brain Res. 2017, 323, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Handley, S.L.; Mithani, S. Effects of Alpha-Adrenoceptor Agonists and Antagonists in a Maze-Exploration Model of ’Fear’-Motivated Behaviour. Naunyn Schmiedebergs Arch. Pharmacol. 1984, 327, 1–5. [Google Scholar] [CrossRef]
- Bevins, R.A.; Besheer, J. Object Recognition in Rats and Mice: A One-Trial Non-Matching-to-Sample Learning Task to Study Recognition Memory. Nat. Protoc. 2006, 1, 1306–1311. [Google Scholar] [CrossRef]
- Palachai, N.; Wattanathorn, J.; Muchimapura, S.; Thukham-Mee, W. Phytosome Loading the Combined Extract of Mulberry Fruit and Ginger Protects against Cerebral Ischemia in Metabolic Syndrome Rats. Oxid. Med. Cell Longev. 2020, 2020, 5305437. [Google Scholar] [CrossRef] [PubMed]
- Wattanathorn, J.; Palachai, N.; Thukham-Mee, W.; Muchimapura, S. Memory-Enhancing Effect of a Phytosome Containing the Combined Extract of Mulberry Fruit and Ginger in an Animal Model of Ischemic Stroke with Metabolic Syndrome. Oxid. Med. Cell. Longev. 2020, 2020, 3096826. [Google Scholar] [CrossRef]
- Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. Front. Cell. Neurosci. 2019, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Janke, K.L.; Cominski, T.P.; Kuzhikandathil, E.V.; Servatius, R.J.; Pang, K.C.H. Investigating the Role of Hippocampal BDNF in Anxiety Vulnerability Using Classical Eyeblink Conditioning. Front. Psychiatry 2015, 6, 106. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.L.; Ogle, W.O.; Sapolsky, R.M. Stress and Depression: Possible Links to Neuron Death in the Hippocampus. Bipolar Disord. 2002, 4, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.B.J.; Paxinos, G. The Mouse Brain in Stereotaxic Coordinates, 3rd ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Liu, Y.; Zhao, J.; Guo, W. Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front. Psychol. 2018, 9, 2201. [Google Scholar] [CrossRef] [PubMed]
- Culpepper, L. Reducing the Burden of Difficult-to-Treat Major Depressive Disorder: Revisiting Monoamine Oxidase Inhibitor Therapy. Prim. Care Companion CNS Disord. 2013, 15, PCC.13r01515. [Google Scholar] [CrossRef] [PubMed]
- Cookey, J. Use of MAOIs in Severe Treatment-Resistant Depression: Back to the Old School. J. Psychiatry Neurosci. 2021, 46, E427–E428. [Google Scholar] [CrossRef] [PubMed]
- Cools, R.; Arnsten, A.F.T. Neuromodulation of Prefrontal Cortex Cognitive Function in Primates: The Powerful Roles of Monoamines and Acetylcholine. Neuropsychopharmacology 2022, 47, 309–328. [Google Scholar] [CrossRef]
- Huang, Q.; Liao, C.; Ge, F.; Ao, J.; Liu, T. Acetylcholine Bidirectionally Regulates Learning and Memory. J. Neurorestoratol. 2022, 10, 100002. [Google Scholar] [CrossRef]
- Steketee, J.D. Neurotransmitter Systems of the Medial Prefrontal Cortex: Potential Role in Sensitization to Psychostimulants. Brain Res. Brain Res. Rev. 2003, 41, 203–228. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Lewis, D.A.; Sibille, E. The Role of BDNF in Age-Dependent Changes of Excitatory and Inhibitory Synaptic Markers in the Human Prefrontal Cortex. Neuropsychopharmacology 2016, 41, 3080–3091. [Google Scholar] [CrossRef]
- Hashimoto, K.; Shimizu, E.; Iyo, M. Critical Role of Brain-Derived Neurotrophic Factor in Mood Disorders. Brain Res. Brain Res. Rev. 2004, 45, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Kapczinski, F.; Frey, B.N.; Andreazza, A.C.; Kauer-Sant’Anna, M.; Cunha, A.B.M.; Post, R.M. Increased Oxidative Stress as a Mechanism for Decreased BDNF Levels in Acute Manic Episodes. Braz. J. Psychiatry 2008, 30, 243–245. [Google Scholar] [CrossRef]
- Dehghani, F.; Abdollahi, S.; Shidfar, F.; Clark, C.C.T.; Soltani, S. Probiotics Supplementation and Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutr. Neurosci. 2023, 26, 942–952. [Google Scholar] [CrossRef]
- Fu, J.; Zheng, Y.; Gao, Y.; Xu, W. Dietary Fiber Intake and Gut Microbiota in Human Health. Microorganisms 2022, 10, 2507. [Google Scholar] [CrossRef]
- Lin, W.-Y.; Lin, J.-H.; Kuo, Y.-W.; Chiang, P.-F.R.; Ho, H.-H. Probiotics and Their Metabolites Reduce Oxidative Stress in Middle-Aged Mice. Curr. Microbiol. 2022, 79, 104. [Google Scholar] [CrossRef]
- Ataie, A.; Shadifar, M.; Ataee, R. Polyphenolic Antioxidants and Neuronal Regeneration. Basic Clin. Neurosci. 2016, 7, 81–90. [Google Scholar] [CrossRef]
- Wang, X.; Qi, Y.; Zheng, H. Dietary Polyphenol, Gut Microbiota, and Health Benefits. Antioxidants 2022, 11, 1212. [Google Scholar] [CrossRef]
Ingredients | Placebo Soup (%) | RJ6601 Soup (%) |
---|---|---|
Wheat flour | 50.0 | 25.0 |
Unripe banana-derived resistant starch | 0.0 | 25.0 |
Bael fruit syrup | - | 4.0 |
Corn syrup | 4.0 | - |
Rice bran oil | 1.3 | 1.3 |
Onion | 12.0 | 12.0 |
Fish bone stock | - | 20.0 |
Salt | 0.1 | 0.1 |
Water | 20.0 | - |
Potato | 3.8 | 3.8 |
Unsalted milk | 3.2 | 3.2 |
Dried fishbones | 0.2 | 0.2 |
Natural green colorant | - | 0.4 |
Synthetic green colorant | 0.4 | - |
Inulin | 5 | 5 |
Total | 100.0 | 100.0 |
Treatment Group | Treatment |
---|---|
Group I Placebo | Placebo soup |
Group II Positive control | Benzodiazepine (5 mg/kg) was used when the anxiolytic activity [33] was evaluated, while fluoxetine (5 mg/kg BW) [34] and donepezil (3 mg/kg BW) [35] were each assessed |
Group III RJ6601 200 mg/kg BW | RJ6601 at a dose of 200 mg/kg BW |
Group IV RJ6601 400 mg/kg BW | RJ6601 400 mg/kg BW |
Discrimination Index (DI) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Groups | Baseline | Day-1 | Day-7 | Day-14 | Day-21 | Day-28 | ||||||||||||
30 min | 60 min | 120 min | 30 min | 60 min | 120 min | 30 min | 60 min | 120 min | 30 min | 60 min | 120 min | 30 min | 60 min | 120 min | 30 min | 60 min | 120 min | |
Placebo | 29.08 ± 4.21 | 26.65 ± 2.26 | 26.52 ± 1.72 | 25.81 ± 3.25 | 27.47 ± 1.40 | 38.66 ± 3.26 | 34.96 ± 2.50 | 36.67 ± 2.14 | 36.54 ± 2.50 | 34.96 ± 2.50 | 36.67 ± 2.14 | 36.54 ± 2.50 | 36.23 ± 3.27 | 36.18 ± 2.03 | 36.14 ± 2.14 | 42.75 ± 3.15 | 43.84 ± 2.74 | 42.38 ± 2.34 |
Donepezil | 31.00 ± 5.54 | 33.19 ± 6.24 | 26.50 ± 2.45 | 52.49 ± 5.79 *** | 55.31 ± 5.58 *** | 44.60 ± 3.78 | 49.84 ± 6.84 * | 57.14 ± 4.86 *** | 55.22 ± 2.03 ** | 49.84 ± 6.84 * | 57.14 ± 4.86 *** | 55.22 ± 2.03 ** | 70.82 ± 1.45 *** | 61.86 ± 4.30 *** | 56.72 ± 3.25 *** | 50.85 ± 6.95 *** | 57.78 ± 6.12 *** | 50.85 ± 4.60 *** |
RJ6601 200 | 32.07 ± 4.34 | 28.67 ± 3.50 | 26.60 ± 4.80 | 40.34 ± 6.41 * | 41.74 ± 4.50 ** | 51.66 ± 6.40 | 50.17 ± 5.02 * | 65.45 ± 4.86 *** | 60.53 ± 6.92 *** | 60.17 ± 5.02 * | 65.45 ± 4.86 *** | 60.53 ± 6.92 *** | 68.80 ± 1.45 *** | 78.25 ± 3.06 *** | 82.43 ± 4.09 *** | 81.59 ± 2.49 *** | 83.11 ± 1.27 *** | 91.53 ± 1.96 *** |
RJ6601 400 | 31.92 ± 5.75 | 26.18 ± 3.92 | 32.79 ± 3.83 | 63.14 ± 4.56 *** | 53.23 ± 3.56 *** | 51.49 ± 4.66 | 62.35 ± 4.86 *** | 62.73 ± 5.10 *** | 65.04 ± 3.81 *** | 52.35 ± 4.86 *** | 62.73 ± 5.10 *** | 65.04 ± 3.81 *** | 84.46 ± 1.48 *** | 86.02 ± 1.69 *** | 90.02 ± 0.59 *** | 89.15 ± 0.62 *** | 90.33 ± 0.82 *** | 76.40 ± 6.47 *** |
Frontal Cortex | ||||
---|---|---|---|---|
Groups | AChE Activity (nmol/mg. Protein) | MAO Activity (µmol/mg. Protein) | MAO-A Activity (µmol/mg. Protein) | MAO-B Activity (µmol/mg. Protein) |
Placebo | 0.61 ± 0.05 | 0.14 ± 0.01 | 0.11 ± 0.01 | 0.13 ± 0.01 |
Donepezil | 0.57 ± 0.07 | 0.09 ± 0.02 ** | 0.07 ± 0.01 *** | 0.07 ± 0.01 *** |
RJ6601 200 | 0.47 ± 0.02 * | 0.07 ± 0.00 *** | 0.06 ± 0.01 *** | 0.07 ± 0.01 *** |
RJ6601 400 | 0.42 ± 0.01 ** | 0.07 ± 0.00 *** | 0.04 ± 0.00 *** | 0.05 ± 0.00 *** |
Groups | Frontal Cortex | |||
---|---|---|---|---|
MDA Levels | SOD Activity | CAT Activity | GSH-Px Activity | |
(ng/mg Protein) | (Units/mg Protein) | (Units/mg Protein) | (Units/mg Protein) | |
Placebo | 0.28 ± 0.03 | 13.30 ± 2.39 | 1.72 ± 0.25 | 1.21 ± 0.16 |
Donepezil | 0.24 ± 0.03 | 23.54 ± 3.17 ** | 5.68 ± 0.84 *** | 2.12 ± 0.42 * |
RJ6601 200 mg/kg BW | 0.17 ± 0.00 ** | 15.46 ± 0.11 | 2.97 ± 0.38 | 2.37 ± 0.15 ** |
RJ6601 400 mg/kg BW | 0.16 ± 0.00 *** | 17.03 ± 0.12 | 4.23 ± 0.17 *** | 2.73 ± 0.20 *** |
Groups | IL-1β (pg/mL) | IL-6 (pg/mL) |
---|---|---|
Placebo | 131.93 ± 3.13 | 57.50 ± 0.39 |
Donepezil | 128.98 ± 3.11 | 58.90 ± 1.86 |
RJ6601 soup 200 mg/kg BW | 128.77 ± 3.54 | 56.39 ± 0.37 |
RJ6601 soup 400 mg/kg BW | 127.04 ± 1.36 | 55.89 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaisanam, R.; Wattanathorn, J.; Thukham-mee, W.; Piyavhatkul, N.; Paholpak, P. Anxiolytic, Antidepression, and Memory-Enhancing Effects of the Novel Instant Soup RJ6601 in the Middle-Aged of Female Rats. Foods 2024, 13, 2170. https://doi.org/10.3390/foods13142170
Chaisanam R, Wattanathorn J, Thukham-mee W, Piyavhatkul N, Paholpak P. Anxiolytic, Antidepression, and Memory-Enhancing Effects of the Novel Instant Soup RJ6601 in the Middle-Aged of Female Rats. Foods. 2024; 13(14):2170. https://doi.org/10.3390/foods13142170
Chicago/Turabian StyleChaisanam, Rujikan, Jintanaporn Wattanathorn, Wipawee Thukham-mee, Nawanant Piyavhatkul, and Pongsatorn Paholpak. 2024. "Anxiolytic, Antidepression, and Memory-Enhancing Effects of the Novel Instant Soup RJ6601 in the Middle-Aged of Female Rats" Foods 13, no. 14: 2170. https://doi.org/10.3390/foods13142170
APA StyleChaisanam, R., Wattanathorn, J., Thukham-mee, W., Piyavhatkul, N., & Paholpak, P. (2024). Anxiolytic, Antidepression, and Memory-Enhancing Effects of the Novel Instant Soup RJ6601 in the Middle-Aged of Female Rats. Foods, 13(14), 2170. https://doi.org/10.3390/foods13142170