Shell–Core Microbeads Loaded with Probiotics: Influence of Lipid Melting Point on Probiotic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Probiotic Shell–Core Microbead
2.2.1. Configuration of Shell Materials
2.2.2. Configuration of Core Materials
2.2.3. Preparation of Probiotic Shell–Core Microbead
2.3. Basic Properties of Microbeads
2.4. Viability of Probiotics during Preparation
2.5. In Vitro Simulated Digestion
2.6. Fluorescence Characteristics of Probiotics
2.7. Storage Viability
2.8. Statistical Analysis
3. Results and Discussion
3.1. The Basic Properties of Microbeads
3.2. Probiotic Activity during Preparation
3.3. Viability of Probiotics In Vitro Digestion
3.4. Storage Stability of Probiotics Loaded in Microbeads
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pineiro, M.; Asp, N.G.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO technical meeting on prebiotics. J. Clin. Gastroenterol. 2008, 42, S156–S159. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.C.; Li, N.; Cai, W.W.; Xiao, M.F.; Liu, B.; Zeng, F. Fermented natural product targeting gut microbiota regulate immunity and anti-inflammatory activity: A possible way to prevent COVID-19 in daily diet. J. Funct. 2022, 97, 105229. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, M.; Racedo, S.M.; Ripert, G.; Housez, B.; Cazaubiel, M.; Maudet, C.; Jüsten, P.; Marteau, P.; Urdaci, M.C. Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: A randomized, double-blind placebo-controlled study. Immun. Ageing 2015, 12, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Sadeghi, A.; Karaca, A.C.; Zhang, J.C.; Jafari, S.M. Carbohydrate polymer-based carriers for colon targeted delivery of probiotics. Crit. Rev. Food Sci. Nutr. 2023, 1–21. [Google Scholar] [CrossRef]
- Ni, F.F.; Luo, X.; Zhao, Z.; Yuan, J.W.; Song, Y.L.; Liu, C.Z.; Huang, M.; Dong, L.J.; Xie, H.J.; Cai, L.; et al. Enhancing viability of Lactobacillus plantarum encapsulated by alginate-gelatin hydrogel beads during gastrointestinal digestion, storage and in the mimic beverage systems. Int. J. Biol. Macromol. 2023, 224, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Zarić, D.B.; Bulatović, M.L.; Rakin, M.B.; Krunić, T.Ž.; Lončarević, I.S.; Pajin, B.S. Functional, rheological and sensory properties of probiotic milk chocolate produced in a ball mill. RSC Adv. 2016, 6, 13934–13941. [Google Scholar] [CrossRef]
- Tian, W.J.; Song, J.J.; Wang, Y.L.; Yue, L.F.; Wang, J.G.; Dan, T.; Menghe, B.; Zhang, H.P. Effect of different calcium salts and methods for triggering gelation on the characteristics of microencapsulated Lactobacillus plantarum LIP-1. RSC Adv. 2015, 5, 73352–73362. [Google Scholar] [CrossRef]
- Gao, Y.X.; Wang, X.; Xue, C.H.; Wei, Z.H. Latest developments in food-grade delivery systems for probiotics: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 63, 4371–4388. [Google Scholar]
- Li, H.Y.; Peng, F.; Lin, J.X.; Xiong, T.; Huang, T. Preparation of probiotic microcapsules using gelatin-xylooligosaccharides conjugates by spray drying: Physicochemical properties, survival, digestion resistance and colonization. Food Biosci. 2023, 52, 102462. [Google Scholar] [CrossRef]
- Siaterlis, A.; Deepika, G.; Charalampopoulos, D. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying. Lett. Appl. Microbiol. 2009, 48, 295–301. [Google Scholar] [CrossRef]
- Silva, J.L.; Paula, D.D.; Lelis, C.A.; Vieira, E.N.R.; Ramos, A.M. Double emulsions containing probiotic cells (Lactiplantibacillus plantarum) added in a mango dessert. J. Food Process. Preserv. 2022, 46, e16783. [Google Scholar] [CrossRef]
- Li, M.F.; Cui, H.L.; Lou, W.Y. Millettia speciosa champ cellulose-based hydrogel as a novel delivery system for Lactobacillus paracasei: Its relationship to structure, encapsulation and controlled release. Carbohydr. Polym. 2023, 316, 121034. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.G.; Xu, C.; Yu, H.L.; Feng, Z.B.; Yu, W.; Gu, L.Y.; Liu, Z.J.; Chen, L.J.; Jiang, Z.M.; Hou, J.C. Electro-encapsulation of probiotics in gum Arabic-pullulan blend nanofibres using electrospinning technology. Food Hydrocoll. 2021, 111, 106381. [Google Scholar] [CrossRef]
- Liu, H.; Cui, S.W.; Chen, M.; Li, Y.; Liang, R.; Xu, F.; Zhong, F. Protective approaches and mechanisms of microencapsulation to the survival of probiotic bacteria during processing, storage and gastrointestinal digestion: A review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2863–2878. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Lu, C.; Liu, Y.; Kong, L.; Bai, H.; Mu, H.; Li, Z.; Geng, H.; Duan, J. Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Appl. Mater. 2020, 12, 36967–36977. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.L.; Zhou, D.R.; Kang, X.J. Electrospinning as a novel strategy for the encapsulation of living probiotics in polyvinyl alcohol/silk fibroin. Innovative Food Sci. Emerg. Technol. 2021, 71, 102726. [Google Scholar] [CrossRef]
- Lahtinen, S.J.; Ouwehand, A.C.; Salminen, S.J.; Forssell, P.; Myllärinen, P. Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett. Appl. Microbiol. 2007, 44, 500–505. [Google Scholar] [CrossRef]
- Silva, M.P.; Tulini, F.L.; Marinho, J.F.U.; Mazzocato, M.C.; De Martinis, E.C.P.; Luccas, V.; Favaro-Trindade, C.S. Semisweet chocolate as a vehicle for the probiotics Lactobacillus acidophilus LA3 and Bifidobacterium animalis subsp. lactis BLC1: Evaluation of chocolate stability and probiotic survival under in vitro simulated gastrointestinal conditions. Lwt 2017, 75, 640–647. [Google Scholar] [CrossRef]
- Picot, A.; Lacroix, C. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 2004, 14, 505–515. [Google Scholar] [CrossRef]
- Klindt-Toldam, S.; Larsen, S.K.; Saaby, L.; Olsen, L.R.; Svenstrup, G.; Müllertz, A.; Knøchel, S.; Heimdal, H.; Nielsen, D.S.; Zielińska, D. Survival of Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 encapsulated in chocolate during in vitro simulated passage of the upper gastrointestinal tract. Lwt 2016, 74, 404–410. [Google Scholar] [CrossRef]
- Pedroso, D.D.; Thomazini, M.; Heinemann, R.J.B.; Favaro-Trindade, C.S. Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int. Dairy J. 2012, 26, 127–132. [Google Scholar] [CrossRef]
- Azeem, M.; Saeed, F.; Afzaal, M.; Ateeq, H.; Ahmad, A.; Liaqat, A.; Busquets, R.; Lorenzo, J.M.; Shah, M.A. Encapsulation of probiotics in solid lipid micro particle for improved viability and stability under stressed conditions. Int. J. Food Prop. 2023, 26, 1612–1623. [Google Scholar] [CrossRef]
- Gao, H.X.; Xie, Y.F.; Li, Z.L.; Bai, C.; Zou, L.Q.; Liu, W. Novel seamless shell-core microbead for probiotics encapsulation: Influence of gel structure on storage stability and gastrointestinal activity. Food Hydrocoll. 2024, 152, 109908. [Google Scholar] [CrossRef]
- Eratte, D.; Dowling, K.; Barrow, C.J.; Adhikari, B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends Food Sci Tech. 2018, 71, 121–131. [Google Scholar] [CrossRef]
- Hammann, S.; Kröpfl, A.; Vetter, W. More than 170 polyunsaturated tocopherol-related compounds in a vitamin E capsule: Countercurrent chromatographic enrichment, gas chromatography/mass spectrometry analysis and preliminary identification of the potential artefacts. J. Chromatogr. A 2016, 1476, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Li, L.; Ma, Y.C.; McDonald, T.P.; Wang, Y.F. Development of active packaging film containing bioactive components encapsulated in beta-cyclodextrin and its application. Food Hydrocoll. 2019, 90, 360–366. [Google Scholar] [CrossRef]
- Tu, W.; Shi, W.; Li, H.; Wang, Y.; Qiao, D.; Jiang, F.; Zhang, B. Xanthan gum inclusion optimizes the sol-gel and mechanical properties of agar/konjac glucomannan system for designing core-shell structural capsules. Food Hydrocoll. 2022, 122, 107101. [Google Scholar] [CrossRef]
- Said, N.S.; Sarbon, N.M. Physical and Mechanical Characteristics of Gelatin-Based Films as a Potential Food Packaging Material: A Review. Membranes 2022, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Yavari Maroufi, L.; Ghorbani, M.; Tabibiazar, M.; Mohammadi, M.; Pezeshki, A. Advanced properties of gelatin film by incorporating modified kappa-carrageenan and zein nanoparticles for active food packaging. Int. J. Biol. Macromol. 2021, 183, 753–759. [Google Scholar] [CrossRef]
- Cao, C.A.; Feng, Y.Y.; Kong, B.H.; Xia, X.F.; Liu, M.Y.; Chen, J.X.; Zhang, F.X.; Liu, Q. Textural and gel properties of frankfurters as influenced by various K-carrageenan incorporation methods. Meat Sci. 2021, 176, 108483. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, X.L.; McClements, D.J.; Cheng, C.; Xie, Y.F.; Liang, R.H.; Liu, J.P.; Zou, L.Q.; Liu, W. Encapsulation of bitter peptides in water-in-oil high internal phase emulsions reduces their bitterness and improves gastrointestinal stability. Food Chem. 2022, 386, 132787. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.X.; Ma, L.; Sun, W.X.; McClements, D.J.; Cheng, C.; Zeng, H.Y.; Zou, L.Q.; Liu, W. Impact of encapsulation of probiotics in oil-in-water high internal phase emulsions on their thermostability and gastrointestinal survival. Food Hydrocoll. 2022, 126, 107478. [Google Scholar] [CrossRef]
- Yin, M.; Chen, M.; Yuan, Y.; Liu, F.; Zhong, F. Encapsulation of Lactobacillus rhamnosus GG in whey protein isolate-shortening oil and gum Arabic by complex coacervation: Enhanced the viability of probiotics during spray drying and storage. Food Hydrocoll. 2024, 146, 109252. [Google Scholar] [CrossRef]
- Shi, Y.P.; Liang, B.M.; Hartel, R.W. Crystal morphology, microstructure, and textural properties of model lipid systems. J. Am. Oil Chem. Soc. 2005, 82, 399–408. [Google Scholar] [CrossRef]
- Narine, S.S.; Humphrey, K.L. A comparison of lipid shortening functionality as a function of molecular ensemble and shear: Microstructure, polymorphism, solid fat content and texture. Food Res. Int. 2004, 37, 28–38. [Google Scholar] [CrossRef]
- Fu, N.; Chen, X.D. Towards a maximal cell survival in convective thermal drying processes. Food Res. Int. 2011, 44, 1127–1149. [Google Scholar]
- Kalantarmahdavi, M.; Khanzadi, S.; Salari, A. Edible Films Incorporating with Lactobacillus plantarum Based on Sourdough, Wheat Flour, and Gelatin: Films Characterization and Cell Viability During Storage and Simulated Gastrointestinal Condition. Starch-Stärke 2021, 73, 2000268. [Google Scholar] [CrossRef]
- Gu, M.; Zhang, Z.P.; Pan, C.; Goulette, T.R.; Zhang, R.J.; Hendricks, G.; McClements, D.J.; Xiao, H. Encapsulation of Bifidobacterium pseudocatenulatum G7 in gastroprotective microgels: Improvement of the bacterial viability under simulated gastrointestinal conditions. Food Hydrocoll. 2019, 91, 283–289. [Google Scholar] [CrossRef]
- Bode, F.; da Silva, M.A.; Drake, A.F.; Ross-Murphy, S.B.; Dreiss, C.A. Enzymatically cross-linked tilapia gelatin hydrogels: Physical, chemical, and hybrid networks. Biomacromolecules 2011, 12, 3741–3752. [Google Scholar] [CrossRef]
- Camelo-Silva, C.; Barros, E.L.D.; Verruck, S.; Maran, B.M.; Canella, M.H.M.; Esmerino, E.A.; Silva, R.; Prudencio, E.S. How ice cream manufactured with concentrated milk serves as a protective probiotic carrier? An in vitro gastrointestinal assay. Food Sci. Technol. 2022, 42, e28621. [Google Scholar] [CrossRef]
- Torp, A.M.; Bahl, M.I.; Boisen, A.; Licht, T.R. Optimizing oral delivery of next generation probiotics. Trends Food Sci Tech. 2022, 119, 101–109. [Google Scholar] [CrossRef]
- Gialamas, H.; Zinoviadou, K.G.; Biliaderis, C.G.; Koutsoumanis, K.P. Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Res. Int. 2010, 43, 2402–2408. [Google Scholar] [CrossRef]
- Jannah, S.R.; Rahayu, E.S.; Yanti, R.; Suroto, D.A.; Wikandari, R. Study of viability, storage stability, and shelf life of probiotic instant coffee Lactiplantibacillus plantarum Subsp. plantarum Dad-13 in vacuum and nonvacuum packaging at different storage temperatures. Int. J. Food Sci. Technol. 2022, 2022, 1663772. [Google Scholar] [CrossRef] [PubMed]
- Khodaei, D.; Hamidi-Esfahani, Z.; Lacroix, M. Gelatin and low methoxyl pectin films containing probiotics: Film characterization and cell viability. Food Biosci. 2020, 36, 100660. [Google Scholar] [CrossRef]
- Karkhanis, S.S.; Stark, N.M.; Sabo, R.C.; Matuana, L.M. Water vapor and oxygen barrier properties of extrusion-blown poly (lactic acid)/cellulose nanocrystals nanocomposite films. Compos. Part A Appl. Sci. Manuf. 2018, 114, 204–211. [Google Scholar] [CrossRef]
- Laličić-Petronijević, J.; Popov-Raljić, J.; Obradović, D.; Radulović, Z.; Paunović, D.; Petrušić, M.; Pezo, L. Viability of probiotic strains Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 and their impact on sensory and rheological properties of milk and dark chocolates during storage for 180 days. J. Funct. 2015, 15, 541–550. [Google Scholar] [CrossRef]
Samples | Wight (mg) | Diameter (mm) | Moisture Content (%) | Hardness (g) | Springiness (%) |
---|---|---|---|---|---|
MCTB | 112.6 ± 1.4 a | 6.01 ± 0.12 a | 3.67 ± 0.23 a | 319.65 ± 35.43 b | 67.7 ± 5.2 a |
CBRB | 111.8 ± 0.8 a | 6.00 ± 0.08 a | 3.52 ± 0.19 a | 623.54 ± 77.73 a | 43.3 ± 8.0 b |
HPOB | 112.2 ± 1.0 a | 6.01 ± 0.09 a | 3.61 ± 0.33 a | 711.41 ± 49.57 a | 34.0 ± 5.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Zhang, K.; Zhu, J.; Ma, L.; Zou, L.; Liu, W. Shell–Core Microbeads Loaded with Probiotics: Influence of Lipid Melting Point on Probiotic Activity. Foods 2024, 13, 2259. https://doi.org/10.3390/foods13142259
Xie Y, Zhang K, Zhu J, Ma L, Zou L, Liu W. Shell–Core Microbeads Loaded with Probiotics: Influence of Lipid Melting Point on Probiotic Activity. Foods. 2024; 13(14):2259. https://doi.org/10.3390/foods13142259
Chicago/Turabian StyleXie, Youfa, Kui Zhang, Jingyao Zhu, Li Ma, Liqiang Zou, and Wei Liu. 2024. "Shell–Core Microbeads Loaded with Probiotics: Influence of Lipid Melting Point on Probiotic Activity" Foods 13, no. 14: 2259. https://doi.org/10.3390/foods13142259
APA StyleXie, Y., Zhang, K., Zhu, J., Ma, L., Zou, L., & Liu, W. (2024). Shell–Core Microbeads Loaded with Probiotics: Influence of Lipid Melting Point on Probiotic Activity. Foods, 13(14), 2259. https://doi.org/10.3390/foods13142259