Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Chemicals and Reagents
2.3. Plant Material
2.4. Extraction and Isolation
2.5. Chemical Structure Analysis
2.6. Antioxidant Activity
2.6.1. DPPH Assay
2.6.2. ABTS Assay
2.6.3. Ferric Ion-Reducing Antioxidant Power (FRAP) Assay
2.7. Antimicrobial Activity
3. Results and Discussion
3.1. Antioxidant Activity of the EtOAc Extract and Fr. (A–I)
3.2. Antimicrobial Activities of the EtOAc Extract and Fr. (A–I)
3.3. Antioxidant Activity of the Compounds
3.4. Antibacterial Activity of the Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Luo, X.L.; Lan, Z.Q.; Tang, J.R.; Zhao, P.; Kan, H. Ultrasonic-assisted extraction and antioxidant capacities of flavonoids from Camellia fascicularis leaves. CyTA-J. Food. 2018, 16, 105–112. [Google Scholar] [CrossRef]
- Hu, X.; Tang, J.R.; Zhang, G.L.; Deng, J.; Kan, H.; Zhang, Y.J.; Zhao, P.; Liu, Y. Optimization of extraction process and antioxidant activities of saponins from Camellia fascicularis leaves. J. Food Meas. Charact. 2021, 15, 1889–1898. [Google Scholar] [CrossRef]
- Liu, Y.; Kan, H.; Fang, F.Y.; Tang, J.R.; Zhang, Y.J.; Zhao, P. Microwave-assisted extraction and antioxidant activities of polyphenols from Camellia fascicularis leaves. Curr. Top. Nutraceut. Res. 2019, 17, 164–171. [Google Scholar]
- Song, L.X.; Wang, X.S.; Zheng, X.Q.; Huang, D.J. Polyphenolic antioxidant profiles of yellow camellia. Food Chem. 2011, 129, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Yu, D.Y.; Feng, B.M.; Wang, Y.Q.; Shi, L.Y. A new acylated flavonoid glycoside from the flowers of Camellia nitidissima and its effect on the induction of apoptosis in human lymphoma U937 cells. J. Asian. Nat. Prod. Res. 2012, 14, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.F.; Xu, M.; Zhao, P.; Zhang, X.Y.; Wang, Y.F.; Yang, C.R.; Zhang, Y.J. Kaempferol acetylated glycosides from the seed cake of Camellia oleifera. Food Chem. 2011, 124, 432–436. [Google Scholar] [CrossRef]
- Chen, J.H.; Wu, X.H. Extraction process optimization of saponin from the leaves of Camellia nitidissima Chi and its inhibition of lipase activity. Food Mach. 2020, 36, 159–165. [Google Scholar] [CrossRef]
- Peng, X.; Yu, D.Y.; Feng, B.M.; Tang, L.; Wang, Y.Q.; Shi, L.Y. Chemical constituents from the flowers of Camellia chrysantha. Guihaia 2011, 31, 550–553. [Google Scholar] [CrossRef]
- He, X.H.; Shi, Z.J.; Peng, X.W.; Kan, H.; Zhao, P.; Liu, Y. Antioxidant activities analysis of different polar solvent extracts from Camellia fascicularis H T. Chang. Chem. Ind. For. Prod. 2022, 42, 61–68. [Google Scholar]
- Peng, X.W.; He, X.H.; Tang, J.R.; Xiang, J.Y.; Deng, J.; Kan, H.; Zhang, Y.J.; Zhang, G.L.; Zhao, P.; Liu, Y. Evaluation of the in vitro antioxidant and antitumor activity of extracts from Camellia fascicularis leaves. Front. Chem. 2022, 10, 1035949. [Google Scholar] [CrossRef]
- Peng, X.W.; Hu, X.; Zhang, Y.J.; Xu, H.; Tang, J.R.; Zhang, G.L.; Deng, J.; Kan, H.; Zhao, P.; Liu, Y. Extraction, characterization, antioxidant and anti-tumor activities of polysaccharides from Camellia fascicularis leaves. Int. J. Biol. Macromol. 2022, 222, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.Z.; Peng, X.W.; Tang, J.R.; Deng, J.; Wang, F.; Zhang, Y.J.; Zhao, P.; Kan, H.; Liu, Y. Anti-inflammatory effects of Camellia fascicularis polyphenols via attenuation of NF-κB and MAPK pathways in LPS-induced THP-1 macrophages. J. Iinflamm. Res. 2022, 15, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.Z.; Tang, J.R.; Deng, J.; Xiang, J.Y.; Kan, H.; Zhao, P.; Zhang, Y.J.; Zhang, G.L.; Liu, Y. Evaluation of anti-inflammatory effect of Camellia fascicularis polyphenols using zebrafish model and network pharmacology. Food Sci. 2023, 44, 134–142. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Gomes, D.C.; Lyra, F.H.; Santos, G.F.; Martins, L.R. The remarkable structural diversity achieved in ent-kaurane diterpenes by fungal biotransformation. Molecules 2014, 19, 1856–1886. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.W.; Li, L.G.; Huo, C.H.; Zhang, M.L.; Wan, Y.F. Study on natural medicinal chemistry and new drug development. Chin. Traditl. Herb. Drugs. 2010, 41, 1583–1589. [Google Scholar]
- Chen, Y.H.; Chen, Q.W.; Wang, X.Z.; Sun, F.; Fan, Y.W.; Liu, X.R.; Li, H.Y.; Deng, Z.Y. Hemostatic action of lotus leaf charcoal is probably due to transformation of flavonol aglycons from flavanols glycosides in traditional Chinses medicine. J. Ethnopharmacol. 2020, 249, 112364. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.D.; Li, R.L.; Wu, B.X.; Tang, J.R.; Kan, H.; Zhao, P.; Zhang, Y.J.; Wang, W.H.; Liu, Y. Secondary metabolites with antioxidant and antimicrobial activities from Camellia fascicularis. Curr. Issues Mol. Biol. 2024, 6, 6769–6782. [Google Scholar] [CrossRef]
- Yuan, T.; Hwang, I.H.; Na, M. Chemical constituents of Mallotus japonicus thunb. and their chemotaxonomic significance. Biochem. Syst. Ecol. 2024, 113, 104801. [Google Scholar] [CrossRef]
- Ren, L.; Wang, Y.Z.; Zhang, W.; Zhou, R.; Zhao, M.; Tang, Z.S.; Zhang, D.B. Triculata A, a novel compound from Tricyrtis maculata (D. Don) JF macbr. with biological properties. Nat. Prod. Res. 2021, 35, 3729–3737. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.H.; Hyun, C.G. Isolation, characterization, genome annotation, and evaluation of tyrosinase inhibitory activity in secondary metabolites of Paenibacillu sp. JNUCC32: A comprehensive analysis through molecular docking and molecular dynamics simulation. Int. J. Mol. Sci. 2024, 25, 2213. [Google Scholar] [CrossRef]
- Li, M.X.; Xie, J.; Bai, X.; Du, Z.Z. Anti-aging potential, anti-tyrosinase and antibacterial activities of extracts and compounds isolated from Rosa chinensis cv. ‘JinBian’. Ind. Crop. Prod. 2021, 159, 113059. [Google Scholar] [CrossRef]
- Pan, R.Y.; Sun, Y.J.; Chen, H.J.; Li, M.; Si, Y.Y.; Feng, W.S. Terpenoids and alkaloids from Cissampelos pareira var. hirsuta. Chin. Traditl. Herb. Drugs 2022, 53, 5607–5612. [Google Scholar] [CrossRef]
- Zhou, J.; Li, G.; Deng, Q.; Zheng, D.Y.; Yang, X.B.; Xu, J. Cytotoxic constituents from the mangrove endophytic Pestalotiopsis sp. induce G0/G1 cell cycle arrest and apoptosis in human cancer cells. Nat. Prod. Res. 2018, 32, 2968–2972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Zheng, Y.; Shi, W.; Guo, Y.; Xu, T.; Li, Z.; Huang, C.; Li, J. Design, Synthesis and investigation of the potential anti-inflammatory activity of 7-O-amide hesperetin derivatives. Molecules 2019, 24, 3663. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.J.; Chen, F.L.; Jia, C.Y.; Li, D.S.; Zhang, Q.Z.; Li, W.X.; Wang, W.J. Flavonoids from the pericarp of Tamarindus indica Linn. and their antioxidant activity. Nat. Prod. Res. Dev. 2024, 35, 1877–1886. [Google Scholar] [CrossRef]
- Jia, Y.P.; Yang, X.J.; Wang, C.; Ren, H.B.; Hu, X.J.; Yang, H.Z. Chemical constituents from roots of Bupleurum chinense. Chin. Traditl. Herb. Drugs 2024, 55, 402–408. [Google Scholar]
- Kamso, V.F.K.; Simo Fotso, C.C.; Kanko Mbekou, I.M.; Tousssie, B.T.; Ndjakou Lenta, B.; Boyom, F.F.; Sewald, N.; Frese, M.; Ngadjui, B.T.; Wabo Fotso, G. Chemical constituents of Macaranga occidentalis, antimicrobial and chemophenetic studies. Molecules 2022, 27, 8820. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.K.; Ge, Z.Y.; Liao, X.W.; Xue, J.; Wu, L.; Liang, L.F. α-Glucosidase inhibitory phytochemical components of chinese endemic pant Whitfordiodendron filipes var. tomentosum. Plants 2024, 13, 692. [Google Scholar] [CrossRef]
- Ouyang, F.; Yuan, L.; Liu, Y.; Li, R.; Li, L.; Wang, N.L.; Yao, X.S. Five lignans and an iridoid from Sambucus williamsii. Chin. J. Nat. Med. 2011, 9, 26–29. [Google Scholar] [CrossRef]
- Wang, Y.F.; Li, S.W.; He, R.J.; Yang, B.Y.; Huang, Y.L. Study on the chemical composition and tyrosinase inhibitory activity of Castanopsis ceratacantha. Nat. Prod. Res. Dev. 2021, 33, 1499–1505. [Google Scholar]
- Ohtsuki, T.; Miyagawa, T.; Koyano, T.; Kowithayakorn, T.; Kawahara, N.; Goda, Y.; Ishibashi, M. Acylated triterpenoid saponins from Schima noronhae and their cell growth inhibitory activity. J. Nat. Prod. 2008, 71, 918–921. [Google Scholar] [CrossRef]
- Hao, K.X.; Shen, C.Y.; He, M.X.; Jiang, J.G.; Wang, D.W.; Zhu, W. Comparative activities of three compounds from Citrus aurantium L. var. amara engl. to Improve oxidized low-density lipoprotein induced lipid deposition. ACS Omega 2024, 9, 5683–5694. [Google Scholar] [CrossRef]
- Gan, J.; Wei, W.; Tan, J.N.; Shen, M.N.; Tan, Q.G. The NO inhibitory constituents from Illigera rhodantha. Acta Pharm. Sin. 2022, 57, 1849–1854. [Google Scholar]
- Jiang, W.; Zhou, X. Hydrolysis of radish anthocyanins to enhance the antioxidant and antiproliferative capacities. Food Chem. 2019, 294, 477–485. [Google Scholar] [CrossRef]
- Wang, Z.B.; Pei, J.J.; Ma, H.L.; Cai, P.F.; Yan, J.K. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides. Carbohyd. Polym. 2014, 109, 49–55. [Google Scholar] [CrossRef]
- Luo, J.G.; Li, L.; Kong, L.Y. Preparative separation of phenylpropenoid glycerides from the bulbs of Lilium lancifolium by high-speed counter-current chromatography and evaluation of their antioxidant activities. Food Chem. 2012, 131, 1056–1062. [Google Scholar] [CrossRef]
- Rivero-Cruz, J.F.; Granados-Pineda, J.; Pedraza-Chaverri, J.; Perez-Rojas, J.M.; Kumar-Passari, A.; Diaz-Ruiz, G.; Rivero-Cruz, B.E. Phytochemical constituents, antioxidant, cytotoxic, and antimicrobial activities of the ethanolic extract of Mexican Brown Propolis. Antioxidants 2020, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Huang, J.M.; Wen, C.; Zhou, Z.S.; Feng, C.C.; Hu, C.H.; Zhou, P.F.; Yin, G.P. Chemical constituents from whole herb of Hedyotis scandens. China J. Chin. Mater. Med. 2023, 48, 6082–6087. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Paramasivam, S.; Arulkumar, A. Evaluation of the lemongrass plant (Cymbopogon citratus) extracted in different solvents for antioxidant and antibacterial activity against human pathogens. Asian Pac. J. Trop. Dis. 2014, 4, S134–S139. [Google Scholar] [CrossRef]
- Tian, X.; Schaich, K.M. Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS+. J. Agric. Food Chem. 2013, 61, 5511–5519. [Google Scholar] [CrossRef] [PubMed]
- Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods 2015, 14, 111–125. [Google Scholar] [CrossRef]
- Soltan, O.I.A.; Gazwi, H.S.S.; Ragab, A.E.; Aljohani, A.S.M.; El-Ashmawy, I.M.; Batiha, G.E.S.; Hafiz, A.A.; Abdel-Hameed, S.M. Assessment of bioactive phytochemicals and utilization of Rosa canina fruit extract as a novel natural antioxidant for mayonnaise. Molecules 2023, 28, 3350. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Su, R.Q.; Zhang, W.T.; Yao, G.L.; Chen, J. Antibacterial activity of tea saponin from Camellia oleifera shell by novel extraction method. Ind. Crop. Prod. 2020, 153, 112604. [Google Scholar] [CrossRef]
- Goulas, V.; Exarchou, V.; Kanetis, L.; Gerothanassis, I.P. Evaluation of the phytochemical content, antioxidant activity and antimicrobial properties of mountain tea (Sideritis syriaca) decoction. J. Funct. Foods 2014, 6, 248–258. [Google Scholar] [CrossRef]
- Keller, A.C.; Weir, L.T.; Broeckling, D.C.; Ryan, E.P. Antibacterial activity and phytochemical profile of fermented Camellia sinensis (fuzhuan tea). Food Res. Int. 2013, 53, 945–949. [Google Scholar] [CrossRef]
- Tian, Y.; Puganen, A.; Alakomi, H.L.; Uusitupa, A.; Saarela, M.; Yang, B. Antioxidative and antibacterial activities of aqueous ethanol extracts of berries, leaves, and branches of berry plants. Food Res. Int. 2018, 106, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Yaermaimaiti, S.; Wu, T.; Aisa, H.A. Bioassay-guided isolation of antioxidant, antimicrobial, and antiviral constituents of Cordia dichotoma fruits. Ind. Crop. Prod. 2021, 172, 113977. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yu, S.L.; Lin, C.X.; Dong, D.J.; Xiao, J.B.; Ye, Y.B.; Wang, M.F. Roles of flavonoids in ischemic heart disease: Cardioprotective effects and mechanisms against myocardial ischemia and reperfusion injury. Phytomedicine 2024, 126, 155409. [Google Scholar] [CrossRef]
- Li, H.; Lin, J.; Bai, B.; Bo, T.; He, Y.; Fan, S.; Zhang, J. Study on purification, identification and antioxidant of flavonoids extracted from Perilla leaves. Molecules 2023, 28, 7273. [Google Scholar] [CrossRef]
- Xi, J.; Yan, L.L. Optimization of pressure-enhanced solid-liquid extraction of flavonoids from Flos Sophorae and evaluation of their antioxidant activity. Sep. Purif. Technol. 2017, 175, 170–176. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kim, M.Y.; Cho, J.Y. Antioxidant, anti-inflammatory, anti-menopausal, and anti-cancer effects of lignans and their metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef] [PubMed]
- Ul’yanovskii, N.V.; Onuchina, A.A.; Faleva, A.V.; Gorbova, N.S.; Kosyakov, D.S. Comprehensive characterization of chemical composition and antioxidant activity of lignan-rich coniferous knotwood extractives. Antioxidants 2022, 11, 2338. [Google Scholar] [CrossRef] [PubMed]
- Vek, V.; Keržič, E.; Poljanšek, I.; Eklund, P.; Humar, M.; Oven, P. Wood extractives of silver fir and their antioxidant and antifungal properties. Molecules 2021, 26, 6412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Shuai, X.X.; Wei, Z.; Dai, T.T.; Wei, C.B.; Li, Y.; He, J.J.; Du, L.Q. Characterization, antioxidant and antitumor activities of phenolic compounds from Amomum villosum Lour. Front. Nutr. 2024, 11, 1327164. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.X.; Yang, J.; Ma, L.L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Li, K.; Fan, H.; Yin, P.P.; Yang, L.G.; Xue, Q.; Li, X.; Sun, L.W.; Liu, Y.J. Structure-activity relationship of eight high content flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arab. J. Chem. 2018, 11, 159–170. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, W.B.; Liu, J.C.; Liu, H.; Zhang, C.L.; Chen, D.L.; Jian, Z.G. Identification of six flavonoids as novel cellular antioxidants and their structure-activity relationship. Oxid. Med. Cell. Longev. 2020, 2020, 4150897. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, Z.; Ning, F.; Yuan, L.; Yang, X.; Luo, L. New theoretical perspective for easy evaluation of the antioxidant properties of typical flavonoids. Microchem. J. 2024, 197, 109786. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, H.; Wang, Y. Revealing and predicting the relationship between the molecular structure and antioxidant activity of flavonoids. LWT Food Sci. Technol. 2023, 174, 114433. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.K.; Wang, N.L.; Su, Y.B.; Yao, X.S. Antioxidant phenanthrenes and lignans from Denderobium nobile. J. Chin. Pharm. Sci. 2008, 17, 314–318. [Google Scholar]
- Sindt, L.; Gammacurta, M.; Waffo-Teguo, P.; Dubourdieu, D.; Marchal, A. Taste-guided isolation of bitter lignans from Quercus petraea and their identification in wine. J. Nat. Prod. 2016, 79, 2432–2438. [Google Scholar] [CrossRef]
- Li, S.; Jiang, S.X.; Jia, W.T.; Guo, T.M.; Wang, F.; Li, J.; Yao, Z.L. Natural antimicrobials from plants: Recent advances and future prospects. Food Chem. 2023, 432, 137231. [Google Scholar] [CrossRef]
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother. Res. 2019, 33, 13–40. [Google Scholar] [CrossRef]
- Abbaszadeh, H.; Keikhaei, B.; Mottaghi, S. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother. Res. 2019, 33, 2002–2014. [Google Scholar] [CrossRef]
- Han, Q.H.; Wu, Z.L.; Huang, B.; Sun, L.Q.; Ding, C.B.; Yuan, S.; Zhang, Z.W.; Chen, Y.G.; Hu, C.; Zhou, L.J.; et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zálešák, F.; Bon, D.J.Y.D.; Pospíšil, J. Lignans and neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 2019, 146, 104284. [Google Scholar] [CrossRef] [PubMed]
Fractions (g) | ||||||||
---|---|---|---|---|---|---|---|---|
A | 1 B* | D | E | F | G | H | I | Fr. II–III |
6.16 | 2.61 | 4.52 | 7.16 | 5.63 | 9.53 | 2.81 | 5.73 | 44.15/45.00 |
Component | Antioxidant Activities | ||
---|---|---|---|
DPPH IC50/(µg/mL) | ABTS IC50/(µg/mL) | FRAP (500 µg/mL) | |
A | 50.33 ± 3.80 fg | 253.13 ± 8.40 d | 0.60 ± 0.04 e |
1 B* | 97.43 ± 4.67 c | 41.04 ± 3.73 ef | 1.00 ± 0.01 c |
D | 22.11 ± 1.30 h | 32.31 ± 3.30 ef | 1.15 ± 0.04 b |
E | 89.45 ± 4.46 cd | 67.86 ± 2.12 ef | 0.67 ± 0.02 d |
F | 34.60 ± 2.62 gh | 134.05 ± 10.49 e | 0.39 ± 0.01 f |
G | 74.70 ± 3.43 de | 690.70 ± 26.41 b | 0.19 ± 0.01 g |
H | 836.90 ± 32.06 a | 2237.67 ± 231.83 a | 0.11 ± 0.00 h |
I | 350.73 ± 15.99 b | 406.60 ± 3.30 c | 0.17 ± 0.02 gh |
EtOAc | 65.79 ± 4.41 ef | 330.61 ± 16.72 cd | 1.00 ± 0.07 c |
2 Tetracycline | 28.91 ± 0.68 h | 13.51 ± 0.40 f | 2.17 ± 0.12 a |
Component | MIC mg/mL | ||
---|---|---|---|
E. coli | S. aureus | P. aeruginosa | |
A | >20.00 | >20.00 | >20.00 |
B* | >20.00 | >20.00 | >20.00 |
D | >20.00 | >20.00 | 10.00 |
E | 20.00 | 20.00 | 10.00 |
F | 20.00 | >20.00 | 10.00 |
G | >20.00 | 20.00 | >20.00 |
H | >20.00 | 20.00 | 10.00 |
I | 20.00 | 20.00 | 10.00 |
EtOAc | >20.00 | >20.00 | >20.00 |
1 Penicillin | 0.0625 | 0.0625 | 0.25 |
1 Tetracycline | 0.01563 | 0.03125 | 0.125 |
Compounds | ABTS+ B Assay (%) | |||
---|---|---|---|---|
500 µg/mL | 100 µg/mL | 50 µg/mL | 10 µg/mL | |
1 | 98.88 ± 0.37 a | - | 99.29 ± 0.83 a | 24.77 ± 2.14 d |
2 | 6.84 ± 2.12 j | - | - | - |
3 | 99.74 ± 0.68 a | - | 100.79 ± 1.66 a | 53.96 ± 1.89 a |
4 | 89.18 ± 2.58 c | 58.48 ± 0.95 c | - | - |
5 | 54.80 ± 2.58 i | - | ||
6 | 57.43 ± 1.81 i | - | - | - |
7 | 55.88 ± 2.07 h | - | - | - |
8 | 86.48 ± 0.77 d | 66.00 ± 2.70 b | - | - |
9 | 99.47 ± 0.63 a | - | 100.55 ± 0.06 a | 47.42 ± 1.89 b |
10 | 67.18 ± 1.62 f | 24.72 ± 2.23 e | - | |
11 | 101.03 ± 0.41 a | - | 100.00 ± 0.00 a | 39.88 ± 3.15 c |
12 | 94.12 ± 0.99 b | - | - | - |
13 | 83.34 ± 0.62 e | 53.38 ± 1.52 d | - | - |
14 | 99.02 ± 0.59 a | - | 101.11 ± 0.24 a | 25.71 ± 1.07 d |
15 | 4.09 ± 1.65 k | - | ||
16 | 58.89 ± 0.69 g | - | - | |
17 | 99.94 ± 0.51 a | - | 83.75 ± 0.65 b | 40.61 ± 1.37 c |
A ascorbic acid | - | 99.85 ± 0.03 a | 61.78 ± 0.69 c | 25.00 ± 2.06 d |
Compound | MIC b µg/mL | ||
---|---|---|---|
E. coli | S. aureus | P. aeruginosa | |
1 | 500.00 | 500.00 | 250.00 |
2 | 500.00 | 500.00 | - |
3 | 500.00 | 500.00 | 250.00 |
4 | 500.00 | - | 125.00 |
5 | 500.00 | 500.00 | 250.00 |
6 | 500.00 | 500.00 | 250.00 |
7 | 500.00 | 500.00 | 125.00 |
8 | 500.00 | 500.00 | 250.00 |
9 | 500.00 | 500.00 | 250.00 |
10 | 500.00 | >500.00 | 250.00 |
11 | >500.00 | 500.00 | 125.00 |
12 | 500.00 | 250.00 | 125.00 |
13 | 500.00 | 500.00 | - |
14 | 500.00 | 500.00 | 250.00 |
15 | 500.00 | 500.00 | 250.00 |
16 | 500.00 | 500.00 | 250.00 |
17 | 500.00 | 500.00 | 250.00 |
a Penicillin | 62.50 | 62.50 | 250.00 |
a Tetracycline | 15.62 | 31.25 | 125.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Tang, J.; Li, J.; Wu, B.; Tang, J.; Kan, H.; Zhao, P.; Zhang, Y.; Wang, W.; Liu, Y. Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis. Foods 2024, 13, 2266. https://doi.org/10.3390/foods13142266
Li R, Tang J, Li J, Wu B, Tang J, Kan H, Zhao P, Zhang Y, Wang W, Liu Y. Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis. Foods. 2024; 13(14):2266. https://doi.org/10.3390/foods13142266
Chicago/Turabian StyleLi, Ruonan, Jiandong Tang, Jingjing Li, Boxiao Wu, Junrong Tang, Huan Kan, Ping Zhao, Yingjun Zhang, Weihua Wang, and Yun Liu. 2024. "Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis" Foods 13, no. 14: 2266. https://doi.org/10.3390/foods13142266
APA StyleLi, R., Tang, J., Li, J., Wu, B., Tang, J., Kan, H., Zhao, P., Zhang, Y., Wang, W., & Liu, Y. (2024). Bioactivity-Guided Isolation of Secondary Metabolites with Antioxidant and Antimicrobial Activities from Camellia fascicularis. Foods, 13(14), 2266. https://doi.org/10.3390/foods13142266